非饱和石灰土的工程性状与动力响应特征试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以非饱和石灰改性膨胀土为研究对象,立足于列车荷载下路基土的工程应用,通过室内试验,较为系统地研究了石灰土在静、动荷载作用下的强度与变形特性,并与重塑膨胀土及原状膨胀土的相应性质进行了对比,主要研究成果如下:
     首先,在分析石灰土与膨胀土压实特性及不同龄期与不同控制指标下石灰土的无侧限抗压强度的基础上,类比现场路基场地石灰土无侧限抗压强度值,并依据相关的路基基层施工技术规范要求,确定研究石灰土的掺灰比为3.0%及制样控制技术指标。在此基础上,根据轴平移技术,采用压力板仪量测石灰土的土水特征曲线,与原状膨胀土的试验成果对比分析,改性前后土体性质由粘性土向粉质粘土转变,进气值由膨胀土的210kPa降低至石灰土的67kPa,残余重力含水量则由膨胀土的13.5%左右升高至石灰土的16.5%。
     其次,对养护28d以上非饱和石灰土进行了三轴试验研究,其应力应变关系曲线为典型的应力软化型,表现出脆性性质;饱和重塑膨胀土则为稳定型到硬化型,主要表现为塑性性质;非饱和石灰土与重塑膨胀土的粘聚力均随含水量的减小而增大,摩擦角也随含水量的变化发生改变,而并非一定值。
     再次,开展了非饱和石灰土动三轴试验,获得其动骨干曲线及动弹模量随应变、围压和含水量变化的试验曲线,以Hardin-Drnevich所提出的等效阻尼比计算公式为依据,得到石灰土全应变范围内的阻尼比。分析了振动频率与固结比等因素对石灰土的动力响应特征的影响,动弹模量随着固结比的增高而增大,而振动频率对动弹模量的影响甚微;阻尼比受土样含水量及围压的影响较小,而频率及固结比对其有较大的影响,其中以频率的影响最为显著,随着频率的增大,阻尼比明显增大,而随着固结比的增大阻尼比则表现出减小的趋势。
     最后,在动力分析的基础上,分析了石灰土的临界动应力性质。石灰土的临界动应力在各状态下均处在一个相对稳定的应力范围内,这一界限范围值为190-200kPa;含水量与振动频率对石灰土的临界动应力值影响有限,随着含水量的增大和振动频率的增加,石灰土的临界动应力存在减小的趋势,趋近于上述范围的下限值190kPa。
Based on the features of roadbed soil under train load, lime-treated expansive soil was researched systematically, according to the indoor experiment, about its characteristics of strength and deformation under static and dynamic loads. The main results are summarized in the following:
     Firstly, on the basis of compaction peculiarity and unconfined compression strength of lime-treated expansive soil analyzed, the ratio of lime (3.0%) and controlling factors of making sample were determined by contrasting to the unconfined compression strength of field lime-treated expansive soil and some related standards. Then the pressure plate test was used to measure the soil-water characteristic curve(SWCC) of lime-treated expansive soil using the axis-translation technique, it was found that the result was far from that of intact expansive soil. Contrasting the intact expansive soil to lime-treated soil, the value of in-taking area decreases from 210kPa to 67kPa, but the residual water content increases from 13.5% to 16.5%.
     Secondly, triaxial strength of unsaturated lime-treated expansive soil was researched by using unsaturated triaxial test. The type of stress-strain curve of lime-treated soil is the specific stress softening type, which shows the brittle character of lime-treated soil. However, the curve type of saturated remoulded expansive soil is stress stable or hardening type, showing the plastic character instead. Furthermore, the cohesion of both the lime-treated and remoulded expansive soil increases with water content declining. The friction angle also changes, when the water content is different, instead of a stable value for all time.
     Thirdly, through the experiment of dynamic triaxial test of lime-treated expansive soil, main experiment curves between the relation of dynamic modulus and dynamic strain, water content or cell pressure were achieved. The damping ratio of whole strain is calculated, according to the equation of equivalent damping ratio, founded by Hardin-Drnevich. The impact of consolidation ratio and cyclic frequency is analyzed as well. The dynamic modulus increases, as long as the consolidation ratio raises. On the contrary, the frequency affection to dynamic modulus is subtle. The influence of water content and cell pressure to damping ratio is also small. Instead, the damping ratio is influenced remarkably by frequency and consolidation ratio, between which the influence of frequency is outstanding. With the increasing frequency and the decreasing consolidation ratio, the damping ratio raises.
     Finally, the characteristics of critical dynamic stress of lime-treated expansive soil was analyzed based on the research of dynamic behavior. The critical dynamic stress stays stably between the range of 190kPa and 200kPa, no mater the condition of samples is different or not. Although the influence of water content and frequency is limited, the critical dynamic stress is still showing the trend of declining depending on the increasing water content and frequency, which is more closer to 190kPa.
引文
[1] 铁道科学研究院高速铁路技术研究总体组.高速铁路技术[M].北京:中国铁道出版社,2005:15~17,46~49.
    [2] 铁立新.世界高速铁路技术[M].北京:中国铁道出版社,2003:1~10.
    [3] 廖世文.膨胀土与铁路工程[M].北京:中国铁道出版社,1984,11.
    [4] 中华人民共和国铁道部.铁路特殊路基设计规范(TB10035-2006,J158-2006)[S].北京:中国铁道出版社,2006:94~97.
    [5] 潘君牧.从工程经济看裂隙粘土路基[J].铁四院铁道勘测与设计,1982,4.
    [6] 沈珠江.非饱和土力学的回顾与展望[J] .水利水电科技进展,1996,16(1):1~20.
    [7] Kong L.W, Tan L.R. A Simple Method of Determining the Soil-Water Characteristic Curve Indirectly[A]. Unsaturated Soils For Asia[C], Singapore, 2000: 341~345.
    [8] Fredlund M.D, Fredlund D.G, Wilson G.W. Prediction of the soil-water characteristic curve from grain-size distribution and volume-mass properties[A]. 3rd Brazilian Symposium on Unsaturated Soils[C], Rio de Janeiro, April: 22-25.
    [9] Fredlund M.D, Wilson G.W, Fredlund D.G. Use of the grain-size distribution for estimation of the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2002, 39:1103-1117.
    [10] Simms P.H, Yanful E.K. Predicting soil-water characteristic curve of compacted plastic soils from measured pore-size distributions[J]. Geotechnique, 2002, 4:269-278.
    [11] Aubertin M, Mbonimpa M, Bussiere B, Chapuis R.P. A model to predict the water retention curve from basic geotechnical properties[J]. Canadian Geotechnical Journal, 2003, 40: 1104-1122.
    [12] 龚壁卫,吴宏伟,王斌.应力状态对膨胀土 SWCC 的影响研究[J].岩土力学,2004,25(12).
    [13] 龚壁卫,周小文,周武华.干-湿循环过程中吸力与强度关系研究[J] .岩土工程学报,2006,28(2):207~209.
    [14] 韩华强,陈生水.膨胀土的强度和变形特性研究[J].岩土工程学报,2004,26(3):422~424.
    [15] 缪林昌,刘松玉.南阳膨胀土的水分特征和强度特性研究[J].水利学报,2002(7):87~92.
    [16] Bishop A.W, Donald I.B. The experimental study of partly saturated soils in the triaxial apparatus[A]. Pro.5th ICOSMFE[C], 1961 Vol.1: 13~20.
    [17] Fredlund D.G, Morgenstern N.R. Stress state variables for unsaturated soils[J]. Geotech. Eng. Div. Am., Soc.Civ.Engis.1977 103 Gt5: 447~446.
    [18] Alonso E E. Modeling the mechanical behaviour of expansive clays[J]. Engineering Geology. 1999. 54: 173-183.
    [19] Coleman J.D. Stress strain relation for partly saturated soils[J]. Geotechnique, 1961,12(4): 348~350.
    [20] 卢再华,陈正汉等.原状膨胀土的强度变形特性及其本构模型研究[J] .岩土力学,2001,22(3):339~342.
    [21] 卢再华,王权民等.非饱和膨胀土本构模型的试验研究及分析[J] .地下空间,2001,21(5):379~385.
    [22] 刘冬梅,刘朝马.膨胀土的胀缩变形机理及其工程应用[J] .南方冶金学院学报,1999,20(2):69~73.
    [23] 孙长龙,殷宗泽.膨胀土性质研究综述[J] .水利水电科技进展,1995,6.
    [24] Bell F G.Lime Stabilization of Clay Minerals and Soils[J]. Engineering Geology, 1996, 412 (4): 223-237.
    [25] Osula D O A. Lime Stabilization of Clay Minerals and Soils[J]. Engineering Geology, 1996, 42 (1):71-80.
    [26] Locat J, Tremblay H, Leroueil S. Mechanical and hydraulic behavior of a soft inorganic clay treated with lime[J]. Canadian Geotechnical Journal, 1996, 33(4): 654-669.
    [27] Sabry M A, Abdel-Chani Kh I, El Nahas A M. Strength charateristics of soil-lime columns sections. Grouting and deep mixing[A]. Proc. Conference[C], Tokyo, 1996, Vol. led Yone Kura R.et al(Blakema) 1996: 393-2405
    [28] Al-Abdul Wahhab HI, Asi I M.Improvement of Marl and Dune Sand for Highway Construction in Arid Areas[J]. Building and Environment, 1997, 32 (3): 271-279
    [29] Au wing-cheong, Chae Yong S. Dynamic Shear Modulus of Treated Expansive soils[J]. Jr. Geotech. Eng. Div., ASCE, 1980, 106(3): 255-273.
    [30] Akoto B K A, Singh G. Behavior of lime-stabilized laterite under repeated loading[J].Australian Road Research, 1986, 16(4): 259-267.
    [31] Hoyos L R, Puppala A J, Chainuwat P. Dynamic properties of chemically stabilized sulfate clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(2): 153-162.
    [32] 刘春原等.高液限粘土填筑高速公路路基的研究[J] .河北工业大学学报,1999,28(4).
    [33] 余湘娟,王媛.掺石灰处理膨胀土路基填料的试验研究[J] .公路,2000,1(1).
    [34] 余湘娟,高明军.膨胀土路基填料的土工试验方法研究[J] .河海大学学报,1997,27 (4).
    [35] 徐勇,张婉琴等.石灰土作为路基填料的研究[J] .岩石力学与工程学报,1996(4):57~64,72.
    [36] 邬瑞光,张德才.二灰稳定材料强度分析[J].山西交通科技,1997,112(5):11~14.
    [37] 张立新,王家澄.石灰冻胀特性研究[J].岩土工程学报,2002,(3):336~339.
    [38] 曾阳生,张佩知等.石灰膨胀土的动力特性[J].长沙铁道学院院报,1992,10(3):9~14.
    [39] 周卓强.裂土灰土动力特性试验研究[J].路基工程,1998,79(4):29~35.
    [40] 郭志勇.膨胀土改性试验及动力特性[J].长沙铁道学院院报,1992,23(4):18~21.
    [41] Fahoum K,Aggour M S,Amini F. Dynamic properties of cohesive soils treated with lime[J]. Journal of Geotechnical Engineering,ASCE,1996,122(5):382–389.
    [42] 毛成,邱延峻.膨胀土与改性膨胀土的动力特性试验研究[J] .岩石力学与工程学报,2005,24(10).
    [43] 卢永贵,罗强,曹新文,蔡英.成都粘土及其石灰稳定土的动力特性试验研究[J],1998, 2.
    [44] 中华人民共和国交通部.公路路基施工技术规范(JTJ033-95)[S] .北京:人民交通出版社,1996.
    [45] 谭罗荣,孔令伟.特殊岩土工程土质学[M].北京:科学出版社,2006,9.
    [46] 冯光愈.伊利和蒙脱土及其混合试样的抗剪强度[A].土的抗剪强度与本构关系学术讨论会论文汇编[C].老河口市,1985,5.
    [47] 谭罗荣,孔令伟.膨胀土的强度特性研究[J].岩土力学,2005,26(7):1009~1013.
    [48] 孔令伟,郭爱国,赵颖文,陈善雄.荆门膨胀土的水稳定性及其力学效应[J] .岩土工程学报,2004,26(6):727~732.
    [49] Bishop A.W, Alpan I, Blight G.E. Factors Controlling the Shear Strength of Partly Saturated Cohesive Soils[A]. In: ASCE Research Conference on the Shear Strength of Cohesive
    [50] Bishop A.W, Blight G.E. Some aspects of effective stress in saturated and partly saturated soils[J]. Geotechnique, 1963, Vol.13 No.3 pp: 177~197.
    [51] N. Khalili, M.H.Khabbaz, A unique relationship for the determination of the shear strength of unsaturated soils[J]. Geotechnique, 1999, 48(5): 681-687.
    [52] D.G. Fredlund, H. Rahardjo, Unsaturated Soil Mechanics[M]. 陈仲颐,张在明译.北京:中国建筑工业出版社,1997.
    [53] D.G. Fredlund, S.K. Vanapalli, A. Xing, D.E. Pufahl. Predicting the shear strength for unsaturated soils using the soil-water characteristic curve[A]. Proc. 1st Int. Conf. Unsaturated Soils[C]. Paris: [s.n.], 1995:63-69.
    [54] S.K. Vanapalli, D.G. Fredlund, D.E. Pufahl, A.W. Clifton. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 33: 379-392.
    [55] 卢肇钧,吴肖茗.膨胀力在非饱和土强度理论中的作用[J] .岩土工程学报,1997,19(5):20~27.
    [56] 卢肇钧.非饱和土抗剪强度的探索研究[J] .中国铁道科学,1999,20(2):10~16.
    [57] 卢肇钧,张惠明,陈建华.非饱和土的抗剪强度与膨胀压力[J].岩土工程学报,1992,14(3):1~8.
    [58] 沈珠江.当前非饱和土力学研究的若干问题[A].区域性土的岩土工程问题学术讨论会论文集[C].南京:原子能出版社,1996.
    [59] Linchang Miao,Songyu Liu,Yuanming Lai.Research of soil-water characteristics and shear strength features of Nanyang expansive soil[J].Engineering Geology 65(2002),261~267.
    [60] 缪林昌,殷宗泽.非饱和土的剪切强度[J] .岩土力学,1999,20(3):1~6.
    [61] Orencio Monje Vilar. A simplified procedure to estimate the shear strength envelope of unsaturated soils[J]. Canadian Geotechnical Journal. 2006, 43: 1088-1095.
    [62] 尹利华,陈晓瑛.陕南膨胀土强度与含水量关系的研究[J] .山西建筑,2005,31(4):46~47.
    [63] 高春华,杜海金.含水量对膨胀土强度影响的试验研究[J] .河北建筑科技学院学报,2004,21(4):29~32.
    [64] 杨和平,张锐.非饱和膨胀土总应力强度的确定方法及其应用[J] .长沙理工大学学报(自然科学版),2004,1(2):1~6.
    [65] 杨庆,张惠珍,栾茂田.非饱和膨胀土抗剪强度的试验研究[J] .2004,23(3):420~425.
    [66] 缪林昌,仲晓晨.膨胀土的强度与含水量的关系[J] .岩土力学,1999,22(2):71~75.
    [67] 龚壁卫.非饱和击实膨胀土总应力强度探讨[J] .长江科学院院报,1998,15(3):40~42.
    [68] 赵慧丽,张弥,李兆平.含水量对北京地区非饱和土抗剪强度影响的试验研究[J] .石家庄铁道学院学报,2001,14(4):30~33.
    [69] 杨和平,肖夺.干湿循环效应对膨胀土抗剪强度的影响[J] .长沙理工大学学报(自然科学版),2005,2(2):1~5、12.
    [70] 韩华强,陈生水.膨胀土的强度和变形特性研究[J] .岩土工程学报,2004,26(3):422~424.
    [71] 缪林昌,刘松玉.南阳膨胀土的水分特征和强度特性研究[J] .水利学报,2002(7):87~92.
    [72] Julian K-M.Gan, D.G. Fredlund. Shear strength characteristics of two saprolitic soils[J]. Canadian Geotechnical Journal, 1996, 33: 595-609.
    [73] Drumright E E, Nelson J D. The shear strength of unsaturated tailings sand[A]. The 1st International Conference on Unsaturated Soils[C]. 1995: 45-50.
    [74] 谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [75] 杨广庆.水泥改良土的动力特性试验研究[J] .岩石力学与工程学报,2003,22(7):1156~1160.
    [76] 雷胜友.膨胀土动力性质的研究[J] .成都科技大学学报,1995,3:20~24.
    [77] 蔡英,曹新文. 重复加载下路基填土的临界动应力和永久变形初探[J] .西南交通大学学报,1996,31(1):1~5.
    [78] 钟辉虹,汤康民,黄茂松.铁路粘土路基动力特性试验研究[J] .西南交通大学学报,2002,37(5).
    [79] 彭社琴,赵其华,黄润秋.成都粘土动三轴试验研究[J] .地质灾害与环境保护,2002,13(1).
    [80] 雷胜友,惠会清.膨胀土及其改良土静动力特性对比分析[J] .岩石力学与工程学报,2004,23(17).
    [81] Lekarp F, Isacsson U, Dawson A. State of the art. II: permanent strain response of unboundaggregates [J]. Journal of Transportation Engineering, ASCE, 2000, 126(1): 76–83.
    [82] 黎冰,高玉峰,刘汉龙,朱伟.几个影响室内土动力试验的重要试验参数[J] .防灾减灾工程学报,2005,25(4).
    [83] 雷胜友,李克钏.重塑膨胀土在循环荷载作用下长期变形的数学模型[J] .成都科技大学学报,1995,2:27-31.
    [84] M.A. Hamadouche and D. Weichert. Application of shakedown theory to soil dynamics[J]. Mechanics Research Communications, 1999, Vol. 26, No. 5, pp: 565--574.
    [85] H. Lang, K. Wirtz, M. Heitzer, M. Staat, R. Oettel. Cyclic plastic deformation tests to verify FEM-based shakedown analyses[J]. Nuclear Engineering and Design, 206 (2001): 235–247.
    [86] Collins, I F, Wang, A P, Saunders, L R. Shakedown in layered pavements under moving surface loads[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, December 1993, Vol30(6): 375-376.
    [87] H.S. Yu, M.Z. Hossain, Lower bound shakedown analysis of layered pavements using discontinuous stress fields[J]. Comput. Methods Appl. Mech. Engrg., 167 (1998) : 209-222.
    [88] 陈伟.原状膨胀土非饱和强度特征与动力性能试验研究[硕士学位论文] .武汉:中国科学院武汉岩土力学研究所,2007.
    [89] 刘春源,犊远明,戎贤.高液限粘土填筑高速公路路基的研究[J].天津:河北工业大学学报,1999,28(4):78~80.
    [90] 湖北省襄十高速公路膨胀土路基治理方案、施工技术和监测技术研究报告.湖北省襄十高速公路建设指挥部,中国科学院武汉岩土力学研究所,2003,6.
    [91] 刘特洪. 工程建设中的膨胀土问题[M]. 北京:中国建筑工业出版社,1997.
    [92] 中华人民共和国铁道部.铁路工程土工试验规程(TB10102—2004,J338—2004)[S].北京:中国铁道出版社,2006.
    [93] 中华人民共和国交通部.公路土工试验规程(JTJ051—93)[S] .北京:人民交通出版社,1993.
    [94] 中华人民共和国交通部.公路工程无机结合料稳定材料试验规程(JTJ057—94)[S] .北京:人民交通出版社,1994.
    [95] 中华人民共和国水利部.土工试验规程(SL237—1999)[S].北京:中国水利水电出版社,1999.
    [96] 中华人民共和国交通部.公路路面基层施工技术规范(JTJ034—2000)[S]. 北京:人民交通出版社,2000:28~39.
    [97] Fredlund D.G,Xing An-qing.Equations for the soil-water characteristic cure[J]. Canadian Geotechnical Journal.1994, 31.
    [98] 詹良通,包承纲,龚壁卫.土水特征曲线及其在非饱和土力学中的应用[A].南水北调膨胀土渠坡稳定和滑动早期预报研究论文集[C].长江科学院.1998,11.
    [99] 龚壁卫,吴宏伟,王斌.应力状态对膨胀土 SWCC 的影响研究[J].岩土力学,2004,4:1915~1918.
    [100] Soilmoisture Equipment Corporation, 1985. Equipment specifications. Soilmoisture Equipment Corporation. Santa Barbara. CA.
    [101] ASTM.1997d.Standard test method for capillary-moisture relationships for coarse and medium-textured soils by porous-plate apparatus (D2325-68). In 1997 Annual Book of ASTM Standards. Vol.04.08. American Society for Testing and Materials(ASTM). Philadelphia, PA.pp.195-201.
    [102] 徐永福,陈永战,殷宗泽等.非饱和膨胀土的三轴试验研究[J].岩土工程学报.1998,20(3):14~18.
    [103] 陈建斌.大气作用下膨胀土边坡的响应试验与灾变机理研究[博士学位论文].武汉:中科院武汉岩土力学研究所,2006.
    [104] 孟庆山, 汪稔, 刘观仕. 动力固结后饱和软土三轴剪切性状的试验研究[J]. 岩石力学与工程学报, 2005, 24(22): 4 025~4 029.
    [105] 曾国熙. 正常固结黏土不排水剪切的归一化性状[A]. 软土地基处理学术讨论会论文选集[C]. 北京: 水利出版社, 1980: 13~26.
    [106] 吴世明,周健,杨挺. 土动力学理论与计算[M]. 北京:中国建筑出版社,2001:88~113.
    [107] Tatsuoka F. Some recant developments in triaxial systems for cohessionless soils[A]. Advanced Triaxial Testing of Soil and Rock[C], ASTM STP 977(Edited by Robert T D,Ronald C C,Marshall L S), AETM, Philadelphia, 1988: 7-67.
    [108] 刘保健,谢定义.随机荷载作用下土动力特性测试分析法[M].北京:人民交通出版社,2001.
    [109] Bobby O H, Vincent P D. Shear modulus and damping in soils: measurement and parameter effects[J] . Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 98(SM6):603-624.
    [110] 杨广庆.高速铁路路基改良填料的试验研究[J].岩土工程学报,2001,23(6):682-685.
    [111] 何昌荣.动模量和阻尼的动三轴试验研究[J].岩土工程学报,1997,19(2),39~48.
    [112] 谢君斐,石兆吉.原状饱和黏土动力性能的试验研究[A].地震工程研究报告集(3)[C].北京:科学出版社,1977.
    [113] 贺建清.石灰改良土路基填料的动力特性及应用研究[博士学位论文] .长沙:中南大学,2005,11.
    [114] 谢定义,张建民.极限平衡理论在饱和砂土失稳过程中的应用[J] .土木工程学报,1981,14(4):17~28.
    [115] Hardin B O, Drnevich V P. Shear Modulus and Damping in Soils: Design Equations and Curves[J]. Journal of the Soil Mechanics and Foudation Division, ASCE, Vol. 98, SM6-7, 1972: 6-7.
    [116] 黄文熙主编.土的工程性质[M].北京:水电出版社,1983:467~468.
    [117] 关正美,石伟强.动三轴试验研究土的动剪切模量和阻尼比[J].山西建筑,2005,31:91~92.
    [118] 吴世明,徐攸在.土动力学现状与发展[J] .岩土工程学报,1998,20(3):125~130.
    [119] 张建民,王稳祥.振动频率对饱和砂土动力特性的影响[J].岩土工程学报,1990,12(1):89~97.
    [120] 徐学燕,仲从利.冻土的动力特性研究及其参数确定[J].岩土工程学报,1998,20(5):77~81.
    [121] 陈存礼,胡再强.强夯地基黄土的动力特性参数及其与振动频率的关系[J].西安理工大学学报,1998,14(2):217~220.
    [122] 王建荣,张振中,王峻等.振动频率对原状黄土动本构关系的影响[J].西北地震学报,1999,21(3):310~314.
    [123] 孙静.岩土动剪切模量阻尼试验及应用研究[博士学位论文].哈尔滨:中国地震局工程力学研究所,2004.
    [124] 刘汉龙.土动力学与岩土地震工程研究进展[A].第九届全国土力学会议土动论文综述[C] .北京:清华大学出版社.2003,12.
    [125] 卢永贵,罗强,曹新文,蔡英.成都粘土及其石灰稳定土的动力特性试验研究[J] .路基工程,1998,2(77):34~37.
    [126] 汪闻韶.土的动力强度和液化特性[M].北京:中国电力出版社,1996.
    [127] 王杰贤.动力地基与基础[M].北京:科学出版社,2001.
    [128] 吴世明.土动力学[M].北京:中国建筑工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700