二氧化氯对水中微囊藻和微囊藻毒素-LR去除效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富营养化导致水体水质恶化,味觉和嗅觉变坏,其最大的潜在威胁是富营养化水体中存在某些优势藻类,能产生胞内毒素、肝毒素和神经毒素等,危害人类健康。微囊藻(Microcystis)是我国富营养化水体中的主要污染藻类,是富营养化水体中的优势藻并易形成“水华”,其产生的微囊藻毒素(Microcystins,MC)是一类七肽单环肝毒素,其中MC-LR是目前发现的最强的肝脏肿瘤促进剂,MC在水中的化学稳定性较好,不能被传统净水工艺有效去除。因此,微囊藻的过度繁殖及产生的微囊藻毒素已对饮用水安全构成严重威胁。ClO2是一种优良的消毒剂和强氧化剂,对水中的许多有机和无机污染物均具有较好的去除效果,而且几乎不与水中的有机物形成THMs等有机卤代物,在水处理中具有广阔的应用前景。
     本文以微囊藻属中的重要产毒种铜绿微囊藻和惠氏微囊藻作为目标藻种,对ClO2处理微囊藻的效果进行了研究。结果表明:ClO2对于微囊藻具有很好的杀灭效果。叶绿素去除率与ClO2投加浓度、反应时间呈正相关性,与叶绿素初始浓度呈反相关性,反应温度和pH值对于叶绿素去除率影响不明显。当ClO2投加量为2.5mg/L,温度25℃,pH=7.17时,反应15min后,惠氏微囊藻和铜绿微囊藻(905#和915#)的杀灭率分别可达到97.23%、96.2%和92.33%。
     本文研究了ClO2氧化去除MC-LR的效果,并采用正交试验讨论影响处理效果的因素。结果表明:ClO2对于MC-LR具有很好的去除效果。去除率与ClO2投加浓度、反应时间呈正相关性,与MC-LR初始浓度呈反相关性,反应温度和pH值对于MC-LR去除率影响不明显。当ClO2投加量为2.5mg/L,温度20℃,pH=6.47时,反应60min后,MC-LR去除率可达到95.12%。正交试验所考察的各影响因素的主次顺序为:ClO2投量→温度→反应时间→pH。将MC-LR的初始浓度降低到接近实际水体,ClO2的投量接近水厂处理的水平,结果显示MC-LR被ClO2氧化去除的剩余浓度远远低于国家标准1.0μg/L。
     本文对ClO2与MC-LR的反应动力学进行系统研究。结果表明,ClO2与MC-LR的反应级数对二者均为一级,总反应级数为二级。在pH=6.47、反应温度20℃的条件下,ClO2对MC-LR的反应速率常数为7.86 L/(mol?s)。考察了溶液pH和温度对反应速率常数的影响,结果表明溶液pH对反应速率有一定影响,在酸性和中性条件较碱性条件反应速率常数大一些;反应速率常数随温度的增加而增大,二者反应活化能为78.81kJ/mol,表明ClO2与MC-LR在一般水处理条件下即可发生反应。
     考察ClO2预氧化处理工艺与常规水处理工艺对含藻水样的处理效果,并且对微囊藻在ClO2预氧化剂作用下的破坏形态和藻毒素的释放特性进行了初探。研究结果表明:ClO2预投量为3.0mg/L时,出水叶绿素去除率达到98.5%,藻的杀灭率达到95%,浊度去除率达到89.08%。与常规水处理工艺相比,ClO2预氧化处理工艺,可以有效灭藻,降低浊度。通过对微囊藻毒素释放特性的研究显示,当ClO2大于3.0mg/L时,胞内和胞外毒素都降到一个较低的水平,可以达到控制饮用水中微囊藻毒素含量的目的,保证饮用水安全。
     本论文研究得出ClO2对于水中微囊藻及微囊藻毒素具有很好的去除效果,这对蓝藻“水华”的治理和饮用水安全生产提供了科学依据。
Blooms in eutrophic water body had become an serious problem threatening the safe drinking water. Besides aesthetic aspects such as unattractiveness to bathers,odor, and bad taste of treated drinking water, many species or strains of cyanobacteria also produce potent cytotoxins, hepatotoxins, and/or neurotoxins. Microcystis is the mainly species in eutrophic water and easily lead to Blooms. Microcystins (MC) produced by Microcystis are hepatotoains containing cyclic heptapeptides. Microcystin-LR(MC-LR) is the most strong liver tumour promotor at present. MC are chemically stable in water and can't be effectively removed by conventional water treatment processes. It becomes a great threaten of drinking water when Microcystis growth excessly and produce MC. As a sort of excellent disinfectant and oxidant, chlorine dioxide (ClO2) has promising future for its excellent ability in removing both organic and inorganic contaminants without forming halo-substituted organics such as trihalogenmethane (THMs).
     The effects of ClO2 on the degradation of two typical Microcystis including M. aeruginosa and M. wesenbergi in aqueous solution were investigated systematically and the results showed that ClO2 could effectively remove M. aeruginosa and M. wesenbergi. The removal efficiency of chlorophyll was in positive correlation to ClO2 dosage and the reaction time and in negative correlation to initial concentration chlorophyll, whereas it was affected by temperature and pH value slightly. The removal ratios of M. wesenbergi and M. aeruginosa(905#和915#)could reach to their maximum as approximately 97.23%、96.2%和92.33% respectively under the conditions as follows: the ClO2 dosage 2.5mg/L, reaction time15 min, and pH 7.17.
     The removal effectiveness of MC-LR oxidation by ClO2 was studied and Orthogonal experiment was used to discuss detailedly the influence factors as ClO2 dosage, reaction time, temperature and pH in removing MC-LR by ClO2 in this chapter.The results were shown as follow, ClO2 could remove MC-LR effectively, the efficiency of removal was in positive correlation to the ClO2 dosage and the reaction time and in negative correlation to the initial concentration of MC-LR, but it was affected by temperature slightly and was effictive in wide range of pH value. The significance rank of the four factors affecting degradation efficiency was the concentration of ClO2, pH, temperature, time by the orthogonal test results. The residual concentration of microcystins-LR removed by ClO2 could meet the national guideline (1.0μg/L).
     The research on the kinetics of MC-LR oxidation by ClO2 was systematically performed in this chapter. The results showed that the kinetics of MC-LR degradation by ClO2 followed second order reaction equation, reaction orders of the ClO2 and MC-LR were first order respectively, the reaction rate constant was 7.86 L/(mol?s) and activation energy was 78.81 kJ/mol. In conclution, ClO2 could be taken as an effective technology for removal microcystin-LR from drinking water resources in traditional drinking water supplies.
     Research on the differences between preoxidation treatment and conventional water treatment processes to removal of Microcystis and MC-LR .Also analyze the charateristics of the breakage of Microcystis after being oxidated by ClO2. The results were shown as follow, as the dosage of ClO2 was 3.0mg/L, removal efficiency of chlorophyll and Microcystis were 98.5% and 95% respectively and turbidity decreased to 89.08%. Compared with conventional water treatment methods,preoxidation treatment of ClO2 could effectively remove Microcystis aeruginosa, decreased turbidity and guarantee the drinking water quality. The study of the mechanism of intracellular microcystins release showed that ClO2 dosage 3.0mg/L, intracellular and extracellular microcystins had fallen to a very little level.Therefor, ClO2 is a suitable oxidant for the degradation of microcystins in drinking water treatment processes.
     Work of this dissertation has great theoretical and practical value as it provided enough scientific basis for the application of ClO2 in removing Microcystis and MC from aqueous solution.
引文
1马经安,李红清.浅谈国内外江河湖库水体富营养化状况.长江流域资源与环境.2002,11(6):575~578
    2刘建琳,周胜,吴亚英,等.湖泊水中微囊藻毒素与富营养化指标的相关关系及时空分布规律研究.中国环境监测.2002,18(3):46~49
    3 WHO. Cyanobacterial toxins: microcystin-LR. Guidelines for Drinking-Water Quality. World Health Organization, Geneva,1998:95~110
    4朱光灿,吕锡武.饮用水中微囊藻毒素的氧化降解特性.第十一届海峡两岸环境保护学术研讨会论文集,哈尔滨,哈尔滨工业大学出版社, 2007: 573~578
    5黄君礼,唐玉兰,王丽.二氧化氯和氯混合消毒剂对氯仿形成的影响.环境科学. 2003,24(2):102~103
    6许秋瑾,高光,陈伟民.太湖微囊藻毒素与湖泊物理因素之间的关系.中国环境监测.2004,20(1):12~16
    7国家环保总局科技标准司编.中国湖泊富营养化及其防治研究.中国环境科学出版社,2001:23~28
    8 T. N. Duy, P. K. S. Lam, G. R. Shaw, et al. Toxicology and Risk Assessment of Freshwater Cyano-Bacterial(blue-green algae) Toxins in Water. Rev Environ Contam Toxicol. 2000,163:113~186
    9 W. W. Carmichael. Hemagglutination Method for Detection of Freshwater Cyanobacteria(Blue-Green Algae) Toxic. Applied and Environmental Microbiology.1981,41(6):1383~1388
    10 W. W. Carmichael. Toxic Microcystis and The Environment In: Watanabe M F: Toxic Microcystis.Boca Raton:CRC Press. 1996:2~4
    11朱光灿,吕锡武.去除藻毒素的水处理技术研究进展.中国给水排水. 2003 ,19(8):36~39
    12朱光灿.饮用水中微囊藻毒素降解机理与去除技术研究.博士学位论文.2004:3~4
    13周德庆.微生物学教程.高等教育出版社, 1998:42~43,273~275
    14胡川,康升云.蓝藻发生与控制方法初探.江西水产科技.2001,4:35~37
    15李效宇,宋立荣,刘永定.微囊藻毒素的产生、检测和毒理学研究.水生生物学报. 1999,23(5):517~523
    16 P. R. Gorham. Toxic algae. In: Jackson D F(ed.).Algae and Man. New York: Plenum Press.1964. 307~336
    17 M. F. Watanabe, S. Oishi. Effects of Environmental Factors on toxicity of a Cyanobacterium(Microcystis aeruginosa)under Culture Conditions. Appl Environ Microbiol. 1985,49(5):1342~1344
    18 A. J. Van der Westhuizen, J. N. Eloff, G. H. J. Kruger. Effects of Temperature and Light (fluence rate) on the Composition of the Cyanobacterium Microcystis Aeruginosa(UV-006). Arch Hydrobiol.1986,108(2):145~154
    19 H. Utkilen, N. Gjolme. Energy the Dominating Controlling Factor for Microcystin Production in Microcystis Aeruginosa? Compilation of Abstracts,
    4th International Conference on Toxic Cyanobacteria. 1998:63
    20连民,刘颖,俞顺章.氮、磷、铁、锌对铜绿微囊藻生长及产毒的影响.上海环境科学. 2001,20(4):166~170
    21 H. Utkilen, N. Gjohne. Toxin Production by Microcystis Aeruginosa as a Function of light in continuous cultures and its ecological significance. Appl Environ Microbiol. 1992,58(4):1321~1325
    22 E. Dittmann, B. A. Neilan, T. Borner. Molecular Biology of Peptide and Polyketide Biosynthesis in Cyanobacteria. Appl. Microbiol. Biotechnol. 2001, 57:467~473
    23 D. P. Singh, M. B. Tyagi, A. Kumar, et al. Antialgal activity of a hepatotoxin-producing cyanobacterium, Microcystisaeruginosa. World J. of Microbiol.& Biotech. 2001,17:15~22
    24 T. Nishizawa, M. Asayama, K. Fujii, et al. Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J.of Biochemistry.1999,126(3):520~529
    25 H. Utkilen, N. Gjolme. Iron-stimulated toxin production in Microcystis aeruginosa.Appl Environ Microbiol. 1995,61(2):797~800
    26 Phillip Pendleton, Russell Schumann, and Shiaw Hui Wong. Microcystin-LR Adsorption by Activated Carbon. Journal of Colloid and Interface Science .2001.240:1~8
    27 S. Abdel Rahman. Characterization of Heptapeptide Toxins Extracted form Maeruginosa Comparison with some Synthesized Analogs. Int J PeptProtein Res.1993,41(1):1~7
    28 H. D. Park, M. Namikoshi, S. M. Brittain, et al. [-Leul]Microcystin-LR, a new Microcystin isolated from Waterbloom in Canadian Prairie Lake.Toxicon.2001,39:855~862
    29 B. C. Hitzfeld, S. J. Hoger, D. R. Dietrich. Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ Health Perspect. 2000,108(Suppl 1):113~122
    30 K. L. Rinehart, M. Namiloshi, B. W. Choi. Structure and Biosynthesis of Toxins from Blue-green algae(Cyanobacteria). J Appl Phychol. 1994,6:159~160
    31 G. Maagd, J. Hendriks, D. Sijm, et al. pH-dependent Hydrophobicity of the Cyanobacteria Toxin Microcystin LR. Wat. Res. 1999,33(5):677-680
    32吴伟,瞿建宏,陈家长,等.藻毒素对鱼类肝脏的毒理学效应.中国环境科学. 2002,22(1):67~70
    33 J. E. Eriksson. Hepatocellular uptake of dihydromicrocystin-LR a Cyclic Peptide Toxin.Biochem Biophys Acta. 1990,1025:60
    34徐立红,张雨元.微囊藻毒素分子致毒机理研究进展.水生生物学报. 1993,17(4):365~374
    35 Y. Nakano, M. Shirai, N. Mori, et al. Neutralization of Microcystin Shock in Mice by Tumor Necrosis factor Alpha Antiserum. Appl Environ Microbiol. 1991, 57:327
    36宋瑞霞,刘征涛,沈萍萍.太湖中微囊藻毒素的遗传毒性研究.环境科学研究. 2003,16(2):51~53
    37赵金明,蒋颂辉,朱惠刚.藻毒素对自来水提取物诱导大鼠肝癌的促进作用.中国环境科学, 2003,23 (1):16~20
    38李效宇,刘永定,宋立荣,等.微囊藻毒素对大鳞副泥鳅胚胎和幼鱼的毒性效应.水生生物学报. 2003,27(3):318~319
    39 E. M. Jochimsen, W. W. Carmichael, J. S. An, et al. Liver Failure and Death after Exposure to Microcystins at a Hemodialysis Center in Brazil. N Engl J Med.1998,338:873~878
    40 S. Z. Yu. Drinking water and Primary Liver Cancer. In: Tang Z Y, Wu M C and Xia S S(ed). Primary Liver Cancer. Beijing: Beijing Springer,1992:30~37
    41 K. Angeline, M. Phillip, E. Ellie. Biotransformation of the Cyanobacterial Hepatotoxinmicrocystin-LR, as Determined by HPLC and Protein PhosphataseBioassay. Environ Sci Techno1.1995,29(2):242~246
    42蒋道松,刘其城,章俭,等.除藻技术新进展.常德师范学院学报. 2000,12(1):25~31
    43韩应琳.溴类杀菌杀藻剂的研究现状.工业水处理.1995,35(15):5~8
    44黄君礼.新型水处理剂—二氧化氯技术及其应用.化学工业出版社,2002:438~440
    45裴海燕,胡文荣,丁国际.二氧化氯杀藻特性的研究.山东大学学报(工学版). 2004, 34(5):104~108
    46王国详,濮培民,张圣照,等.人工复合生态系统对太湖局部水域水质的净化作用.中国环境科学.1998,18(5):410~414
    47吴为中,王占生.水库水源水生物陶粒池预处理中试研究.环境科学研究, 1999,1:36~38
    48余国忠,王占生.饮用水处理中藻毒素污染及其工艺控制特性研究.给水排水.2002,128(13):25~28
    49丁震,陈晓东,林萍.饮用水藻类和藻毒素污染控制与处理研究进展.实用预防医学.2001, 8(6):478~480
    50隋少峰,刘志艳,张红,等.二氧化钛光降解饮用水中藻毒素的研究进展.中国公共卫生.2004,20(7):875~876
    51 J. K. Fawell, H. A. Hart, W. Parr. Blue-green algae and their toxins analysis , toxicity , treatment and environmental control. Water Supply .1993 ,11(3/ 4):109~121
    52贾瑞宝,李力.二氧化氯强化处理含藻水库水研究.中国给水排水. 2003, 19(13):93~95
    53 J. Hoger Stefan., R.Dietrich Daniel, C.Hitzfeld Bettina. Effect of Ozonation in Drinking water Treatment on the Removal of Cyanobacterial Toxins and Toxicity of by-products after Ozonation of Microcystin–LR. Environmental Toxicology. 2000,20(2):132~133
    54 J. Rositano, G. Newcombe, B. Nicholson, P. Sztajnbok. Ozonation of NOM and Algae Toxins in four treated waters. Wat. Res. 2001,35(1): 23~32
    55 G. S. Shephard, D. R. Themboa. Mycological and Mycotoxin Contamination of Tradition Herbal Medicines. South Africa Journal of Botany. 2007,73(2):316~317
    56 S. S. Gordon, S. Sonja, et al. Degradation of Microcystin Toxins in a FallingFilm Photocatalytic Reator with Immobilized Titanium Dioxide Catalyst.Water Res, 2002, 36(1):140~146
    57 P. K. J. Robertson, L. A. Lawton, B. J. P. A. Cornish and M. Jaspans. Processes Influencing the Destruction of Microcystin-LR RTiq Photocatalysis. J. Photochem. Photobiol. A: Chemistry, 2003,116:215~219
    58余冉,吕锡武,稻森悠平.生物接触氧化预处理水中藻类及其毒素.中国给水排水.2002,18(12):9~12
    59吴振斌,陈辉蓉,雷腊梅,等.人工湿地系统去除藻毒素研究.长江流域资源与环境.2000,9(2):242~247
    60 U. Neumann, J. Weckesser. Elimination of Microcystin Peptide Toxins from Water by Reverse Osmosis.Envirom.Toxicol & Water Qual.1998,13:(2)143~157
    61 Dong Keun Lee, Sung Chul Kim, Seong Ji Kim, et al. Photocatalytic Oxidation of Microcystin-LR with Ti02-coated activated carbon.Gyeongsang National University Korea .2001:1~9
    62黄君礼.二氧化氯分析技术.中国环境科学出版社, 2000:17~23
    63中华人民共和国国家标准-水中微囊藻毒素的测定GB2007-1-1
    64赵斌,何绍江.微生物学试验.科学出版社, 2002, 25(3):205~209
    65国家环境保护总局《水和废水监测分析法》编委会.水和废水监测分析法(第四版).2002:670~671
    66 Q. J. Xu, G. Gao , W. M. Chen. The Relationship between Microcystin-LR and Physical factors in Lake Taihu. Environmental Monitoring in China. 2004, 20(1):12~16
    67徐景亮,李爱芬,段舜山.饮用水处理流程中的微囊藻及其去除率.生态科学. 2005, 24(2):120~123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700