稀土胺基双酚配合物的合成及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用无水氯化稀土为原料,通过盐交换反应合成了一系列新型含双酚配体(胺基双酚与四氢席夫碱)的稀土配合物,得到了其中三种稀土配合物的单晶并通过X-射线单晶衍射确定了它们的晶体结构。详细研究了这些稀土配合物单组份催化ε-已内酯开环聚合的催化性能与聚合规律,制备得到了含有双酚配体端基的聚已内酯,直接验证了聚合机理;初步探索了上述稀土配合物与烷基铝组成的催化体系对异戊二烯聚合的催化性能。
     合成了稀土胺基双酚配合物Ln(ONN'O) (Ln=Nd. Sm、Gd、Lu)以及稀土四氢席夫碱配合物Nd(SALAN),分别在正已烷或甲苯溶液中结晶得到了的配合物Sm(ONN'O)、Nd(ONN'O)与Nd(SALAN)的单晶,并进行X-射线单晶衍射确定其晶体结构。发现Sm(ONN'O)及Nd(ONN'O)两种配合物都是由μ-C1桥连的二聚体分子结构,且中心稀土原子都处于7配位状态;而Nd(SALAN)配合物的结构为由μ-Cl桥连的二聚体分子结构,中心稀土Nd原子处于6配位状态。
     采用新型稀土胺基双酚配合物作为ε-已内酯(CL)开环聚合的单组分催化剂,比较了不同稀土元素、聚合溶剂及催化剂浓度对聚合的影响。结果表明,稀土钕的配合物Nd(ONN'O)的催化性能较佳,当[Nd]/[CL]为1:200和1:300在甲苯溶液中ε-CL开环聚合表现出一定的活性聚合的特征:PCL的分子量分布较窄;ln(M0/M)值与时间呈直线关系;PCL的分子量随着转化率的升高而线性升高。聚合过程存在一个很长的诱导期,这是由于Nd(ONN'O)分子在甲苯溶液中存在二聚体分子和单分子溶解平衡所导致的。
     采用1H NMR、GPC等方法首次直接证明了含酚类配体的稀土配合物催化ε-CL开环聚合的聚合机理。以Nd(ONN'O)为催化剂,[Nd]/[CL]=1:20制备了低分子量PCL,用甲醇终止聚合反应。控制聚合物与甲醇的酯交换反应得到含有双酚配体端基与不含配体端基的聚合物P1和P2,结合GPC测定两者的分子量,直接证明了该开环聚合反应为Ln-O键断裂的配位-插入机理,而ε-CL以酰-氧键断裂的方式开环。
Lanthanide chloride complexes bearing amine-bis(phenolate) ligand Ln(ONN'O) (Ln= Nd, Sm, Gd and Lu) have been synthesized by metathesis reaction of anhydrous LnCl3 with amine-bis(phenolate) lithium salt in high yields. The complexes containing neodymium and samarium center were characterized, the single crystal X-ray crystallographic analysis shows these complexes are dimeric, consists of two seven-coordinate rare earth centers linked throughμ-Cl bridges. Neodymium chloride complex with tetradentate phenoxyamine (SALAN) ligand Nd(SALAN) was synthesized. Its single crystal X-ray crystallographic analysis shows this complex is also dimeric, consists of two six-coordinate neodymium centers linked throughμ-Cl bridges.
     The ring-opening polymerization (ROP) ofε-caprolactone (CL) was successfully carried out by using these lanthanide complexes as single component catalysts and the influence of the reaction conditions on the monomer conversion, molecular weight and molecular weight distribution of the resultant polymers was investigated. The neodymium complex (Nd(ONN'O))exhibits highest catalytic activities and leads to controlled ROP of CL, preparing PCLs with controlled molecular weights and narrow molecular weight distributions. Under the [Nd]/[CL] molar ratio of 200 or 300, polymerized in toluene at 80℃, the polymerization rate was first-order with respect to the monomer concentration. A long induction period was observed in this system, which attributes to the dissolution equilibrium of dimer-monomer of complex in solution.
     For the purpose of investigating the mechanism, a ROP of CL using Nd(ONN'O) with a 1:20 initiator to monomer molar ratio was carried out, and the polymerization was terminated by adding methanol. By controlling the transesterification reaction between aryl ester end group (ArOOC) and methanol, the oligomer ofε-caprolactone with or without phenol end group from ligand could be obtained. 1H NMR end group analyses and GPC determination demonstrate the coordination-insertion mechanism of ROP of CL catalyzed by amine-bis(phenolate) based rare-earth metal complexes directly.
引文
1. Ober C. K., Cheng S. Z. D., Hammond P. T., et al. Research in Macromolecular Science: Challenges and Opportunities for the Next Decade. Macromolecules,2009,42(2):465-471.
    2. Gil E. S., Hudson S. M. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci.,2004,29(12):1173-1222.
    3. Amsden B. Curable, biodegradable elastomers:emerging biomaterials for drug delivery and tissue engineering. Soft Matter,2007,3(11):1335-1348.
    4. Jayasekara R, Harding I., Bowater I., et al. Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J. Polym. Environ,2005,13(3):231-251.
    5. Arvanitoyannis I. S. Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules:Preparation, physical properties, and potential as food packaging materials. J. Macromol. Sci.-Rev. Macromol. Chem. Phys.,1999, C39(2): 205-271.
    6. Amass W., Amass A.,Tighe B. A review of biodegradable polymers:Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int.,1998, 47(2):89-144.
    7. Stridsberg K. M., Ryner M.,Albertsson A. C., Controlled ring-opening polymerization: Polymers with designed macromolecular architecture, in Degradable Aliphatic Polyesters. 2002, Springer-Verlag Berlin:Berlin. p.41-65.
    8. Duda A., Biela T., Libiszowski J., et al. Block and random copolymers of epsilon-caprolactone. Polym. Degrad. Stabil.,1998,59(1-3):215-222.
    9. Duda A., Penczek S. thermodynamics of L-lactide polymerization-equilibrium monomer concentration. Macromolecules,1990,23(6):1636-1639.
    10. Albertsson A. C., Varma I. K., Aliphatic polyesters:Synthesis, properties and applications, in Degradable Aliphatic Polyesters.2002, Springer-Verlag Berlin:Berlin. p.1-40.
    11. Van Natta F. J., Hill J. W.,Carothers W. H. Studies of polymerization and ring formation XXIII epsilon-Caprolactone and its polymers. J. Am. Chem. Soc,1934,56(455-457.
    12. Shen Y. Q., Sun W. L., Zhu K. J., et al. Regulation of biodegradability and drug release behavior of aliphatic polyesters by blending. J. Biomed. Mater. Res.,2000,50(4):528-535.
    13. Kricheldorf H. R., Langanke D. Polylactones 54:ring-opening and ring-expansion polymerizations of epsilon-caprolactone initiated by germanium alkoxides. Polymer,2002, 43(6):1973-1977.
    14. Lou X. D., Detrembleur C.,Jerome R. Living cationic polymerization of delta-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechelic and block copolymer. Macromolecules,2002,35(4):1190-1195.
    15. Olah G. A., Wang Q. J., Li X. Y, et al. Silylcarboxonium and silyloxonium ion intermediates of the cationic ring-opening polymerization of lactones and tetrahydrofuran initiated by electrophilic trimethylsilylating agents. Macromolecules,1996,29(6):1857-1861.
    16. Stannett V., Szwarc M. polycondensation of 6-membered lactones. Journal of Polymer Science,1953,10(6):587-591.
    17. Kricheldorf H. R., Jonte J. M.,Dunsing R. polylactones.7. the mechanism of cationic polymerization of beta-propiolactone and epsilon-caprolactone. Makromolekulare Chemie-Macromolecular Chemistry and Physics,1986,187(4):771-785.
    18. Cherdron H., Ohse H.,Korte F. die polymerisation von lactonen.1. homopolymerisation 4-gliedriger,6-gliedriger und 7-gliedriger lactone mit kationischen initiatoren. Makromolekulare Chemie,1962,56(179-186.
    19. Hofinan A., Szymanski R., Slomkowski S., et al. structure of active species in the cationic polymerization of beta-propiolactone and epsilon-caprolactone. Makromolekulare Chemie-Macromolecular Chemistry and Physics,1984,185(4):655-667.
    20. Lofgren A., Albertsson A. C., Dubois P., et al. recent advances in ring-opening polymerization of lactones and related-compounds. J. Macromol. Sci.-Rev. Macromol. Chem. Phys.,1995, C35(3):379-418.
    21. Gerhardabozari E., Keul H.,Hocker H. copolymers with soft and hare segments based on 2,2-dimethyltrimethylene carbonate and epsilon-caprolactone. Macromol. Chem. Phys., 1994,195(7):2371-2380.
    22. Keul H., Vahlenkamp T.,Hocker H. cyclic oligomers obtained by polymerization of 2,2-dimethyltrimethylene carbonate in the presence of epsilon-caprolactam. Eur. Polym. J.,1992, 28(6):611-614.
    23. Miola-Delaite C., Colomb E., Pollet E., et al. Anionic ring opening polymerization of oxygenated heterocycles with supported zirconium and rare earths alkoxides as initiators in protic conditions. Towards a catalytic heterogeneous process. Macromol. Symp.,2000, 153(275-286.
    24. Keul H., Schmidt P., Robertz B., et al. copolymerization of 2,2- dimethyltrimethylene carbonate and cyclic esters. Macromol. Symp.,1995,95(243-253.
    25. Yu Y. S., Eisenberg A. Synthesis of biodegradable and biocompatable amphiphilic ethylene. oxide caprolactone block copolymer by sequential anionic ring-opening polymerization. Abstr. Pap. Am. Chem. Soc.,1998,216(248-PMSE.
    26. Yoshida E., Osagawa Y. Synthesis of poly (epsilon-caprolactone) with a stable nitroxyl radical as an end-functional group and its application to a counter radical for living radical polymerization. Macromolecules,1998,31(5):1446-1453.
    27. Ihara E., Adachi Y., Yasuda H., et al. Synthesis of 2,6-dialkoxylphenyllanthanoid complexes and their polymerization catalysis. J. Organomet. Chem.,1998,569(1-2):147-157.
    28. Xie W. H., Chen D. P., Fan X. H., et al. Lithium chloride as catalyst for the ring-opening polymerization of lactide in the presence of hydroxyl-containing compounds. J. Polym. Sci. Pol. Chem.,1999,37(17):3486-3491.
    29. Ko B. T., Lin C. C. Synthesis, characterization, and catalysis of mixed-ligand lithium aggregates, excellent initiators for the ring-opening polymerization of L-lactide. J. Am. Chem. Soc.,2001,123(33):7973-7977.
    30. Kricheldorf H. R., Stricker A. Polylactones,47 A-B-A triblock copolyesters and random copolyesters of trimethylene carbonate and various lactones via macrocyclic polymerization. Macromol. Chem. Phys.,1999,200(7):1726-1733.
    31. Dubois P., Jacobs C., Jerome R., et al. macromolecular engineering of polylactones and polylactides.4. mechanism and kinetics of lactide homopolymerization by alumium isopropoxide. Macromolecules,1991,24(9):2266-2270.
    32. Stevels W. M., Ankone M. J. K., Dijkstra P. J., et al. Kinetics and mechanism of epsilon-caprolactone polymerization using yttrium alkoxides as initiators. Macromolecules, 1996,29(26):8296-8303.
    33. Stevels W. M., Ankone M. J. K., Dijkstra P. J., et al. Kinetics and mechanism of L-lactide polymerization using two different yttrium alkoxides as initiators. Macromolecules,1996, 29(19):6132-6138.
    34. Stevels W. M., Ankone M. J. K., Dijkstra P. J., et al. A versatile and highly efficient catalyst system for the preparation of polyesters based on lanthanide tris(2,6-di-tert-butylphenolate)s and various alcohols. Macromolecules,1996,29(9):3332-3333.
    35. Yasuda H. Organo-rare-earth-metal initiated living polymerizations of polar and nonpolar monomers. J. Organomet. Chem.,2002,647(1-2):128-138.
    36. Gao W., Cui D. M., Liu X. M., et al. Rare-Earth Metal Bis(alkyl)s Supported by a Quinolinyl Anilido-Imine Ligand:Synthesis and Catalysis on Living Polymerization of epsilon-Caprolactone. Organometallics,2008,27(22):5889-5893.
    37. Jian Z. B., Zhao W., Liu X. L., et al. Synthesis of linked half sandwich rare-earth metal chlorido and borohydrido complexes and their catalytic behavior towards MMA polymerization. Dalton Trans.,39(29):6871-6876.
    38. Yang Y, Lv K., Wang L. F., et al. Isoprene polymerization with aminopyridinato ligand supported rare-earth metal complexes. Switching of the regio- and stereoselectivity. Chem. Commun.,46(33):6150-6152.
    39. Xue M. Q., Jiao R., Zhang Y., et al. Syntheses and Structures of Tris-beta-Diketiminate Lanthanide Complexes and Their High Activity for Ring-Opening Polymerization of epsilon-Caprolactone and L-Lactide. Eur. J. Inorg. Chem.,2009,27):4110-4118.
    40. Wang J. F., Yao Y. M., Zhang Y., et al. Bridged Bis(amidinate) Ytterbium Alkoxide and Phenoxide:Syntheses, Structures, and Their High Activity for Controlled Polymerization of L-Lactide and epsilon-Caprolactone. Inorg. Chem.,2009,48(2):744-751.
    41. 沈之荃.稀土催化剂在高分子合成中的开拓应用.高分子通报,2005,4(1):1-12.
    42. Shen Z. Q., Zhu G. X.,Ling J. Homo-and copolymerization of epsilon-caprolactone and 2,2-dimethyltrimethylene carbonate by rare earth initiators. Chin. J. Chem.,2002,20(11): 1369-1374.
    43. Ling J., Shen Z. Q. Lanthanum tris(2,6-di-tert-butyl-4-methylphenolate) as a novel, versatile initiator for homo- and copolymerization of cyclic carbonates and lactones (vol 203, pg 735,2002). Macromol. Chem. Phys.,2002,203(12):1872-1872.
    44. Edlund U., Albertsson A. C., Degradable polymer microspheres for controlled drug delivery, in Degradable Aliphatic Polyesters.2002, Springer-Verlag Berlin:Berlin. p.67-112.
    45. Hyun H., Kim Y H., Song I. B., et al. In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier. Biomacromolecules,2007,8(4):1093-1100.
    46. 艾合麦提·玉素甫,陈统一,陈中伟.可降解聚已内酯修复骨缺损的实验研究.中国修复重建外科杂志,2005,19(6):2529-2543.
    47. Tshuva E. Y., Goldberg I., Kol M., et al. Zirconium complexes of amine-bis(phenolate) ligands as catalysts for 1-hexene polymerization:Peripheral structural parameters strongly affect reactivity. Organometallics,2001,20(14):3017-3028.
    48. Bonnet F., Cowley A. R.,Mountford P. Lanthanide borohydride complexes supported by diaminobis(phenoxide) ligands for the polymerization of is an element of-caprolactone and L-and rac-lactide. Inorg. Chem.,2005,44(24):9046-9055.
    49. Liu X. L., Shang X. M., Tang T., et al. Achiral lanthanide alkyl complexes bearing N,O multidentate ligands. Synthesis and catalysis of highly heteroselective ring-opening polymerization of rac-lactide. Organometallics,2007,26(10):2747-2757.
    50. Willans C. E., Sinenkov M. A., Fukin G. K., et al. Lanthanide chloride complexes of amine-bis(phenolate) ligands and their reactivity in the ring-opening polymerization of epsilon-caprolactone. Dalton Transactions,2008,27):3592-3598.
    51. Dugah D. T., Skelton B. W.,Delbridge E. E. Synthesis and characterization of new divalent lanthanide complexes supported by amine bis(phenolate) ligands and their applications in the ring opening polymerization of cyclic esters. Dalton Transactions,2009,8):1436-1445.
    52. Boyd C. L., Toupance T., Tyrrell B. R., et al. Synthesis, structures, and reactions of titanium, scandium, and yttrium complexes of diamino-bis(phenolate) ligands:Monomeric, dimeric, neutral, cationic, and multiply bonded derivatives. Organometallics,2005,24(2):309-330.
    53. Gendler S., Segal S., Goldberg I., et al. Titanium and zirconium complexes of dianionic and irianionic amine-Phenolate-type ligands in catalysis of lactide polymerization. Inorg. Chem.,2006,45(12):4783-4790.
    54. Barroso S., Cui J. L., Carretas J. M., et al. Diamine Bis(phenolate) M(Ⅲ) (Y, Ti) Complexes: Synthesis, Structures, and Reactivity. Organometallics,2009,28(12):3449-3458.
    55. Despagnet-Ayoub E., Schigand S., Vendier L., et al. Amine-Phenolate Ligands in Niobium Chemistry:pi-Interactions Probed by an Ancillary Alkyne Ligand. Organometallics,2009, 28(7):2188-2194.
    56. Shen Z. Q., Jun O. Y., Wang F. S., et al. the characteristics of lanthanide coordination catalysts and the cis-polydienes prepared therewith. J. Polym. Sci. Pol. Chem.,1980,18(12): 3345-3357.
    57. Cozzi P. G Metal-Salen Schiff base complexes in catalysis:practical aspects. Chem. Soc. Rev.,2004,33(7):410-421.
    58. Larrow J. F., Jacobsen E. N., Gao Y., et al. a practical method for the large-scale preparation of [N,N'-bis(3,S-di-tert-butylsalicylidene)1,2-cyclohexanediaminato(2-)]man ganese(Ⅲ) chloride, a highly enantioselective epoxidation catalyst. J. Org. Chem.,1994,59(7): 1939-1942.
    59. Clegg W., Davidson M. G, Graham D. V., et al. Synthetic and structural investigations of alkali metal diamine bis(phenolate) complexes. Dalton Trans.,2008,10):1295-1301.
    60. Balsells J., Carroll P. J.,Walsh P. J. Achiral tetrahydrosalen ligands for the synthesis of C-2-symmetric titanium complexes:A structure and diastereoselectivity study. Inorg. Chem., 2001,40(22):5568-5574.
    61. Cohen A., Yeori A., Kopilov J., et al. Construction of C-1-symmetric zirconium complexes by the design of new Salan ligands. Coordination chemistry and preliminary polymerisation catalysis studies. Chem. Commun.,2008,18):2149-2151.
    62. Kerton F. M., Whitwood A. C.,Willans C. E. A high-throughput approach to lanthanide complexes and their rapid screening in the ring opening polymerisation of caprolactone. Dalton Transactions,2004,15):2237-2244.
    63. Kramer J. W., Treitler D. S., Dunn E. W., et al. Polymerization of Enantiopure Monomers Using Syndiospecific Catalysts:A New Approach To Sequence Control in Polymer Synthesis. J. Am. Chem. Soc.,2009,131(44):16042-+.
    64. Taylor M. D., Carter C. P. preparation of anhydrous lanthanide halides, especially iodides. Journal of Inorganic & Nuclear Chemistry,1962,24(APR):387-391.
    65. Barakat I., Dubois P., Jerome R., et al. macromolecular engineering of polylactones and polylactides.10. selective end-functionalization of poly(D,L)-lactide. J. Polym. Sci. Pol. Chem.,1993,31(2):505-514.
    66. Schwarz A. D., Thompson A. L.,Mountford P. Sulfonamide-Supported Group 4 Catalysts for the Ring-Opening Polymerization of epsilon-Caprolactone and rac-Lactide. Inorg. Chem., 2009,48(21):10442-10454.
    67. Zhang L. F., Yu C. P.,Shen Z. Q. Characteristics, kinetics and mechanism of epsilon-caprolactone polymerization by lanthanide tris(2.6-dimethylphenolate)s. Polym. Bull.,2003,51(1):47-53.
    68. Nishiura M., Hou Z. M., Koizumi T., et al. Ring-opening polymerization and copolymerization of lactones by samarium(Ⅱ) aryloxide complexes. Macromolecules,1999, 32(25):8245-8251.
    69. Ling J., Zhu W. P.,Shen Z. Q. Controlling ring-opening copolymerization of epsilon-caprolactone with trimethylene carbonate by scandium tris(2,6-di-tert-butyl-4-methylphenolate). Macromolecules,2004,37(3):758-763.
    70. Ling J., Dai Y. B., Zhu Y. H., et al. Ring-Opening Polymerization of 1-Methyltrimethylene Carbonate by Rare Earth Initiators. J. Polym. Sci. Pol. Chem.,48(17):3807-3815.
    71. Lu Y, Ni X. F.,Shen Z. Q. Ring-opening polymerization of epsilon-caprolactone using lanthanide tris(N-phenyl-3,5-di-T-butylsalicylaldiminato)s as single component catalyst. Chin. J. Polym. Sci.,2007,25(5):541-544.
    72. Wang D., Li S. H., Liu X. L., et al. Thiophene-NPN Ligand Supported Rare-Earth Metal Bis(alkyl) Complexes. Synthesis and Catalysis toward Highly trans-1,4 Selective Polymerization of Butadiene. Organometallics,2008,27(24):6531-6538.
    73. Yang Y, Wang Q. Y.,Cui D. M. Isoprene polymerization with indolide-imine supported rare-earth metal alkyl and amidinate complexes. J. Polym. Sci. Pol. Chem.,2008,46(15): 5251-5262.
    74. Gao W., Cui D. M. Highly cis-1,4 selective polymerization of dienes with homogeneous Ziegler-Natta catalysts based on NCN-pincer rare earth metal dichioride precursors. J. Am. Chem. Soc.,2008,130(14):4984-4991.
    75. Wang B. L., Cui D. M.,Lv K. Highly 3,4-selective living polymerization of isoprene with rare earth metal fluorenyl N-heterocyclic carbene precursors. Macromolecules,2008,41(6): 1983-1988.
    76. Li S. H., Miao W., Tang T., et al. New rare earth metal bis(alkyl)s bearing an iminophosphonamido ligand. Synthesis and catalysis toward highly 3,4-selective polymerization of isoprene. Organometallics,2008,27(4):718-725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700