氧化应激抑制IGF-1神经保护作用机制及对策的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     临床上,缺氧缺血仍然是造成足月儿、近足月儿严重脑损伤的主要原因之一,其发生率(二和三级脑损伤)约为0.1-0.2%,其中约20%患儿死亡,高达40%幸存者遗留严重神经系统后遗症,如痉挛性麻痹,智力障碍,癫痫等。迄今为止,仍没有十分有效的临床手段能减轻脑损伤和改善此类患儿的预后。早期研究发现,缺氧缺血导致新生鼠和成年鼠神经细胞死亡的方式有显著差异。在新生鼠,由于神经细胞发育的不成熟,缺氧缺血早期阶段死亡以坏死为主,后期则以凋亡为主;而在成年鼠,神经细胞则主要发生坏死。这种差异很大程度上与新生脑组织具有较高的凋亡诱导激酶Caspase-3活性有关。由于对缺氧缺血十分敏感且受其增殖和再生能力的限制,一旦启动坏死、凋亡程序且未经干预,不成熟神经细胞终将死亡,即使动物幸存下来,其躯体感觉和记忆功能也受到极大影响。
     胰岛素样生长因子I(IGF-1)是一种多肽类神经营养因子,它对于哺乳动物神经系统的发育发挥十分重要的作用。IGF-1和其受体的表达在神经分化过程中达到顶峰,IGF-1通过激活其受体,促进神经细胞生存、分化、增殖、突触外伸以及髓鞘形成。研究表明,在7天的大鼠和胎羊,缺氧缺血后立即心腔内注射IGF-1能为神经细胞提供保护作用。我们前期的研究结果表明,缺氧缺血后24和48小时皮下注射IGF-1可显著减轻缺氧缺血诱导的不成熟鼠脑损伤,并且在2个月后能够明显改善它们的记忆和认知行为发展的潜能。然而,若干瓶颈阻碍了IGF-1进一步试用于临床:1.在新生大鼠缺氧缺血动物模型,即使在缺氧缺血发生后立即心腔内注射大剂量的IGF-1,三天后,脑损伤仅能减少40%左右;2.缺氧缺血后延迟(6小时以后)给予IGF-1治疗效果不确定;3.IGF-1对脑和行为学发展的远期效果不明了。
     在缺血再灌注诱导的脑损伤中,氧化损伤扮演了重要角色。相对于成熟脑组织而言,新生脑组织由于含有高浓度的铁离子,较低水平的谷胱苷肽过氧化物酶,并伴有H_2O_2的积累,导致其对缺血后氧化应激性损伤特别敏感。通过对小脑颗粒神经细胞的研究表明,高水平的H_2O_2除了本身的神经毒性以外,它还可诱导神经细胞产生对IGF-1保护作用的抵抗。那么,这种对IGF-1的抵抗是否是导致缺氧缺血后立即给予IGF-1治疗不佳的重要因素?目前尚不清楚。
     为此,我们希望采用一种抗氧化剂与IGF-1联合应用的方式以对缺血缺氧性神经细胞发挥足够保护作用。首先由抗氧化剂清除蓄积的ROS,消除神经细胞的氧化应激状态,恢复其对IGF-1神经营养作用的敏感性,然后,IGF-1得以发挥其保护功能和营养作用。丙酮酸钠正是这样一种药物,它具有:1.本身没有毒副作用,不会对细胞造成新的损伤;2.能够很容易的进入细胞内,在胞内胞外均能发挥作用;3.具有良好的抗氧化功能,能够清除ROS,消除缺氧缺血性发生后的氧化应激状态;4.与IGF-1有协同作用,能恢复细胞对IGF-1的反应性,增强IGF-1对缺氧缺血后细胞的保护作用。
     目的:
     尽管目前对缺氧缺血后脑损伤的机制有了进一步认识,但是我们对新生儿缺氧缺血性脑病仍然缺乏有效的临床治疗手段。IGF-1能够减少缺氧缺血性脑病动物模型的脑损伤,但是以一种时间依赖的方式。我们初期的数据显示,缺氧缺血后IGF-1在恢复的早期阶段疗效较低是由于氧化应激诱导了神经细胞的IGF-1抵抗。为此,我们进一步阐明:
     1、氧化应激诱导神经细胞IGF-1抵抗的机制;
     2、联合采用抗氧化剂治疗恢复神经细胞对IGF-1的敏感性后,是否能增强IGF-1对缺氧缺血诱导不成熟脑损伤的治疗作用。
     方法:
     1、原代培养的新生大鼠大脑皮层神经元细胞、少突胶质细胞和星形胶质细胞,待生长至第六天时,将培养液换成高糖DMEM,分别加入不同浓度的H_2O_2,4小时后,用Western-blot检测神经元细胞cleaved Caspase-3,Caspase-3,IGFIR,Gapdh的表达,24小时后,分别检测各种细胞LDH,MTT的变化。
     2、原代培养的新生大鼠大脑皮层神经元细胞,待生长至第六天时,将培养液换成高糖DMEM,分别加入不同浓度的H_2O_2,5分钟后,IGF-1组加入25ng/ml IGF-1,对照组不加IGF-1,45分钟后,Western-blot检测P-Akt(Ser473),Akt,P-P38,P38表达变化;2小时后,Western-blot检测P-JNK(Thr183/Tyr185)、JNK、P-FOXO3(Ser253)、P-FOXO3(Thr32)、FOXO3、P-P53(Ser392)、P53、Acetyl-H3、Acetyl-4、Gapdh等的表达;4小时后,用Western-blot检测两组细胞cleaved Caspase-3,Caspase-3,IGFIR,Gapdh,P-P53(Ser392),P53表达变化,用real-time PCR检测IGFIR,Gapdh的表达变化;24小时后,分别检测两组细胞LDH,MTT的变化。
     3、分别以Akt、JNK2、p38和P53特异性阻断剂LY294002(20uM)、SP600125(20uM)、SB239063(7.5uM)和Pifirin(10uM)作为干预方式,分别于相应的时间点运用相应的方法检测上述指标的改变。
     4、原代培养的新生大鼠大脑皮层神经元细胞,待生长至第六天时,将培养液换成高糖DMEM,分别加入不同浓度的H_2O_2,2小时后,用细胞裂解液提取细胞蛋白,分别以TBP和P53作为免疫共沉淀(IP)蛋白,用IB检测P-P53(Ser392)和HDAC1表达的变化。
     5、原代培养的新生大鼠大脑皮层神经元细胞,待生长至第六天时,将培养液换成高糖DMEM,分别加入不同浓度的H_2O_2,分别于5分钟和1小时后加入IGF-1,45分钟后用Western-blot方法检测P-Akt,Akt表达的变化。
     6、原代培养的新生大鼠大脑皮层神经元细胞,待生长至第六天时,将培养液换成高糖DMEM,分别加入不同浓度的H_2O_2,5分钟后丙酮酸钠组加入2mM丙酮酸钠,IGF-1组加入25ng/ml IGF-1,丙酮酸钠+IGF-1组同时加入二者,45分钟后,Western-blot方法检测P-Akt(Ser473),Akt表达变化,4小时后,Western-blot方法检测IGFIR,Gapdh,cleaved Caspase-3,Caspase-3表达变化,并检测细胞培养液LDH的变化。
     结果:
     1、大脑皮层神经元细胞对氧化应激损伤异常敏感
     H_2O_2对神经元细胞,少突胶质细胞,星形胶质细胞LDH和MTT均有的影响,但对神经元细胞的影响更加显著。
     2、H_2O_2对皮层神经元细胞的毒性作用呈剂量依赖性
     H_2O_2使神经元细胞细胞培养液中LDH明显上升,MTT明显下降,cleavedCaspase-3表达明显上升,且呈明显的H_2O_2剂量依赖性。
     3、IGF-1对皮层神经元细胞的凋亡具有保护作用
     IGF-1使皮层神经元细胞LDH明显降低,cleaved Caspase-3表达显著降低。
     4、高浓度H_2O_2能够抑制IGF-1对皮层神经元细胞的保护作用
     高浓度的H_2O_2能够使IGF-1组和无IGF-1组皮层神经元细胞LDH,MTT和Caspase-3的表达无显著性差异。
     5、提高IGF-1的浓度并不能克服H_2O_2诱导的皮层神经元细胞IGF-1抵抗
     当H_2O_2浓度达到60uM时,无论何种浓度的IGF-1均不能使神经元细胞LDH降低。
     6、H_2O_2诱导皮层神经元细胞P38激活,加入IGF-1无法阻断这一过程
     H_2O_2显著升高神经元细胞磷酸化P38MAPK的表达,P38MAPK特异性的抑制剂SB239063能够抑制这种升高。而加入IGF-1并无影响。
     7、H_2O_2通过激活P38,从而阻断皮层神经元细胞Akt的磷酸化(Ser473)
     H_2O_2呈剂量依赖性的下调神经元细胞P-Akt(Ser473)的表达。
     8、IGF-1通过激活Akt(Ser473),从而钝化FOXO3(Thr32),但是这一过程能被高浓度的H2O2阻遏
     IGF-1显著增加神经元细胞P-Akt(Ser473)的表达,并且使P-FOXO3(Thr32)表达明显升高。但当加入高浓度的H_2O_2,IGF-1的作用即被抑制。
     9、H_2O_2对皮层神经元细胞Akt磷酸化(ser473)的抑制作用是可逆的,且其对IGF-1诱导的Akt(Ser473)磷酸化的阻遏作用亦可扭转
     当加入H_2O_2 5分钟后加入IGF-1,可见P-Akt(Ser473)升高并不明显,而当加入H_2O_2 1小时后加入IGF-1,则可见P-Akt(Ser473)显著升高。
     10、H_2O_2通过磷酸化JNK2(Thr183/Tyr185),从而激活FOXO3(Ser253)
     IGF-1可以显著增加P-JNK2(Thr183/Tyr185)的表达,并明显增加P-FOXO3(Ser253)的表达。
     11、H_2O_2对大脑皮层神经细胞IGF-1受体的影响是神经元细胞特异性的
     H_2O_2明显下调神经元细胞IGF-1受体的表达,但是对少突胶质细胞和星形胶质细胞IGF-1的表达没有显著影响。
     12、H_2O_2呈剂量依赖性诱导皮层神经元细胞P53的激活,并且这种激活作用具有时效性
     H_2O_2能够呈剂量依赖性的明显升高P-P53(Ser392)的表达,且这种作用在2小时达到高峰,4小时逐渐下降。
     13、H_2O_2通过激活P53,从而降低皮层神经元细胞IGF-1受体的表达
     H_2O_2明显减少神经元细胞IGF-1受体的表达,但当加入P53的抑制剂Pifithrin,IGF-1受体的表达明显升高
     14、磷酸化P53(Ser392)通过结合于TBP而影响IGF-1受体mRNA的转录
     H_2O_2能使P-P53(Ser392)与TBP的结合显著增加,从而影响转录
     15、H_2O_2诱导HDAC1与P53结合从而影响组蛋白3和组蛋白4乙酰化
     H_2O_2能使HDAC1与P53结合显著增加,并且明显下调乙酰化组蛋白4的表达,而对乙酰化组蛋白3却没有明显影响。
     16、在氧化应激状态下,丙酮酸钠能使大脑皮层神经细胞恢复对IGF-1的敏感性
     在H_2O_2存在的条件下,丙酮酸钠能使P-Akt(Ser473)表达明显升高,当同时加入丙酮酸钠和IGF-1,丙酮酸钠能显著上调IGF-1对P-Akt(Ser473)的刺激作用
     17、在氧化应激状态下,丙酮酸钠能减弱H_2O_2对大脑皮层神经细胞IGF-1受体的抑制作用
     在H_2O_2存在的条件下,丙酮酸钠能使神经元细胞IGF-1受体的表达明显升高。
     18、在氧化应激状态下,丙酮酸钠对大脑皮层神经元细胞LDH和活化Caspase-3表达的影响
     在H_2O_2存在的条件下,丙酮酸钠能使神经元细胞LDH明显下降,同时使激活的Caspase-3表达明显减少。表明丙酮酸钠能减少H_2O_2诱导的神经元细胞凋亡。
     结论:
     1、氧化应激首先激活应激酶P38,阻断了IGF-1/AKT信号通路的神经保护作用,随后激活另一应激酶JNK2,使AKT和JNK2两条独立通路之间的平衡被打破,从而激活神经转录因子FOXO3,触发了细胞凋亡级联反应;
     2、氧化应激状态下,P53首先被激活,激活的P53使IGF-1受体表达下调,是氧化应激诱导IGF-1抵抗的重要原因之一;
     3、氧化应激状态下,丙酮酸钠能够有效清除ROS,恢复神经细胞对IGF-1的敏感性,与IGF-1联合应用可增强IGF-1对神经细胞的保护作用。
Background
     Cerebral hypoxia-ischemia remains a leading cause of severe brain damage that occursin as many as 0.1-0.2% of term or near -term infants (GradesⅡ&Ⅲbrain injuries), amongwhom approximately 20% die and up to 40% of the survivors often suffer devastatingdisabilities, such as cerebral palsy, mental retardation, and epilepsy. Because of highmortality and poor prognosis, hypoxic-ischemic damage in neonatal brains continues to bea major medical emergency for newborn patients. To damage in neonatal brains continuesto be a major medical emergency for newborn patients. To date, no effective clinicaltreatment is available to mitigate brain damage and improve the prognosis and well beingof these children. Previously, the cascade of neuropathological events that leads to neuronaldamage was best revealed in a rat model of neonatal hypoxia-ischemia. Hypoxia-ischemiaresults in neuronal death that has different patterns and forms in young rats than those seenin adult rats. Young neurons die of necrosis at the early stage of recovery and of delayedapoptosis, whereas adult neurons die of necrosis. This difference is mainly due to theup-regulation of NMDA receptors and increased Caspase 3 activity in young brains that areundergoing programmed cell death. These two factors make young neurons particularlyvulnerable to hypoxia-ischemia. From the onset of oxygen and nutrient deprivation, acascade of pathological events are initiated, such as glutamate excitotoxicity, caspaseactivation, and activation of nitric oxide synthase. Without intervention, young neurons will eventually die and the animals, if they survive, will develop impaired somatosensoryfunction and lateralized memory loss in adult life.
     Insulin-like growth factorⅠ(IGF-Ⅰ) is a pleiotrophic factor essential for the development ofthe mammalian nervous system. IGF-Ⅰand its receptor are expressed at the highest levelsduring the peak of neuronal differentiation. Through activating its receptors on all braincells, IGF-Ⅰpromotes neuronal survival and differentiation as well as oligodendrogenesis,and myelination. Studies of IGF-Ⅰtransgenic or gene deletion mice have clearly shown thatthe IGF system plays a key role in neuronal survival and neuro- and oligodendrogenesis invivo, which is also supported by its effects in a variety of animal models of brain injury andneuronal degeneration, in day 7 rat pups and fetal sheep, intraventricular infusion of IGF-Ⅰsoon after hypoxia-ischemia provided a certain degree of neuroprotection. However, severalconcerns prevented IGF-Ⅰfrom being further tested in a clinical trial: (1). In awell-established neonatal hypoxia-ischemia rat model, even intraventricular infusion ofhigh doses of IGF-Ⅰimmediately following hypoxia-ischemia only reduced brain damageby 40% when evaluated 3 days later; (2). The therapeutic effects of delayed IGF-Ⅰtreatmentfollowing hypoxia-ischemia (after 6 hours) are unknown; and (3). The long-term effects ofIGF-Ⅰtreatment on brain and behavior development have not been evaluated. Our recentstudies answered these concerns and strongly support IGF-Ⅰas a potential effectivetreatment for HIE patients. Subcutaneous administration of IGF-Ⅰat 24 and 48 hours ofrecovery significantly reduced hypoxia-ischemia induced injury to immature rat brains andimproved their memory and cognitive behavior development evaluated 2 months later.However, this new evidence raised this question: why is immediate IGF-ⅠⅠtreatmentfollowing hypoxia-ischemia less effective than delayed treatment?
     Oxidative damage plays a major role in ischemia/reperfusion induced brain injuries,such as HIE. Compared to the adult brain, the neonatal brain is exceedingly vulnerable tooxidative stress due to high levels of free iron, lower levels of glutathione peroxidase, and aconcomitant accumulation of hydrogen peroxide (H_2O_2). Besides its own neurotoxicity, high levels of H_2O_2 likely induce neuronal resistance to IGF-Ⅰby (1) inhibiting IGF-Ⅰsignaling, as recently shown in cerebellar granule neurons, and (2) decreasing IGF-Ⅰtreatment following hypoxia-ischemia is less effective than delayed treatment. Immediatelyfollowing hypoxia-ischemia, ROS rapidly accumulates and induces neuronal IGF-Ⅰresistance which deprives neurons of this trophic factor for their maturation and survival.The survival of immature neurons is further compromised by a decline in IGF-Ⅰcalculatinglevels and neuronal IGF-Ⅰexpression following hypoxia-ischemia. It is not surprising thatantioxidants alone had only limited efficacy in clinical trials, because young neurons stilllack essential trophic support even though ROS levels are lowered.
     Thus, we expect to find a way to resolve this problem. Because of hypoxia-ischemia,oxidative stress induces neuronal cells IGF-Ⅰresistance. Theoretically speaking, we need anantioxidant and IGF-Ⅰin neuroprotection. Firstly, antioxidant scavenges accumulated ROS,in order to remove neuron cell in oxidant stress and to recover its sensitiveness to theneuronal trophic support of IGF-1. Then IGF-1 can exert its protective functions andtrophic effect. Sodiumpyruvate is just an reagent of this kind. It has the followingcharacteristics: 1. No by-effects. It will not damage cell. 2. It can easily enter cells andfunctions both in internal cell and external cell. 3. With excellent antioxidant functions, itcan scavenge ROS and remove the oxidative stress following hypoxia-ischemia. 4. Itcollaborates with IGF-1 and recovers the reactivity of IGF-1. It can also increase theprotective function of IGF-1 to hypoxia-ischemia. Applying IGF-1 or sodiumpyruvatealone in clinic does not achieve satisfactory results. However, sodiumpyruvate'scollaboration with IGF-1 resolves this problem. It sheds lights on the curation ofhypoxia-ischemia.
     Objective:
     Despite advances in our knowledge of neuronal injury, effective clinical treatments forHIE in newborns are still lacking. IGF-Ⅰreduces hypoxic-ischemic brain injuries in animal models of HIE, but in a time-dependent manner. Our preliminary data demonstrated that thelower rate of therapeutic efficacy in the early phase of recovery may result from oxidativestress induced neuronal IGF-Ⅰresistance. We will (1) investigate potential mechanisms ofthe oxidative stress induced neuronal IGF-Ⅰresistance; and (2) determine whether restoringneuronal sensitivity to IGF-Ⅰwill increase its therapeutic efficacy in the treatment ofhypoxia-ischemia induced injury to immature brains.
     Conclusions:
     1. Oxidative stress activated P38 blocks the IGF-1/Akt signaling pathway, which will inturn attenuate Akt's inhibition on FOXO3. Moreover, oxidative stress will also activatethe JNK2 signaling pathway, which will induce FOXO3 activation. As a result, thesetwo signaling pathways work together to induce the neuronal apoptosis.
     2. Oxidative stress also activates P53, which suppresses IGF-Ⅰreceptor gene expression.This is an important mechanisms of oxidative stress induced neuronal IGF-Ⅰresistance.
     3. Under oxidative stress status, sodium pymvate scavenges ROS effectively and restoresneuronal sensitivity to IGF-1. Combined with IGF-Ⅰwill improve IGF-Ⅰ'sneuroprotective function.
引文
1. Mulligan, J.C., et al., Neonatal asphyxia. Ⅱ. Neonatal mortality and long-term sequelae. J Pediatrics, 1980, 96:903-907
    2. Gray, P.H., et al., Perinatal hypoxic-ischemic brain injury: Prediction of outcome. Developmental Medicine and Child Neurology, 1993, 35:965-973
    3. Pasternak, J.F., Hypoxic-ischemic brain damage in the term infant. Pediatric Clinics of North America, 1993, 40:1061-1072
    4. Berger, R. and Y. Gamier, Perinatal brain injury. J Perinat Med, 2000,28(4): 261-285
    5. Johnston, B. M., et al., Insulin-like growth factor-1 is a potent neuronal rescue agent after hypoxic-ischemic injury in fetal lambs. Journal of Clinical Investigation, 1996,97(2): 300-308
    6. Ferriero, D. M., Ocidant mechanisms in neonatal hypoxia-ischemia. Dev Neurosci,2001,23(3): 198-202
    7. Lafemina, M. J., R.A. Sheldon, and D. M. Ferriero, Acute hypoxia-ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain. Pediatr Res,2006, 59(5): 680-3
    8. Guan, J., et al., Insulin-like growth factor-1 improves somatosensory function and reduces the extent of cortical infarction and ongoing neuronal loss after hypoxia-ischemia in rats. Neuroscience, 2001,105(2): 299-306
    9. Arteni, N. S., et al., Neonatal cerebral hypoxia-ischemia causes lateralized memory impairments in the adult rat. Brain Res, 2003, 973(2): 171-178
    10. Rhee, S. G, et al., Intracecellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol, 2005, 17: 183-189
    11. Dringen, R., et al., Peroxide detoxification by brain cells. J. Neurosci. Res, 2005, 79:157-165
    12. Barnham, K.J., et al., Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov,2004, 3: 205-214
    13. Ying, W., et al.,Acidosis potentiates oxidative neuronal death by multiple mechanism.J.Neurochem,1999, 73: 1549-1556
    14. Mattson, M.P., Liu, D., Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Med, 2002, 2:215-231
    15. Teepker, M., Anthes,N., Fischer, S., Krieg, J.C., Vedder, H., Effects of oxidative challenge and calcium on ATP-levels in neuronal cells. Neurotoxicology, 2007, 28 (1):19-26, ISSN: 0161-813X. (Print)
    16. D'Ercole, A.J.,et al., The role of the insulin-like growth factors in the central nervous system. Mol.Neurobiol, 1996, 13: 227-255
    17. Torres-Aleman, I., Serum growth factors and neuroprotective surveillance: focus on IGF-1.Mol. Neruobiol, 2000, 21: 153-162
    18. Gracia-Galloway, E., et al., Glutamate excitotoxicity attenuates insulin-like growth factor-I prosurvival signaling. Mol. Cell. Neurosci, 2003, 24: 1027-1037
    19. Ostlund, P., et al., Up-regulation of functionally impaired insulin-like growth factor-1 receptor in scrapie-infected neuroblastoma cells. J. Biol. Chem, 2001, 276: 36110-36115
    20. Zhang, F.X., et al., Ethanol induces apoptosis in cerebellar granule neurons by inhibiting insulin-like growth factor-1 signaling. J. Neurochem, 1998, 71: 196-204
    21. Torres-Aleman, I., Role of insulin-like growth factors in neuronal plasticity and neuroprotection. Adv. Exp. Med. Biol, 2005, 567: 243-258
    22. Dudek, H., Datta, S.R., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal,R.A., Kaplan, D.R., and Greenberg, M.E. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science, 1997,275: 661-665
    23. Biggs, W.H.,Ⅲ, Meisenhelder, J., Hunter, T., Cavenee, W.K., and Arden, K.C., Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1.Proc.Natl.Acad. Sci. USA, 1999, 96: 7421 -7426
    24. Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J.,Arden, K.C., Blenis, J., and Greenberg, M.E., Akt promotes cell survival by phosphorylating and inhabiting a Forkhead transcription factor. Cell, 1999, 96:857-868
    25. Gilley, J., Coffer, P.J., and Ham, J., FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J. Cell Biol, 2003, 162:613-622
    26. Lehtinen, M.K., et al., A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell, 2006,125: 987-1001
    27. Trejo, J.L., Carro, E., Garcia-Galloway, E., and Torres-Aleman, I., Role of insulin-like growth factor 1 signaling in neurodegenerative diseases. J. Mol. Med, 2004, 82:156-162
    28. Fernandez, A.M., Gonzalez de la Vega, A.G., Planas, B., and Torres-Aleman, I.,Neuroprotective actions of peripherally administered insulin-like growth factor 1 in the injured olivo-cerebellar pathway. Eur. J. Neurosci, 1999, 11: 2019-2030
    29. Wu, D.C., Re, D.B., Nagai, M., Ischiropoulos, H., and Przedborski, S., The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc. Natl. Acad. Sci USA, 2006, 103:12132-12137
    30. Zhong, J. and Lee, W.H., Hydrogen peroxide attenuates insulin-like growth factor-1 neuroprotective effect, prevented by minocycline. Neurochem Int, 2007, 51: 398-404
    31. Lee, S.R., Yang, K.S., Kwon, J., Lee, C, Jeong, W., and Rhee, S.G., Reversible inactivation of the tumor suppressor PTEN by H_2O_2.J.Biol. Chem, 2002, 277:20336-20342
    32. Leslie, N.R., The redox regulation of PI 3-kinase-dependent signaling. Antioxid. Redox. Signal, 2006, 8: 1765-1774
    33. Sonntag, W.E., Bennett, C, Ingram, R., Donahue, A., Ingraham, J., Chen, H., Moore,T., Brunso-Bechtold, J.K., and Riddle, D., Growth hormone and IGF-I modulate local cerebral glucose utilization and ATP levels in a model of adult-onset growth hormone deficiency. Am. J. Physiol. Endocrinol. Metab, 2006,291: E604-E610
    34. Hansen, L.L., Ikeda, Y., Olsen, G.S., Busch, A.K., and Mosthaf, L., Insulin signaling is inhabited by micromolar concentrations of H_2O_2. Evidence for a role of H_2O_2 in tumor necrosis factor alpha-mediated insulin resistance. J. Biol. Chem, 1999, 274:25078-25084
    35. Houstis, N., Rosen, E.D., and Lander, E.S., Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature, 2006, 440: 944-948
    36. Beal, M.F., Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol, 1995,38:357-366
    37. Droge, W., Oxidative stress and aging. Adv. Exp. Med. Biol, 2003, 543: 191-200
    38. Mahadev, K., Wu, X., Zilbering, A., Zhu, L., Lawrence, J.T., and Goldstein, B.J.,Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J. Biol. Chem,2001,276:48662-48669
    39. Evans, J.L., et al., The molecular basis for oxidative stress-induced insulin resistance.Antioxid. Redox Signal, 2005, 7: 1040-1052
    40. Essers, M.A., Weijzen, S., de Vries-Smits, A.M., Saarloos, I., de Ruiter, N.D., Bos, J.L.,and Burgering, B.M., FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J, 2004,23: 4802-4812
    41.Coffey, E.T., Smiciene, G, Hongisto, V, Cao, J., Brecht, S., Herdegen, T., and Courtney, M.J., c-Jun N-terminal protein kinase (JNK) 2/3 is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebellar neurons. J. Neurosci, 2002, 22: 4335-4345
    42. van der Horst, A., and Burgering, B.M., Stressing the role of FoxO proteins in lifespan and disease. Nat. Rev. Mol. Cell Biol, 2007, 8: 440-450
    43. Brunet, A., et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 2004, 303: 2011-2015
    44. Taylor, J.M., Ali, U., Iannello, R.C., Hertzog, P., and Crack, P.J., Diminished Akt phosphorylation in neurons lacking glutathione peroxidase-1 (Gpxl) leads to increased susceptibility to oxidative stress-induced cell death. J. Neurochem, 2005, 92: 283-293
    45. Donovan, N., Becker, E.B., Konishi, Y., and Bonni A., JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J. Biol. Chem, 2002,277: 40944-40949
    46. Brywe, K.G., et al., IGF-1 neuroprotection in the immature brain after hypoxia-ischemia, involvement of Akt and GSK3beta? Eur J Neurosci, 2005, 21 (6):1489-1502
    47. Zhong, J., et al., Delayed IGF-1 Treatment Reduced Long-Term Hypoxia-ischemia Induced Brain Damage and Improved Behavior Recovery of Immature Rats. Neurological Research, 2009: (in press)
    48. Migliaccio, E., Giorgio, M, Mele,S., Pelicci, G, Reboldi, P., Pandolfi, P. P.,Lanfrancone, L., and Pelicci, P.G., The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 1999,402: 309-313
    49. Clerk, A., Fuller, S.J., Michael, A., and Sugden, PH., Stimulation of "stress-regulated" mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. J. Biol. Chem, 1998,273: 7228-7234
    50. Venters, H.D., Tang, Q., Liu, O., VanHoy, R.W., Dantzer, R., and Kelly, K.W., A new mechanism of neurodegerneration: a proinflammatory cytokine inhibits receptor signaling by a survival peptide. Proc. Natl. Acad. Sci.USA, 1999, 96: 9879-9884
    1. LeRoith, D., Werner, H., Beitner-Johnson, D., and Roberts, C. T., Jr., Molecular and cellular aspects of the insulin-like growth factor / receptor, Endocr, Rev., 1995, 16: 143-163
    2. Werner, H., Woloschak, M, Stannard, B., Shen-Orr, Z., Roberts, C.T., Jr., and LeRoith,D., Insulin-like growth factor receptor: molecular biology, heterogeneity and regulation, Insulin-like Growth Factors: Molecular and Cellular Aspects (CRC, Boca Raton,FL), 1995,17-47.
    3. Jones, J.I., and Clemmons, D.R., Insulin-like growth factors and their binding proteins:biological actions, Endocr. Rev., 1995,16:3-34
    4. Daughaday, W.H., and Rotwein, P., Insulin-like growth factors ###### and ######. Peptide. messenger ribonucleic acid and gene structures, serum, and tissue concentrations,Endocr. Rev., 1989, 10:68-91
    5. Werner, H., Adamo, M., Roberts, C.T., Jr., and LeRoith, D., Molecular and cellular aspects of insulin-like growth factor action, Vitamins Hormones, 1994,48:1-58
    6. Pietrzkowski, Z.R., Lammers, R., Carpenter, G, Soderquist, A.M., Limardo, M.,Phillips, P.D., Ullrich, A., and Baserga, R., Constitutive expression of insulin-like growth factor 1 and insulin-like growth factor 1 receptor abrogates all requirements for exogenous growth factors, Cell Growth Differ, 1992, 3: 199-205
    7. Baker, J., Liu, J.P., Robertson, E.J., and Efstratiadis, A., A Role of IGFs in embryonic and postnatal growth, Cell, 1993, 75: 73-82
    8. Liu, J.P., Baker, J., Perkins, A.S., Robertson, E.J., and Efstratiadis, A., Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igflr), Cell,1993, 75: 59-72
    9. Baserga, R., The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res., 1995,55:249-252
    10. Werner, H., and LeRoith, D., The role of the insulin-like growth factor system in human cancer, Adv. Cancer Res., 1996,68: 183-223
    11. Sell, C, Rubini, M., Rubin, R., Lin, J.P., Efstratiadis, A., and Baserga, R., Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor, Proc. Natl. Acad. Sci. USA, 1993, 90: 11217-11221
    12. Sell, C, Dumenil, G, Deveaud, C, Miura, M., Coppola, D., DeAngelis, T., Rubin, R.,Efstratiadis, A., and Baserga, R., Effect of a null mutationof the insulin-like growthfactor I receptor gene on growth and transformation of mouse embryo fibroblasts Mol.CeU Biol, 1994, 14: 3604-3612
    13. Smale, S. T., and Baltimore, D., The "initiator" as a transcription control element, Cell,1989,57:103-113
    14. Werner, H., Bach, M.A., Stannard, B, Roberts, C.T., Jr., and LeRoith, D., Structural and functional analysis of the insulin-like growth factor I receptor gene promoter, Mot.Endocrinol, 1992, 6: 1545-1558
    15. Werner, H., Stannard, B., Bach, M.A., LeRoith, D., and Roberts, C.T., Jr., Cloning and characterization of the proximal promoter region of the rat insulin-like growth factor I (IGF-I) receptor gene, Biochem. Biophys. Res. Commun., 1990,169: 1021-1027
    16. Cooke, D.W., Bankert, L.A., Roberts, C.T., Jr., LeRoith, D., and Casella, S. J.,Analysis of the human type I insulin-like growth factor receptor promoter region,Biochem Biophys Res. Commun., 1991,177: 1113-1120
    17. Mamula, P.W., and Goldfine, I.D.,Cloning and characterization of the human insulin-like growth factor-I receptor gene 5'-flanking region, DNA Cell Biol., 1992, 11:43-50
    18. Werner, H., Woloschak, M., Adamo, MX., Shen-Orr, Z., Roberts, C.T., Jr., and LeRoith, D., Developmental regulation of the rat insulin-like growth factor I receptor gene, Proc. Natl. Acad. Sci. USA, 1989, 86: 7451-7455
    19. Oren, M, p53: the ultimate tumor suppressor gene?FASEB J. 1992, 6: 3169-3176
    20. Kern, S.E., Kinzler, K.W., Bruskin, A., Jarosz, D., Friedman, P., Prives, C, and Vogelstein, B., Identification of p53 as a sequence-specific DNA-binding protein,Science, 1991,252:1708-1711
    21. Pietenpol, J.A., Tokino, T., Thiagalingam, S., El-Deiry, W. S., Kinzler, K.W., and Vogelstein, B., Sequence-specific transcriptional activation is essential for growth suppression by p53, Proc. Natl. Acad. Sci. USA, 1994, 91: 1998-2002
    22. El-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin,D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B., WAF1, a potential mediator of p53 tumor suppression, Cell,1993, 75: 817-825
    23. Farmer, G., Bargonetti, J., Zhu, H., Friedman, P., Prywes, R., and Prives, C,Wild-type p53 activates transcription in vitro, Nature (London), 1992,358: 83-86
    24. Seto, E., Usheva,A.,Zambetti, G.P., Momand, J., Horikoshi, N., Weinmann, R.,Levine, A. J., and Shenk, T., Wild-type p53 binds to the TATA-binding protein and represses transcription, Proc. Natl. Acad. Sci. USA, 1992, 89: 12028-12032
    25. Fields, S., and Jang, S.K., Presence of a potent tra- nscription activating sequence in the p53 protein, Science,1990,249:1046-1049
    26. Raycroft, L., Wu, H., and Lozano, G, Transcriptional activation by wild-type but not trans- forming mutants of the p53 anti-oncogene, Science, 1990,249: 1049-1051
    27. Bargonetti, J., Friedman, P.N., Kern, S.E., and Prives, C, Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication, Cell, 1991, 65: 1083-1091
    28. Kern, S.E., Kinzler, K.W., Bruskin, A., Jarosz, D., Friedman, P., Prives, C, and Vogelstein, B., Identification of p53 as a sequence-specific DNA-binding protein,Science, 1991,252:1708-1711
    29. Weintraub, H., Huauschka, S., and Tapscott, S., The MCK enhancer contains a p53 responsive element, Proc. Natl. Acad. Sci. USA, 1991, 88: 4570-4571
    30. Kern, S.E., Pietenpol, J.A., Thiagalingam, S., Seymour, A., Kinzler, K.W., and Vogelstein, B., Oncogenic forms of p53 inhibit p53-regulated gene expression, Science,1992,256:827-830
    31. Zambetti, G.P., Bargonetti, J., Walker, K., Prives, C, and Levine, A.J., Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element Genes Dev., 1992, 6: 1143-1152
    32. Ginsberg, D., Mechta, F., Yaniv, M., and Oren, M., Wild-type p53 can down-modulate the activity of various promoters, Proc. Natl. Acad. Sci. USA, 1991, 88: 9979-9983
    33. Mercer, WE., Shields, M.T., Lin, D., Apella, E., and Ullrich, S.J., Growth suppression induced by wild-type p53 protein is accompanied by selective down-regulation of proliferating-cell nuclear antigen expression, Proc. Natl. Acad. Sci. USA, 1991, 88:1958-1962
    34. Santhanam, U., Ray, A., and Sehgal, P.B., Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product, Proc. Natl. Acad.Sci.USA, 1991,88:7605-7609
    35. Shiio,Y., Yamamoto, T., and Yamaguchi, N., Negative regulation of Rb expression by the p53 gene product, Proc. Natl. Acad. Sci. USA, 1992, 89: 5206-5210
    36. Aoyama, N., Nagase, T., Sawazaki, T., Mizuguchi, G, Nakagoshi, H., Fujisawa, J.I.,Yoshida, M., and Ishii, S., Overlap of the p53-responsive element and cAMP-responsive element in the enhancer of human T-cell leukemia virus type I, Proc.Natl. Acad. Sci. USA, 1992, 89: 5403-5407
    37. Chin, K.V., Ueda, K., Pastan, I., and Gottesman, M.M., Modulation of activity of the promoter of the human mdrl gene by ras and p53, Science, 1992, 255: 459-462
    38. Ko, L.J., and Prives, C.A., p53 puzzle and paradigm, Genes Dev., 1996,10: 1054-1072
    39. Levine, A.J., The cellular gatekeeper for growth and division, Cell, 1997, 88:323-331
    40. Vogelstein, B., Lane, D., and Levine, A.J., Surfing the p53 network, Nature, 2000, 408:307-310
    41. Vousden, K.H., and Lu, X., Live or let die: the cell's response to p53. Nat. Rev. Cancer,2002, 2: 594-604
    42. Hollstein,M., Sidransky,D., Vogelstein,B., and Harris,C.C. p53 mutations in human cancers. Science, 1991,253: 49-53
    43. Hollstein,M. et al. Protein database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res., 1994, 22: 3551-3555
    44. Murphy, M, Ahn, J., Walker, K.K., Hoffman, W.H., Evans, R.M., Levine A.J., and George, D.L., Transcriptional repression by wild-type p53 utilizes histone deacetylases mediated by interaction with mSin3a. Genes Dev., 1999,13: 2490-2501
    45. Farmer, G, Friedlander, P., Colgan, J., Manley, J.L. and Prives, C.A., Transcriptional repression by p53 involves molecular interactions distinct from those with the TATA box binding protein, Nucleic Acids Res., 1996,24: 4281-4288
    46. Werner, H., Karnielt, E., Rauscher, F.J., and LeRoith, D., Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene, Proc.Natl.Acad. Sci. USA, 1996, 93: 8318-8323
    47. Sun, L.Y., and D'Ercole, A.J., Insulin-like growth factor-I stimulates histone H3 and H4 acetylation in the brain in Vivo, Endocrinology, 2006,147(11):5480-5490
    48. Ayer, D.E., Histone deacetylases: transcriptional repression with SINers and NuRDs, Trends Cell Biol, 1999, 9: 193-198
    49. Ng, H.H., and Bird, A., Histone deacetylases: silencers for hire, Trends Biochem. Sci.,2000,25: 121-126
    50. Taunton, J., Hassig, C.A., and Schreiber, S.L., A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p, Science, 1996, 272: 408-411
    51. Yang, W.M., Inouye, C, Zeng, Y., Bearss, D., and SetO, E., Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3,Proc. Natl. Acad. Sci., USA, 1996, 93: 12845-12850
    52. Allfrey, V.G., Faulkner, R., and Mirsky, A.E., Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis. Proc Natl Acad Sci USA,1964, 51:786-794
    53. Juan, L.J., et al., Histone deacetylases specially down-regualte p53-dependent gene activation. J. Biol Chem, 2000, 275(27): 20436-20443
    54. Basile, V.R., Mantovani, and C. Imbriano, DNA damage promotes histone deacetylase 4 nuclear localization and repression of G2/M promoters, via p53 C-terminal lysines.J Biol Chem, 2006, 281(4): 2347-2357
    55. Kavurma, M.M., Figg, N., Bennett, M.R., Mercer, J., Khachigian, L.M., and Littlewood, T.D., Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment, Biochem. J., 2007, 407: 79-87(Printed in Great Britain)
    56. Brywe,K.G., et al., IGF-I neuroprotection in the immature brain after hypoxia-ischemia,involvement of Akt and GSK3beta? Eur J Neurosci, 2005, 21(6):1498-1502
    57. Zhong, J., and Lee, W.H., Hydrogen peroxide attenuates insulin-like growth factor-1 neuroprotective effect, prevented by minocycline, Neurochemistry international, 2007,51:398-404
    58. Patel, V.A., Zhang, Q.J., Siddle, K., Soos, M.A., Goddard, M., Weissberg, P.L., and Bennett, M.R., Defect in insulin-like growth factor-1 survival mechanism in atherosclerotic plaque-derived vascular smooth muscle cells is mediated by reduced surface binding and signaling, Circ. Res., 2001, 88: 895-902
    59. Okura, Y., Brink, M., Zahid, A. A., Anwar, A. and Delafontaine, P., Decreased expression of insulin-like growth factor-1 and apoptosis of vascular smooth muscle cells in human atherosclerotic plaque. J. Mol. Cell. Cardiol, 2001, 33: 1777-1789
    60. Crighton, D., Woiwode, A., Zhang, C, Mandavia, N., Morton, J.P., Warnock, L.J.,Milner, J., White, R.J., and Johnson, D.L., p53 represses RNA polymerase Ⅲ transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB, The EMBO Journal, 2003,22 (11):2810-2820
    61. Xu, Y., Regulation of p53 responses by post-translational modifications, Cell Death and Differentiation, 2003,10: 400-403
    62. Brooks, C. L., and Gu, W., Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation, Curr. Opin. Cell. Biol., 2003,15: 164-171
    63. Sakaguchi, K., Sakamoto, H., Lewis, M.S., Anderson, C.W., Erickson, J.W., Appella,E., and Xie, D., Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53, Biochemistry, 1997, 36: 10117-10124
    64. Werner, H., Hernandez-Sanchez, C, Karnieli, E., and Leroith, D., The regulation of IGF-I receptor gene expression. Int. J. Biochem. Cell. Biol., 1995,27: 987-994
    65. Nahor, I., Abramovitch, S., Engeland, K. and Werner, H., The p53-family members p63 and p73 inhibit insulin-like growth factor-I receptor gene expression in colon cancer cells. Growth Horm.,IGF Res, 2005,15: 388-389
    66. Hodge, R.D., D'Ercole, A.J., and O'Kusky, J.R., Increased expression of insulin-like growth factor-I (IGF-I) during embryonic development produces neocortical overgrowth with differentially greater effects on specific cytoarchitectonic areas and cortical layers. Brian Res Dev Brain Res, 2005, 154(2): 227-237
    67. Hodge, R.D., D'Ercole, and O'Kusky, J.R., Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J Neurosci, 2004, 24(45): 10201-10210
    1. Raff, M., Cell suicide for beginners, Nature, 1998, 396:119-122
    2. Tatton, W.G., Olanow, C.W., Apoptosis in neurodegenerative diseases: the role of mitochondria (review), Biochim. Biophys. Acta (BBA)/Bioenerg, 1999, 1410: 195-213
    3. Zettl, U.K., Mix, E., Zielasek, J., Stangel, M., Hartung, H.P., Gold, R., Apoptosis of myelin-reactive T cells induced by reactive oxygen and nitrogen intermediates in vitro, Cell, Immunol, 1997, 178:1-8
    4. Jabs, T., Reactive oxygen intermediates as mediators of programmed cell death in plants and animals, Biochem, Pharmacol, 1999, 57:231-245
    5. Hivert, B., Cerrui, C., Camu, W., Hydrogen peroxide-induced motoneuron apoptosis is prevented by poly ADP ribosyl synthetase inhibitors, Neuroreport, 1998, 9: 1835-1838
    6. Skaper, S.D., Floreani, M., Negro, A., Facci, L., Giusti, P., Neurotrophins rescue cerebellar granule neurons from oxidative stress-mediated apoptotic death: selective involvement of phosphatidylinositol 3-kinase and nitrogen-activated protein kinase pathway, J. Neurochem, 1998, 70:1859-1868
    7. Andersen, J.K., Oxidative stress in neurodegeneration: cause or consequence? Nat. Med. Suppl., 2004, 10:S18-S25
    8. Beal, M.F., Mitochondria take center stage in aging and neurodegeneration, Ann. Neurol, 2005, 58:495-505
    9. Dawson, T.M., Dawson, V.L., Molecular pathways of neurodegeneration in Parkinson's disease, Science, 2003, 302: 819-822
    10. Fiskum, G, Mitochondrial participation in ischemic and traumatic neural cell death,J. Neurotrauma, 2000,17: 843-855
    11. Fiskum, G, Rosenthal, R.E., Vereczki, V., Martin, E., Hoffman, G.E.,Chinopoulos, C, Kowaltowski, A., Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress, J. Bioenerg. Biomembr, 2004, 36:347-352
    12. Milton, N.G, Role of hydrogen peroxide in the aetiology of Alzheimer's disease:implications for treatment, Drugs Aging, 2004, 21:81-100
    13. Fenton H. J. H., Oxidation of tartaric acid in the presence of iron, J. Chem. Soc.,1894,65:899-910
    14. Halliwell, B., Reactive oxygen species and the central nervous system, J.Neurochem, 1992, 59:1609-1623
    15. Clement, M.V., Ponton, A., Pervaiz, S., Apoptosis induced by hydrogen peroxide is mediated by decreased superoxide anion concentration and reduction of intracellular milieu, FEBS Lett., 1998,440:13-18
    16. Kitamura, Y, Ota, T., Matsuoka, Y., Tooyama, I., Kimura, H., Shimohama, S.,Normura, Y, Gebicke-Haerter, P.J., and Taniguchi, T, Hydrogen peroxide induced apoptosis mediated by p53 protein in glial cells, Glia,1999, 25:154-164
    17. Palomba, L., Sestili, P., Columbaro, M., Falcieri, E., and Cantoni, O., Apoptosis and necrosis following exposure of U937 cells to increasing concentrations of hydrogen peroxide: the effect of the poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide, Biochem Pharmacol, 1999, 58: 1743-1750
    18. Janseen, Y.M.W., Matalon, S., and Mossman, B.T., Differential induction of c-fos,c-jun and apoptosis in lung epithelial cells exposed to ROS or RNS, Am. J. Physiol,1997, 273:L789-L796
    19. Li, P.-F., Dietz, R., and von Harsdorf, H., Reactive oxygen species induce apoptosis of vascular smooth muscle cell, FEBS Lett, 1997, 404: 249-252
    20. Desagher S., Glowinski J., and Premont J., Astrocytes protect neurons from hydrogen peroxide toxicity, J. Neurosci, 1996, 16: 2553-2562
    21. Huang, X., Cuajungco, M.P., Atwood, C.S., Hartshorn, M.A., Multharup, G,Goldstein, L.E., Scarpa, R.C., Caujungeo, M.P., Gray, D.N., Lim, J., Moir, R.D.,Tanzi, R.E., and Bush, A.I., The amyloid-b-peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction, Biochemistry, 1999a, 38:7609-7616
    22. Huang, X., Cuajungeo, M.P., Atwood, C.S., Hartshorn, M.A., Tyndall, J.D., Hanson,G.R., Stokes, K.C., Leopold, M., Multharup, G, Goldstein, L.E., Scarpa, R.C.,Saunders, A.J., Lim, J., Moir, R.D., Glabe, C, Bowden, E.F., Masters, C.L., Fairlie,D.P., Tanzi, R.E., and Bush, A.I., Cu(Ⅱ) potentiation of Alzheimer Ab neurotoxicity,Correlation with cell-free hydrogen peroxide production and metal reduction, J. Biol.Chem., 1999b,74: 37111-37116
    23. Desagher, S., Glowinski, J. and Premont, J., Pyruvate protects neurons against hydrogen peroxide-induced toxicity, J. Neurosci, 1997,17: 9060-9067
    24. Simonian, N.A., and Coyle, J.T., Oxidative stress in neurodegenerative diseases,Annu. Rev. Pharmacol. Toxicol, 1996, 36: 83-106
    25. Jagtap, J.C., Chandele, A., Chopde, B.A., and Shastry, P., Sodium pyruvate protects against H_2O_2 mediated apoptosis in human neuroblastoma cell line-SK-N-MC, J.Chem. Neuroanat, 2003, 26: 109-118
    26. Poole, R.C., and Halestrap, A.P., Transport of lactate and other monocarboxylates across mammalian plasma membranes, Am. J. Physiol, 1993, 264: C761-C782
    27. Garcia, C. K., Goldstein, J. L., Pathak, R. K., Anderson, R. G. W., and Brown, M. S.,Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle, Cell, 1994, 76, 865-873
    28. Halestrap, A.P., and Price, N.T., The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation, Biochem. J., 1999, 343: 281-299
    29. Lassers, B.W., Kaijser, L, Wahlqvist, M.L., and Carlson, L.A., Relationship in man between plasma free fatty acids and myocardial metabolism of carbohydrate substrates, Lancet, 1971, 2: 448-450
    30. Mowbray, J., and Ottaway, J.H., The flux of pyruvate in perfused rat heart, Eur. J.Biochem, 1973, 36: 362-368
    31. Juel C, and Halestrap, A.P., Lactate transport in skeletal muscle-role and regulation of the monocarboxylate transporter, J. Physiol, 1999, 517: 633-642
    32. Dimmer K.S., Friedrich B., Lang F.,Deitmer J.W., and Broer S., The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells, Biochem. J., 2000, 350: 219-227
    33. Rafiki A., Boulland J.L., Halestrap A.P., Ottersen O.P., and Bergersen, L., Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain, Neuroscience, 2003, 122: 677-688
    34. Salahudeen, A.K., Clark, E.C., and Nath, K.A., Hydrogen peroxideinduced renal injury, A protective role for pyruvate in vitro and in vivo, J. Clin. Invest, 1991, 88,1886-1893
    35. Shostak, A., Gotloib, L., Kushnier, R., and Wajsbrot, V., Protective effect of pyruvate upon cultured mesothelial cells exposed to 2 mM hydrogen peroxide,Nephron, 2000, 84, 362-366
    36. Mallet, R.T., Sun, J., Knott, E.M., Sharma, A.B., and Olivencia-Yurvati, A.H.,Metabolic cardioprotection by pyruvate: recent progress, Exp. Biol. Med.(Maywood), 2005, 230: 435-443
    37. Alvarez G, Ramos M., Ruiz R, Satrustegui J., and Bogonez E., Pyruvate protection against beta-amyloid-induced neuronal death: role of mitochondrial redox state, J.Neurosci. Res., 2003, 73: 260-269
    38. Yoo, M.H., Lee, J.Y., Lee, S.E., Koh, J.Y., and Yoon, Y.H., Protection by pyruvate of rat retinal cells against zinc toxicity in vitro, and pressure-induced ischemia in vivo,Invest. Ophthalmol. Visual, Sci., 2004, 45: 1523-1530
    39. Mazzio E.A., and Soliman K.F., Cytoprotection of pyruvic acid and reduced beta-nicotinamide adenine dinucleotide against hydrogen peroxide toxicity in neuroblastoma cells, Neurochem Res., 2003b, 28: 733-741
    40. Chen, C.J., and Liao, S.L., Zinc toxicity on neonatal cortical neurons: involvement of glutathione chelation, J. Neurochem, 2003, 85: 443-453
    41.Kawahara, M., Kato-Negishi, M., and Kuroda, Y, Pyruvate blocks zinc-induced neurotoxicity in immortalized hypothalamic neurons, Cell. Mol.Neurobiol, 2002,22:87-93
    42. Lee, J.Y, Kim, Y.H., and Koh, J.Y., Protection by pyruvate against transient forebrain ischemia in rats, J. Neurosci, 2001,21:RC171,l-6
    43. Mongan, P.D., Capacchione, J., Fontana, J.L., West, S., and Bunger, R., Pyruvate improves cerebral metabolism during hemorrhagic shock, Am. J. Physiol: Heart Circ.Physiol, 2001,281:H854-H864
    44. Yu, Y.M., Kim, J.B., Lee, K.W., Kim, S.Y., Han, P.L., and Lee, J.K., Inhibition of the cerebral ischemic injury by ethyl pyruvate with a wide therapeutic window,Stroke, 2005, 36: 2238-2243
    45. Dringen, R., Pawlowski, P.G., and Hirrlinger, J., Peroxide detoxification by brain cells, J. Neurosci. Res., 2005, 79: 157-165
    46. Hampton, M.B., and Orrenius, S., Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis, FEBS Lett., 1997, 414: 552-556
    47. Patt,A., Harken, A.H., Burton, L.K., Rodell, T.C., Piermattei, D., Schorr, W.J.,Parker, N.B., Berger, E.M., Horesh, I.R., Terada, L.S., et al., Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains, J. Clin. Invest, 1988, 81: 1556-1562
    48. Hyslop, P.A., Zhang, Z., Pearson, D.V., and Phebus, L.A., Measurement of striatal H_2O_2 by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of H_2O_2 in vitro, Brain Res., 1995, 671:181-186
    49. Jiang, M.C., Yang, Y.H.F., Lin, J.K., Yen, J.J., Differential regulation of p53, c-Myc,Bcl-2 and Bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells, Oncogene, 1996,13: 609-616
    50. Uberti, D., Yavin, E., Gil, S., Ayasola, K., Goldfinger, N., and Rotter, V., Hydrogen peroxide induces nuclear translocation of p53 and apoptosis in cells of oligodendroglia origin, Molec.Brain Res., 1999, 65: 167-175
    51.Machleidt,T, Geller, P, Schwandner, R, et al., Caspase 7-induced cleavage of kinection in apoptotic cell, FEBS Lett,1998,436(l):51-54
    52. Enari, M, Sakahira, H, and Yokoyama, H., A caspase-activated Dnase that degrades DNA during apoptosis,and its inhibitor ICAD, Nature, 1998,391 (6662):43-50
    53. Cohen, GM., Caspase:the executioners of apoptosis, Biol Chem J,1997,326:1-16
    54. Rinivasula, S.M., Fernandes-Alnemri, T., Zangrilli, J., et al., The Ced-3/interleukin 1 beta converting enzyme-like homoloy Mch6 and the lamincleaving enzyme Mch2 alpha are substrates for the apoptotic mediator CPP32, J Biol Chem, 1996, 271(43):27099-27106
    55. Ryu J.K., Kim S.U., and McLarnon J.G., Blockade of quinolinic acid-induced neurotoxicity by pyruvate is associated with inhibition of glial activation in a model of Huntington's disease, Exp. Neurol, 2004, 187: 150-159
    56. Gupta, S.K., Awor, L., Rastogi, S., Prakash, J., Gupta, Y.K., Varma, S.D., and Velpandian, T., Delayed manifestation of ultra violet radiation induced erythema in guinea pigs by sodium pyruvate-a free radical scavenger, Indian J. Physiol.Pharmacol, 1998,42:315-318
    57. Bunger, R., Mallet, R.T., and Hartman, D.A., Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart,Near-complete prevention of reperrusion contractile failure, Eur. J. Biochem, 1989,180:221-233
    58. Mallet, R.T., and Bunger, R., Metabolic protection of postischemic phosphorylation potential and ventricular performance, Adv. Exp. Med. Biol., 1993, 346: 233-241
    59. Mallet, R.T., and Sun, J., Antioxidant properties of myocardial fuels, Mol. Cell.Biochem, 2003, 253: 103-111
    60. Dringen, R., and Hamprecht, B., Involvement of glutathione peroxidase and catalase in the disposal of exogenous hydrogen peroxide by cultured astroglial cells, Brain Res., 1997,759:67-75
    61. Nakamichi, N., Kambe, Y., Oikawa, H., Ogura, M., Takano, K., Tamaki, K.,Inoue,M., Hinoi, E., and Yoneda, Y, Protection by exogenous pyruvate through a mechanism related to monocarboxylate transporters against cell death induced by hydrogen peroxide in cultured rat cortical neurons, J. Neurochem, 2005, 93: 84-93
    62. Wang, X.F., Perez, E., Liu, R., Yan, L.J., Mallet, R.T., and Yang, S.H., Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells,Brain research, 2007, 1132:1-9
    63. Beal, M.F.,Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol., 1992, 31: 119-130
    64. Oldendorf ,W.H., Carrier-mediated blood-brain barrier transport of short chain monocarboxylic organic acids, Am. J. Physiol, 1973, 224: 1450-1453
    65. Dijkstra, U., Gabreels,F.,Joosten, E., Wevers, R., Lamers, K., Doesburg, W., and Renier, W., Friedreich's ataxia: intravenous pyruvate load to demonstrate a defect in pyruvate metabolism, Neurology, 1984, 34: 1493-1497
    1. Salmon WD, Jr., Daughaday WH. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med. Jun 1957;49(6):825-836.
    2. Daughaday WH, Hall K, Salmon WD, Jr., Van den Brande JL, Van Wyk JJ. On the nomenclature of the somatomedins and insulin-like growth factors. J Clin Endocrinol Metab. Nov 1987;65(5): 1075-1076.
    3. Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem. Apr 25 1978;253(8):2769-2776.
    4. Domene H, Krishnamurthi K, Eshet R, Gilad I, Laron Z, Koch I, Stannard B, Cassorla F, Roberts CT, Jr., LeRoith D. Growth hormone (GH) stimulates insulin-like growth factor-Ⅰ (IGF-Ⅰ) and IGF-I-binding protein-3, but not GH receptor gene expression in livers of juvenile rats. Endocrinology. Aug 1993; 133(2):675-682.
    5. de Pagter-Holthuizen P, van Schaik FM, Verduijn GM, van Ommen GJ, Bouma BN, Jansen M, Sussenbach JS. Organization of the human genes for insulin-like growth factors Ⅰ and Ⅱ. FEBS Lett. Jan 20 1986;195(1-2):179-184.
    6.Glasscock GF, Gin KK, Kim JD, Hintz RL, Rosenfeld RG. Ontogeny of pituitary regulation of growth in the developing rat: comparison of effects of hypophysectomy and hormone replacement on somatic and organ growth, serum insulin-like growth factor-Ⅰ(IGF-Ⅰ) and IGF-Ⅱ levels, and IGF-binding protein levels in the neonatal and juvenile rat. Endocrinology. Feb 1991;128(2):1036-1047.
    7.Blundell TL, Bedarkar S, Rinderknecht E, Humbel RE. Insulin-like growth factor: a model for tertiary structure accounting for immunoreactivity and receptor binding. ProcNatlAcadSci USA. Jan 1978;75(l):180-184.
    8.LeRoith D, Delahunty G, Wilson GL, Roberts CT, Jr., Shemer J, Hart C, Lesniak MA, Shiloach J, Roth J. Evolutionary aspects of the endocrine and nervous systems.Recent progress in hormone research. 1986;42:549-587.
    9.Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins:biological actions. Endocr Rev. Feb 1995;16(l):3-34.
    10.LeRoith D, Kavsan VM, Koval AP, Roberts CT, Jr. Phylogeny of the insulin-like growth factors (IGFs) and receptors: a molecular approach. Molecular reproduction and development. Aug 1993;35(4):332-336; discussion 337-338.
    11.Reinecke M, Collet C. The phylogeny of the insulin-like growth factors. International review of cytology. 1998;183:1-94.
    12.De Vroede MA, Rechler MM, Nissley SP, Joshi S, Burke GT, Katsoyannis PG. Hybrid molecules containing the B-domain of insulin-like growth factor I are recognized by carrier proteins of the growth factor. Proceedings of the National Academy of Sciences of the United States of America. May 1985;82(9):3010-3014.
    13.Blundell TL, Bedarkar S, Humbel RE. Tertiary structures, receptor binding, and antigenicity of insulinlike growth factors. Fed Proc.Jun 1983;42(9):2592-2597.
    14.Nissley P, Lopaczynski W. Insulin-like growth factor receptors. Growth Factors. 1991;5(l):29-43.
    15.Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor Ⅰ (Igf-1) and type 1 IGF receptor(Igflr). Cell. Oct 8 1993;75(l):59-72.
    16.Steele-Perkins G, Turner J, Edman JC, Hari J, Pierce SB, Stover C, Rutter WJ, Roth RA. Expression and characterization of a functional human insulin-like growth factor I receptor. The Journal of biological chemistry. Aug 15 1988;263(23):11486-11492.
    17.Isaksson 0. GH, IGF-Ⅰ, and growth. J Pediatr Endocrinol Metab. Sep 2004;17 Suppl 4:1321-1326.
    18.Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. Oct 8 1993;75(l):73-82.
    19.Daughaday WH, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. Feb 1989;10(l):68-91.
    20.Baxter RC. Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am J Physiol Endocrinol Metab. Jun 2000;278(6):E967-976.
    21.Neumann GM, Bach LA. The N-terminal disulfide linkages of human insulin-like growth factor-binding protein-6 (hIGFBP-6) and hIGFBP-1 are different as determined by mass spectrometry. J Biol Chem.May 21 1999;274(21):14587-14594.
    22.Schneider MR, Wolf E, Hoeflich A, Lahm H. IGF-binding protein-5: flexible player in the IGF system and effector on its own. J Endocrinol. Mar 2002;172(3):423-440.
    23.Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. Dec 2002;23(6):824-854.
    24.Rajaram S, Baylink DJ, Mohan S. Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocr Rev. Dec 1997;18(6):801-831.
    25.Twigg SM, Kiefer MC, Zapf J, Baxter RC. Insulin-like growth factor-binding protein 5 complexes with the acid-labile subunit. Role of the carboxyl-terminal domain. J Biol Chem. Oct 30 1998;273(44):28791-28798.
    26.Twigg SM, Baxter RC. Insulin-like growth factor (IGF)-binding protein 5 forms an alternative ternary complex with IGFs and the acid-labile subunit. J Biol Chem. Mar 13 1998;273(ll):6074-6079.
    27.Twigg SM, Kiefer MC, Zapf J, Baxter RC. A central domain binding site in insulin-like growth factor binding protein-5 for the acid-labile subunit. Endocrinology. Jan 2000;141(l):454-457.
    28. Guler HP, Zapf J, Schmid C, Froesch ER. Insulin-like growth factors I and II in healthy man. Estimations of half-lives and production rates. Ada Endocrinol (Copenh). Dec 1989;121(6):753-758.
    29. Baxter RC. Insulin-like growth factor binding proteins in the human circulation: a review. Horm Res. 1994;42(4-5):140-144.
    30. Zapf J, Schmid C, Guler HP, Waldvogel M, Hauri C, Futo E, Hossenlopp P, Binoux M, Froesch ER. Regulation of binding proteins for insulin-like growth factors (IGF) in humans. Increased expression of IGF binding protein 2 during IGF I treatment of healthy adults and in patients with extrapancreatic tumor hypoglycemia. J Clin Invest. Sep 1990;86(3):952-961.
    31. Clemmons DR. Role of insulin-like growth factor binding proteins in controlling IGF actions. Mol Cell Endocrinol. May 25 1998; 140(1-2): 19-24.
    32. Hasegawa Y, Hasegawa T, Aso T, Kotoh S, Nose O, Ohyama Y, Araki K, Tanaka T, Saisyo S, Yokoya S, et al. Clinical utility of insulin-like growth factor binding protein-3 in the evaluation and treatment of short children with suspected growth hormone deficiency. Eur J Endocrinol. Jul 1994;131(l):27-32.
    33. Hasegawa Y, Hasegawa T, Takada M, Tsuchiya Y Plasma free insulin-like growth factor I concentrations in growth hormone deficiency in children and adolescents. Eur J Endocrinol. Feb 1996; 134(2): 184-189.
    34. LeRoith D, Scavo L, Butler A. What is the role of circulating IGF-***? Trends in Endocrinoloty and Metabolism. 2001;12(2):48-52.
    35. Schoenle EJ, Zapf J, Prader A, Torresani T, Werder EA, Zachmann M. Replacement of growth hormone (GH) in normally growing GH-deficient patients operated for craniopharyngioma. J Clin Endocrinol Metab. Feb 1995;80(2):374-378.
    36. Guler HP, Zapf J, Froesch ER. Short-term metabolic effects of recombinant human insulin-like growth factor I in healthy adults. N Engl J Med. Jul 16 1987;317(3):137-140.
    37. Rechler MM. Insulin-like growth factor binding proteins. Vitam Horm. 1993;47:1-114.
    38. Oh Y, Muller HL, Pham H, Rosenfeld RG. Demonstration of receptors for insulin-like growth factor binding protein-3 on Hs578T human breast cancer cells. J BiolChem. Dec 15 1993;268(35):26045-26048.
    39. Russell-Jones DL, Weissberger AJ, Bowes SB, Kelly JM, Thomason M, Umpleby AM, Jones RH, Sonksen PH. The effects of growth hormone on protein metabolism in adult growth hormone deficient patients. Clin Endocrinol (Oxf). Apr 1993 ;38(4):427-431.
    40. Mohan S, Baylink DJ. IGF-binding proteins are multifunctional and act via IGF-dependent and -independent mechanisms. J Endocrinol. Oct 2002; 175(1): 19-31.
    41. Rajah R, Valentinis B, Cohen P. Insulin-like growth factor (IGF)-binding protein-3 induces apoptosis and mediates the effects of transforming growth factor-betal on programmed cell death through a p53- and IGF-independent mechanism. The Journal of biological chemistry. May 2 1997;272(18):12181-12188.
    42. Kato H, Faria TN, Stannard B, Roberts CT, Jr., LeRoith D. Essential role of tyrosine residues 1131, 1135, and 1136 of the insulin-like growth factor-Ⅰ (IGF-Ⅰ) receptor in IGF-Ⅰaction. Mol Endocrinol. Jan 1994;8(l):40-50.
    43. Kato H, Faria TN, Stannard B, Roberts CT, Jr., LeRoith D. Role of tyrosine kinase activity in signal transduction by the insulin-like growth factor-I (IGF-I) receptor. Characterization of kinase-deficient IGF-I receptors and the action of an IGF-Ⅰ-mimetic antibody (alpha IR-3). The Journal of biological chemistry. Feb 5 1993;268(4):2655-2661.
    44. Gronborg M, Wulff BS, Rasmussen JS, Kjeldsen T, Gammeltoft S. Structure-function relationship of the insulin-like growth factor-I receptor tyrosine kinase. The Journal of biological chemistry. Nov 5 1993;268(31):23435-23440.
    45. Butler AA, Yakar S, Gewolb IH, Karas M, Okubo Y, LeRoith D. Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol. Sep 1998;121(1): 19-26.
    46. White MF. The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Recent Prog Horm Res. 1998;53:119-138.
    47. D'Mello SR, Borodezt K, Soltoff SP. Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J Neurosci. Mar 1 1997;17(5):1548-1560.
    48. Ricketts WA, Rose DW, Shoelson S, Olefsky JM. Functional roles of the Shc phosphotyrosine binding and Src homology 2 domains in insulin and epidermal growth factor signaling. JBiol Chem. Oct 18 1996;271(42):26165-26169.
    49. Sasaoka T, Rose DW, Jhun BH, Saltiel AR, Draznin B, Olefsky JM. Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem. May 6 1994;269(18): 13689-13694.
    50. Cantley LC. The phosphoinositide 3-kinase pathway. Science. May 31 2002;296(5573): 1655-1657.
    51. Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard Akt to follow. Trends in biochemical sciences. Nov2001;26(ll):657-664.
    52. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC.Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science. Apr 9 1999;284(5412):339-343.
    53. Tang ED, Nunez G, Barr FG, Guan KL. Negative regulation of the forkhead transcription factor FKHR by Akt. The Journal of biological chemistry. Jun 11 1999;274(24): 16741-16746.
    54. Rena G, Guo S, Cichy SC, Unterman TG, Cohen P. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem. Jun 11 1999;274(24):17179-17183.
    55. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. Dec 21-28 1995;378(6559):785-789.
    56. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC. Regulation of cell death protease caspase-9 by phosphorylation. Science. Nov 13 1998;282(5392):1318-1321.
    57. Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSosl. Nature. May 6 1993;363(6424):83-85.
    58. Olivier JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G, Margolis B, Schlessinger J, Hafen E, Pawson T. A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell. Apr 9 1993;73(1):179-191.
    59. Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM, Weinberg RA. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature. May 6 1993;363(6424):45-51.
    60. Crews CM, Erikson RL. Extracellular signals and reversible protein phosphorylation: what to Mek of it all. Cell. Jul 30 1993;74(2):215-217.
    61. Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature. Dec 16 1993;366(6456):643-654.
    62. Sjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, LeRoith D, Tornell J, Isaksson OG, Jansson JO, Ohlsson C. Liver-derived insulin-like growth factor I (IGF-***) is the principal source of IGF-*** in blood but is not required for postnatal body growth in mice. Proceedings of the National Academy of Sciences of the United States of America. Jun8 1999;96(12):7088-7092.
    63. Hepler JE, Lund PK. Molecular biology of the insulin-like growth factors. Relevance to nervous system function. Mol Neurobiol.Spring-Summer 1990;4(l-2):93-127.
    64. Snell GD. Dwarf, A New Mendelian Recessive Character Of The House Mouse. Proceedings of the National Academy of Sciences of the United States of America. Sep 15 1929;15(9):733-734.
    65. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O'Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature. Nov 28 1996;384(6607):327-333.
    66. Liu JL, Coschigano KT, Robertson K, Lipsett M, Guo Y, Kopchick JJ, Kumar U, Liu YL. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am J Physiol Endocrinol Metab. Sep 2004;287(3):E405-413.
    67. Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology. Sep 2003;144(9):3799-3810.
    68. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. Dec 16 1982;300(5893):611-615.
    69. Palmiter RD, Norstedt G, Gelinas RE, Hammer RE, Brinster RL. Metallothionein-human GH fusion genes stimulate growth of mice. Science. Nov 18 1983;222(4625):809-814.
    70. Verhelst J, Abs R, Vandeweghe M, Mockel J, Legros JJ, Copinschi G, Mahler C, Velkeniers B, Vanhaelst L, Van Aelst A, De Rijdt D, Stevenaert A, Beckers A. Two years of replacement therapy in adults with growth hormone deficiency. Clin Endocrinol (Oxf). Oct 1997;47(4):485-494.
    71. Liu JL, LeRoith D. Insulin-like growth factor I is essential for postnatal growth in response to growth hormone. Endocrinology. Nov 1999;140(l 1):5178-5184.
    72. Woods KA, Camacho-Hubner C, Savage MO, Clark AJ. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. NEnglJMed. Oct 31 1996;335(18):1363-1367.
    73. Seeburg PH. The human growth hormone gene family: nucleotide sequences show recent divergence and predict a new polypeptide hormone. DNA (Mary Ann Liebert, Inc. 1982;l(3):239-249.
    74. Miller WL, Eberhardt NL. Structure and evolution of the growth hormone gene family. Endocr Rev. Spring 1983;4(2):97-130.
    75. Niall HD, Hogan ML, Sauer R, Rosenblum IY, Greenwood FC. Sequences of pituitary and placental lactogenic and growth hormones: evolution from a primordial peptide by gene reduplication. Proceedings of the National Academy of Sciences of the United States of America. Apr 1971 ;68(4): 866-870.
    76. Eden S. Age- and sex-related differences in episodic growth hormone secretion in the rat. Endocrinology. Aug 1979;105(2):555-560.
    77. Clark RG, Carlsson LM, Robinson IC. Growth hormone secretory profiles in conscious female rats.JEndocrinol. Sep 1987;114(3):399-407.
    78. Pincus SM, Gevers EF, Robinson IC, van den Berg G, Roelfsema F, Hartman ML, Veldhuis JD. Females secrete growth hormone with more process irregularity than males in both humans and rats. Am JPhysiol. Jan 1996;270(l Pt l):E107-115.
    79. Boguszewski CL, Svensson PA, Jansson T, Clark R, Carlsson LM, Carlsson B. Cloning of two novel growth hormone transcripts expressed in human placenta. The Journal of clinical endocrinology and metabolism. Aug 1998;83(8):2878-2885.
    80. de Mello-Coelho V, Gagnerault MC, Souberbielle JC, Strasburger CJ, Savino W, Dardenne M, Postel-Vinay MC. Growth hormone and its receptor are expressed in human thymic cells. Endocrinology. Sep 1998;139(9):3837-3842.
    81. Kooijman R, Berus D, Malur A, Delhase M, Hooghe-Peters EL. Human neutrophils express GH-N gene transcripts and the pituitary transcription factor Pit-1b. Endocrinology. Oct 1997;138(10):4481-4484.
    82. Mol JA, Henzen-Logmans SC, Hageman P, Misdorp W, Blankenstein MA, Rijnberk A. Expression of the gene encoding growth hormone in the human mammary gland. The Journal of clinical endocrinology and metabolism. Oct 1995;80(10):3094-3096.
    83. Yoshizato H, Fujikawa T, Soya H, Tanaka M, Nakashima K. The growth hormone (GH) gene is expressed in the lateral hypothalamus: enhancement by GH-releasing hormone and repression by restraint stress. Endocrinology. May 1998;139(5):2545-2551.
    84. Bazan JF. A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-2 receptor beta-chain. Biochemical and biophysical research communications. Oct 31 1989;164(2):788-795.
    85. Bazan JF. Haemopoietic receptors and helical cytokines. Immunol Today. Oct 1990;ll(10):350-354.
    86. Cosman D, Lyman SD, Idzerda RL, Beckmann MP, Park LS, Goodwin RG, March CJ. A new cytokine receptor superfamily. Trends in biochemical sciences. Jul 1990;15(7):265-270.
    87. Barton DE, Foellmer BE, Wood WI, Francke U. Chromosome mapping of the growth hormone receptor gene in man and mouse. Cytogenetics and cell genetics. 1989;50(2-3):137-141.
    88. Edens A, Talamantes F. Alternative processing of growth hormone receptor transcripts. Endocr Rev. Oct 1998;19(5):559-582.
    89. Talamantes F, Ortiz R. Structure and regulation of expression of the mouse GH receptor. JEndocrinol. Oct 2002;175(l):55-59.
    90. Zhu T, Goh EL, Graichen R, Ling L, Lobie PE. Signal transduction via the growth hormone receptor. Cell Signal. Sep 2001; 13(9):599-616.
    91. Baumann G, Stolar MW, Amburn K, Barsano CP, DeVries BC. A specific growth hormone-binding protein in human plasma: initial characterization. The Journal of clinical endocrinology and metabolism. Jan 1986;62(1):134-141.
    92. Leung DW, Spencer SA, Cachianes G, Hammonds RG, Collins C, Henzel WJ, Barnard R, Waters MJ, Wood WI. Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature. Dec 10-16 1987;330(6148):537-543.
    93. Dastot F, Duquesnoy P, Sobrier ML, Goossens M, Amselem S. Evolutionary divergence of the truncated growth hormone receptor isoform in its ability to generate a soluble growth hormone binding protein. Mol Cell Endocrinol. Feb 1998;137(l):79-84.
    94. Martini JF, Pezet A, Guezennec CY, Edery M, Postel-Vinay MC, Kelly PA. Monkey growth hormone (GH) receptor gene expression. Evidence for two mechanisms for the generation of the GH binding protein. The Journal of biological chemistry. Jul 25 1997;272(30):18951-18958.
    95. Barnard R, Waters MJ. The serum growth hormone binding protein: pregnant with possibilities. J Endocrinol. Apr 1997;153(1):1-14.
    96. Baumann G. Growth hormone binding protein——errant receptor or active player? Endocrinology. Feb 1995;136(2):377-378.
    97. Carter-Su C, Smit LS. Signaling via JAK tyrosine kinases: growth hormone receptor as a model system. Recent Prog Horm Res. 1998;53:61-82; discussion 82-63.
    98. Leonard WJ, O'Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol. 1998;16:293-322.
    99. Chia DJ, Ono M, Woelfle J, Schlesinger-Massart M, Jiang H, Rotwein P. Characterization of Distinct Stat5b Binding Sites That Mediate Growth Hormone-stimulated IGF-*** Gene Transcription. J. Biol. Chem. February 10, 2006 2006;281(6):3190-3197.
    100. Woelfle J, Chia DJ, Rotwein P. Mechanisms of growth hormone (GH) action. Identification of conserved Stat5 binding sites that mediate GH-induced insulin-like growth factor-*** gene activation. JBiol Chem. Dec 19 2003;278(51):51261-51266.
    101. Yoshizato H, Tanaka M, Nakai N, Nakao N, Nakashima K. Growth hormone (GH)-stimulated insulin-like growth factor I gene expression is mediated by a tyrosine phosphorylation pathway depending on C-terminal region of human GH receptor in human GH receptor-expressing Ba/F3 cells. Endocrinology. Jan 2004;145(1):214-220.
    102. Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. May 29 1998;93(5):841-850.
    103. Davey HW, Xie T, McLachlan MJ, Wilkins RJ, Waxman DJ, Grattan DR. STAT5b is required for GH-induced liver IGF-I gene expression. Endocrinology. Sep 2001;142(9):3836-3841.
    104. Hwa V, Little B, Adiyaman P, Kofoed EM, Pratt KL, Ocal G, Berberoglu M, Rosenfeld RG. Severe growth hormone insensitivity resulting from total absence of signal transducer and activator of transcription 5b. The Journal of clinical endocrinology and metabolism. Jul 2005;90(7):4260-4266.
    105. Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, Pratt KL, Bezrodnik L, Jasper H, Tepper A, Heinrich JJ, Rosenfeld RG. Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med. Sep 18 2003;349(12):1139-1147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700