提高环烯烃共聚物微芯片电泳分离性能的途径及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控芯片电泳具有试剂和样品量消耗少、分析速度快等优势,但玻璃和石英芯片的制作成本较高,限制了其广泛应用。聚合物芯片易制作、成本低,可替代玻璃和石英芯片,但大多数塑料表面疏水性强,会非特异性吸附生物大分子,不仅污染通道表面,而且改变电渗流,影响分离效率和分析的重现性。另外,电泳芯片的分离通道一般比较短,储液池中细微的液面差异或液面形状变化都会在通道中引起额外的压力流动,影响分离柱效和重现性。
     为了解决上述问题,本学位论文在前人工作的基础上,致力于探索消除分析物或样品基体非特异性吸附,提高分离效率和分析重现性的途径。本论文主要的创新工作包括:
     (1)以羟丙基纤维素(HPC)为缓冲添加剂,建立了一种快速检测农产品中草甘膦和草铵膦残留的COC芯片电泳方法。
     (2)以两种罗丹明染料为模型分析物考察了聚丙烯酸作为COC芯片电泳多功能缓冲添加剂的性能,并将其应用于食品中罗丹明染料的检测。
     (3)以丙酮和环己烷的混合溶液作为通道修复溶剂,实现了几种具有缺陷的COC芯片微通道的原位修复。
     (4)通过在简单的十字芯片上增加额外的样品废液池和缓冲废液池,设计了一种适合夹切进样的电泳芯片,提高了分析的重现性。
     论文共分为五章:
     第一章:对微流控技术做了系统的介绍,内容包括微芯片的制作、微芯片电泳样品的引入方式、微通道表面修饰和微芯片电泳在样品分析中的应用。
     第二章:建立了一种激光诱导荧光-芯片电泳快速高效无干扰的检测草甘膦和草铵膦的新方法。系统优化了分离条件,在含有10mmol/L硼砂和2.0%羟丙基纤维素、pH为9.0的分离缓冲液中,草甘膦和草铵膦能从样品基质中成功分离。这两种分析物的理论塔板数高达1.0×106/m,草甘膦和草铵膦的检测限分别是0.34和0.18μg/L。在不经任何样品富集条件下,该方法被成功用于检测黄河水样、西兰花、大豆中这两种农残的含量,这些样品中草甘膦和草铵膦的加标回收率分别在84.0-101.0%和90.0-103.0%之间。
     第三章:以聚丙烯酸为多功能缓冲添加剂动态修饰COC通道内表面,减少了罗丹明类染料在通道表面的吸附,增加了缓冲液的粘度减小了压差流动对分离柱效的影响,实现了罗丹明B和罗丹明6G在COC芯片中的高效分离。考察了电泳条件对分离的影响,在含有20,mmol/L磷酸盐、0.36%(m/v)聚丙烯酸、70%甲醇,pH为5.0的缓冲液中,分离的理论塔板数可达到7.0×105/m。在选定的分离条件下,罗丹明B和罗丹明6G迁移时间的RSD不大于0.72%,峰面积的RSD不大于2.6%,两种分析物的检测限分别为0.17和0.34μg/L。RITC标记的氨基酸也能达到很好的分离。实验还发现聚丙烯酸的存在会显著影响表观电渗流,在聚丙烯酸浓度较高时甚至能反转表观电渗流的方向。该法被用于检测番茄酱、火腿肠、辣椒面中这两种罗丹明染料的含量,加标回收率为84.6-106.7%。
     第四章:利用对COC有一定溶解性能的混合溶剂冲洗COC芯片微通道,实现了微通道的表面的清洗更新和缺陷修复。本工作考察了体积比为8:2的丙酮和环己烷溶液流过COC芯片微通道对各种性能不佳的芯片的修复效果,实验结果证实对于外观这种方法对微通道表面性质不均匀、芯片通道封接不严、微通道被蛋白污染等情况都有明显的修复效果,原子力显微镜测试显示该溶剂修复可以降低微通道表面的粗糙程度。经过该法修复的芯片可以实现多种氨基酸的高效分离,但该法不适合通道堵塞的芯片修复。同时,实验结果还证明对于性能良好的芯片,经过该法处理分析柱效基本不变,不会对无缺陷芯片带来不良影响。
     第五章:设计了一种新的芯片结构,在简单的十字芯片基础上增加了额外的样品废液池和缓冲废液池,并且在样品池和额外的样品废液池、缓冲废液池和额外的缓冲废液池之间维持合适的液面差,电极置于这两个额外的储液池中。进样时,由于液面差的存在,在样品池和额外的样品废液池之间的通道里样品持续流动,避免了样品被分离时回退的溶液稀释,提高分析的重现性。还可以通过优化样品引入的时间,保证目标分析物进入分离通道,剔除迁移速度较慢的基体和其它组分。额外缓冲废液池的使用则避免了前一次分析的样品在样品引入阶段返回分离通道而引起的基线抬高,有利于提高分析重现性。实验结果证实采用这种结构的芯片两种FITC标记的有机磷除草剂可以连续分析120以上。
Microchip based capillary electrophoresis (MCE) exhibits the advantages of extremely low consumption of reagents/samples and fast analysis speed, but the relative high fabrication cost of glass or fused silica chips limits its wide application in the real analysis. Polymer microchips can be easily made and are much cheaper, have been widely used instead of glass and fused silica chips. However, most of plastics are hydrophobic and can unspecifically adsorb biomacromolecules, which cause surface contamination and alter the electroosmotic flow, degrade the separation efficiency and repeatability. Also, due to the relative short separation channel of microchips, tiny difference of liquid levels or surface curvature in different reservoirs may cause unexpected pressurized flow, negatively affect the separation efficiency and the repeatability.
     Therefore, this dissertation focuses on the research of approaches to eliminate the non-specific adsorption of analytes or sample matrices, and improve the separation efficiency and reproducibility. Originalities include:
     (1) Hydroxypropyl cellulose (HPC) was used as buffer additive to establish a method for rapid separation and detection of glyphosate and glufosinate residues in agricultural products.
     (2) Polyacrylic acid was used as a multifunctional additive in COC microchip electrophoresis for the separation of rhodamine B (RhB) and rhodamine6G (Rh6G). The method was used for the detection of these two compounds in rea food samples.
     (3) A mixed solution of acetone and cyclohexane as a solvent for channel restoration, defective channels were successfully repaired.
     (4) By implementation of an extra sample waste reservoir and an extra buffer waste reservoir on the cross chip, a design for effective pinched injection was proposed and the performance of the chip electrophoresis was improved.
     The thesis contains five chapters:
     Chapter1:Microfluidics was shortly reviewed, manily on the fabrication process of the microchips, injection methods for microchip electrophoresis, surface modification of microfluidic channels and the applications of microchip electrophoresis in real analysis.
     Chapter2:A microchip electrophoresis system with laser induced fluorescence (LIF) detection for rapid and sensitive analysis of glyphosate (GLYP) and glufosinate (GLUF) residues was described. Systematic optimization of experimental conditions was performed to achieve highly efficient analysis. Under the selected condition, GLYP and GLUF were efficiently resolved from sample matrices with a buffer containing10mmol/L borax and2.0%(m/v) hydroxypropyl cellulose at pH9.0. The number of theoretical plates of1.0×106/m was attained for both analytes. Derivatization at lower concentrations (<10μg/L) was also examined, successful detection of0.34μg/L GLYP and0.18μg/L GLUF was confirmed. The system was applied for the determination of both analytes in real samples without any preconcentration involved. Recoveries of GLYP and GLUF spiked in these samples were84.0-101.0%and90.0-103.0%, respectively.
     Chapter3:This chapter describes the utilization of polyacrylic acid as multifunctional buffer additive for dynamic modification of COC to reduce adsorption of rhodamine dyes onto the microchannel, and suppress the effect of pressurized flow for the separation efficieny through increase of the buffer viscosity. Rhodamine B (RhB) and Rhodamine6G (Rh6G) were well resolved. The parameters were systematically investigated and by using20mmol/L phosphate buffer with0.36%polyacrylic acid in70%methanol at pH5.0, the number of theoretical plates of7.0×105/m was achieved. Under the selected condition, the relative standard deviations of RhB and Rh6G detection (n=5) were not more than0.72%for migration time, and not more than2.6%for peak area, respectively. Limits of detection (S/N=3) were0.17and0.34μg/L repectively. RITC-labeled amino acids were well resolved with the selected system too. It was also found that polyacrylic acid might significantly affect the observed electroosmotic flow, and it was even reversed at higher polyacrylic acid concentrations. The method was applied for the determination both RhB and Rh6G in ham, tomato sauce, chili and satisfactory standard addition recoveries of84.6-106.7%were attained.
     Chapter4:Remedy and surface recovery of COC microchannels were realized through rinsing with a solvent mixture that with proper solubility of COC. In this work, the effectiveness of rinsing of microchannel with a8:2(v/v) mixture of acetone and cyclohexane for recovering the microchips with poor performance was examined. The results indicated that the method could recover the mcirochips with non-uniform surface status, improperly sealed microchannels and contaminated microcahnnels by proteins. Atomic force microscopic measurement showed that the solvent rinsing could reduce the roughness of the microchannel surfaces. Efficient separation of several FITC labeled amino acids was achieved on microchips remedied by the proposed method. But the clogged microchannels could not be remedied by this method. Meanwhile, the experiments also showed that for microchip with good performance, treatment with the solvent mixture had no adverse effects.
     Chapter5:A novel chip structure is used, with an extra sample waste reservoir and an extra buffer waste reservoir. Proper level differences between sample reservoir and the extra sample waste reservoir, buffer waste reservoir and the extra buffer waste reservoir were maintained. The electrodes were placed in the extra sample and buffer waste reservoirs. In the sample injection stage, because of the continuous flow in the channel between the sample reservoir and the extra sample waste reservoir, the retreated sample was conducted into the extra sample waste reservoir, preventing the dilution of the sample by the retreated buffer and improving the reproducibility. By optimizing the sample injection time, it may be possible to ensure analytes entering the separation channel while removing the slower migrating sample matrices and other components. The use of extra buffer waster reservoir may avoid the waste sample of the previous separation entering the separation channel and leading to baseline elevation, which is also benefical to the reproducibility. Experimental results showed that FITC labeled organophosphorus herbicides could be repeatedly analyzed more than120times on the proposed microchips.
引文
[1]Reyes, D.R., Iossifidis, D., Auroux, P.-A., Manz, A. Micro total analysis systems.1. Introduction, theory, and technology [J]. Analytical Chemistry.2002,74(12):2623-2636.
    [2]Manz, A., Graber, N., Widmer, H.M. Miniaturized total chemical analysis systems:A novel concept for chemical sensing [J]. Sensors and Actuators B:Chemical.1990,1(1-6):244-248.
    [3]Yeo, L.Y., Chang, H.-C., Chan, P.P.Y., Friend, J.R. Microfluidic Devices for Bioapplsications [J]. Small.2010,7 (1):12-48.
    [4]Harrison, D.J., Fluri, K., Seiler, K., Fan, Z., Effenhauser, C.S., Manz, A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip [J]. Science. 1993,261:895.
    [5]Ramsey, J.M., Jacobson, S.C., Knapp, M.R. Microfabricated chemical measurement systems [J]. Nature Medicine.1995, 1(10):1093-1095.
    [6]Woolley, A.T., Mathies, R.A. Ultra-high-speed DNA sequencing using capillary electrophoresis chips [J]. Analytical Chemistry.1995,67(20):3676-3680.
    [7]Woolley, A.T., Hadley, D., Landre, P., deMello, A.J., Mathies, R.A., Northrup, M.A. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device [J]. Analytical Chemistry.1996,68(23):4081-4086.
    [8]Terry, S.C. A gas chromatography system fabricated ona silicon wafer using integrated circuit technology[D]. Stanford,Califor-nia,USA:Stanford University,1975.
    [9]Hoffmann, P., Eschner, M., Fritzsche, S., Belder, D. Spray performance of microfluidic glass devices with integrated pulled nanoelectrospray emitters [J]. Analytical Chemistry.2009, 81(17):7256-7261.
    [10]Qu, B.-Y., Wu, Z.-Y., Fang, F., Bai, Z.-M., Yang, D.-Z., Xu, S.-K. A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling [J]. Analytical and Bioanalytical Chemistry.2008,392(7-8):1317-1324.
    [11]Mellors, J., Gorbounov, V., Ramsey, R., Ramsey, J. Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry [J]. Analytical Chemistry.2008,80(18):6881-6887.
    [12]Ou, J., Glawdel, T., Ren, C.L., Pawliszyn, J. Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins [J]. Lab on a Chip.2009, 9(13):1926-1932.
    [13]Zhuang, G., Jin, Q., Liu, J., Cong, H., Liu, K., Zhao, J., Yang, M., Wang, H. A low temperature bonding of quartz microfluidic chip for serum lipoproteins analysis [J]. Biomedical Microdevices.2006,8(3):255-261.
    [14]Tsao, C.-W., DeVoe, D.L. Bonding of thermoplastic polymer microfluidics [J]. Microfluidics and Nanofluidics.2009,6(1):1-16.
    [15]Duffy, D.C., McDonald, J.C., Schueller, O.J., Whitesides, G.M. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane) [J]. Analytical Chemistry.1998, 70(23):4974-4984.
    [16]Backofen, U., Matysik, F.-M., Lunte, C.E. A Chip-Based Electrophoresis System with Electrochemical Detection and Hydrodynamic Injection [J]. Analytical Chemistry.2002, 74(16):4054-4059.
    [17]Bao, N., Zhang, Q., Xu, J.-J., Chen, H.-Y. Fabrication of poly (dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer [J]. Journal of Chromatography A.2005,1089(1):270-275.
    [18]Chen, G., Bao, H., Li, J., Chen, D. Fabrication of poly (dimethylsiloxane)-based capillary electrophoresis microchips using epoxy templates [J]. Microchimica Acta.2006, 153(3-4):151-158.
    [19]Barker, S.L.R., Tarlov, M.J., Canavan, H., Hickman, J.J., Locascio, L.E. Plastic Microfluidic Devices Modified with Polyelectrolyte Multilayers [J]. Analytical Chemistry.2000, 72(20):4899-4903.
    [20]Kato, M., Gyoten, Y., Sakai-Kato, K., Nakajima, T., Toyo'oka, T. Cationic Starch Derivatives as Dynamic Coating Additives for Analysis of Amino Acids and Peptides Using Poly(methyl methacrylate) Microfluidic Devices [J]. Analytical Chemistry.2004, 76(22):6792-6796.
    [21]Mecomber, J.S., Stalcup, A.M., Hurd, D., Halsall, H.B., Heineman, W.R., Seliskar, C.J., Wehmeyer, K.R., Limbach, P.A. Analytical Performance of Polymer-Based Microfluidic Devices Fabricated By Computer Numerical Controlled Machining [J]. Analytical Chemistry. 2005,78(3):936-941.
    [22]Shadpour, H., Hupert, M.L., Patterson, D., Liu, C., Galloway, M., Stryjewski, W., Goettert, J., Soper, S.A. Multichannel Microchip Electrophoresis Device Fabricated in Polycarbonate with an Integrated Contact Conductivity Sensor Array [J]. Analytical Chemistry.2007, 79(3):870-878.
    [23]Kameoka, J., Craighead, H.G., Zhang H., Henion, J. A Polymeric Microfluidic Chip for CE/MS Determination of Small Molecules [J]. Analytical Chemistry.2001,73(9):1935-1941.
    [24]Koh, C.G., Tan, W., Zhao, M.-q., Ricco, A.J., Fan, Z.H. Integrating Polymerase Chain Reaction, Valving, and Electrophoresis in a Plastic Device for Bacterial Detection [J]. Analytical Chemistry.2003,75(17):4591-4598.
    [25]Tan, A., Benetton, S., Henion, J.D. Chip-Based Solid-Phase Extraction Pretreatment for Direct Electrospray Mass Spectrometry Analysis Using an Array of Monolithic Columns in a Polymeric Substrate [J]. Analytical Chemistry.2003,75(20):5504-5511.
    [26]Das, C., Fredrickson, C.K., Xia Z., Fan, Z.H. Device fabrication and integration with photodefinable microvalves for protein separation [J]. Sensors and Actuators A.2007, 134(1):271-277.
    [27]Omar, G., Klaus, B.M. Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography [J]. Electrophoresis. 2008,29(15):3145-3152.
    [28]Xu, J., Zhang, H., Chen, G. Carbon nanotube/polystyrene composite electrode for microchip electrophoretic determination of rutin and quercetin in Flos Sophorae Immaturus [J]. Talanta. 2007,73(5):932-937.
    [29]Simpson, P.C., Woolley, A.T., Mathies, R.A. Microfabrication technology for the production of capillary array electrophoresis chips [J]. Biomedical Microdevices.1998, 1(1):7-26.
    [30]Benitez, M., Plaza, J., Sheng, S., Esteve, J. A new process for releasing micromechanical structures in surface micromachining [J]. Journal of Micromechanics and Microengineering. 1996,6(1):36.
    [31]McCormick, R.M., Nelson, R.J., Alonso-Amigo, M.G., Benvegnu, D.J., Hooper, H.H. Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates [J]. Analytical Chemistry.1997,69(14):2626-2630.
    [32]Mair, D.A., Geiger, E., Pisano, A.P., Frechet, J.M.J., Svec, F. Injection molded microfluidic chips featuring integrated interconnects [J]. Lab on a Chip.2006,6(10):1346-1354.
    [33]Liu, Y., Ganser, D., Schneider, A., Liu, R., Grodzinski, P., Kroutchinina, N. Microfabricated Polycarbonate CE Devices for DNA Analysis [J]. Analytical Chemistry,2001, 73(17):4196-4201.
    [34]Chiang, Y.M., Bachman, M., Chu, C.Y., Li, G.P. Characterizing the process of cast molding microfluidic systems [J]. Microfluidic devices and systems Ⅱ.1999,3877:303-311.
    [35]Shadpour, H., Soper, S.A. Two-Dimensional Electrophoretic Separation of Proteins Using Poly(methyl methacrylate) Microchips [J]. Analytical Chemistry.2006,78(11):3519-3527.
    [36]Yi, S., Nguyen, N.-T. Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation [J]. Journal of Micromechanics and Microengineering.2006,16(8):1681-1688.
    [37]Soper, S.A., Ford, S.M., Qi, S., McCarley, R.L., Kelly, K., Murphy, M.C. Peer Reviewed: Polymeric Microelectromechanical Systems [J]. Analytical Chemistry.2000,72(19):642 A-651A.
    [38]Xia, Y., Zhao, X.M., Whitesides, G.M., Pattern transfer:Self-assembled monolayers as ultrathin resists [J]. Microelectronic Engineering.1996,32(1-4):255-268.
    [39]Jackman, R.J., Wilbur, J.L., Whitesides, G.M. Fabrication of submicrometer features on curved substrates by microcontact printing [J]. Science (New York, N.Y.).1995, 269(5224):664-666.
    [40]Xia, Y. Whitesides, G.M. Extending Microcontact Printing as a Microlithographic Technique [J]. Langmuir.1997,13(7):2059-2067.
    [41]Kim, E., Xia, Y., Whitesides, G.M. Polymer microstructures formed by moulding in capillaries [J]. Nature.1995,376(6541):581-584.
    [42]Zhao, X.M., Xia, Y., Whitesides, G.M. Fabrication of three-dimensional micro-structures: Microtransfer molding [J]. Advanced Materials.1996,8(10):837-840.
    [43]Xia, Y.N., Kim, E., Zhao, X.M., Rogers, J.A., Prentiss, M., Whitesides, G.M. Complex Optical-Surfaces Formed by Replica Molding Against Elastomeric Masters [J]. Science.1996, 273(5273):347-349.
    [44]Becker, H., Gartner, C. Polymer micro fabrication methods for microfluidic analytical applications [J]. Electrophoresis.2000,21(1):12-26.
    [45]戴忠鹏,罗勇,林炳承.一种微流控塑料芯片注射成型模具:ZL02274234.4,2003.
    [46]王辉,戴忠鹏,王利,白吉玲,林炳承.一种注塑型聚甲基丙烯酸甲酯微流控芯片的质量检测方法:200310119500.9,2003.
    [47]Wu, D., Luo, Y., Zhou, X., Dai, Z., Lin, B. Multilayer poly (vinyl alcohol)-adsorbed coating on poly (dimethylsiloxane) microfluidic chips for biopolymer separation [J]. Electrophoresis. 2005,26(1):211-218.
    [48]Martynova, L., Locascio, L.E., Gaitan, M., Kramer, G.W., Christensen, R.G., MacCrehan, W.A. Fabrication of plastic microfluid channels by imprinting methods [J]. Analytical Chemistry.1997,69(23):4783-4789.
    [49]Elders, J., Jansen, H.V., Elweenspoek, M. DEEMO:a new technology for the fabrication of microstructures [J]. Proceedings MEMS'95,1995:238-243.
    [50]Roberts, M.A., Rossier, J.S., Bercier, P., Girault, H. UV laser machined polymer substrates for the development of microdiagnostic systems [J]. Analytical Chemistry.1997, 69(11):2035-2042.
    [51]Xia, Y., Whitesides, G.M. Soft lithography. Annual Review of Materials Science [J].1998, 28(1):153-184.
    [52]Xia, Y., Whitesides, G.M. Soft lithography. Angewandte chemie [J].1998,37(5):550-575.
    [53]Li,Y., Bach, J.S., Rosenberger, F., Devoe, D.L, Lee, C.S. Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfluidic [correction of microfludic] network [J]. Analytical Chemistry.2004,76(3):742-748.
    [54]Wang, Y.X., Zhou, Y., Balgley, B.M., Cooper, J.W., Lee, C.S., DeVoe, D.L. Electrospray interfacing of polymer microfluidics to MALDI-MS [J]. Electrophoresis.2005, 26(19):3631-3640.
    [55]Muck, A., Wang, J., Jacobs, M., Chen, G., Chatrathi, M.P., Jurka, V., Vyborny, Z., Spillman, S.D., Sridharan, G., Schoning, M.J. Fabrication of poly (methyl methacrylate) microfluidic chips by atmospheric molding [J]. Analytical Chemistry.2004,76(8):2290-2297.
    [56]Tan, A., Benetton, S., Henion, J.D. Chip-based solid-phase extraction pretreatment for direct electrospray mass spectrometry analysis using an array of monolithic columns in a polymeric substrate [J]. Analytical Chemistry.2003,75(20):5504-5511.
    [57]Li, C., Yang, Y., Craighead, H.G., Lee, K.H. Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method [J]. Electrophoresis.2005,26(9):1800-1806.
    [58]Pemg, B.Y., Wu, C.W., Shen, Y.K., Lin, Y. Microfluidic chip fabrication using hot embossing and thermal bonding of COP [J]. Polymers for Advanced Technologies.2010, 21(7):457-466.
    [59]Chen, Z., Gao, Y., Su, R., Li, C., Lin, J. Fabrication and characterization of poly (methyl methacrylate) microchannels by in situ polymerization with a novel metal template [J]. Electrophoresis.2003,24(18):3246-3252.
    [60]Pemg, B.Y., Wu, C.W., Shen, Y.K., Lin, Y. Microfluidic chip fabrication using hot embossing and thermal bonding of COP [J]. Polymers for Advanced Technologies.2010, 21(7):457-466.
    [61]Park, D.-W., Hupert, M., Witek, M., You, B., Datta, P., Guy, J., Lee, J.-B., Soper, S., Nikitopoulos, D., Murphy, M. A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification [J]. Biomedical Microdevices.2008,10(1):21-33.
    [62]Sun, Y., Kwok, Y.C., Nguyen, N.-T. Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation [J]. Journal of Micromechanics and Microengineering.2006,16(8):1681.
    [63]Sun, X., Peeni, B.A., Yang, W., Becerril, H.A., Woolley, A.T. Rapid prototyping of poly (methyl methacrylate) microfluidic systems using solvent imprinting and bonding [J]. Journal of Chromatography A.2007,1162(2):162-166.
    [64]Brown, L., Koerner, T., Horton, J.H., Oleschuk, R.D. Fabrication and characterization of poly (methylmethacrylate) microfluidic devices bonded using surface modifications and solvents [J]. Lab on a Chip.2006,6(1):66-73.
    [65]Mair, D.A., Rolandi, M., Snauko, M., Noroski, R., Svec, F., Frechet, J.M. Room-temperature bonding for plastic high-pressure microfluidic chips [J]. Analytical Chemistry.2007, 79(13):5097-5102.
    [66]Zhang, Y., Ping, G., Kaji, N., Tokeshi, M., Baba, Y. Dynamic modification of poly (methyl methacrylate) chips using poly (vinyl alcohol) for glycosaminoglycan disaccharide isomer separation [J]. Electrophoresis.2007,28(18):3308-3314.
    [67]Dang, F., Zhang, L., Hagiwara, H., Mishina, Y., Baba, Y. Ultrafast analysis of oligosaccharides on microchip with light-emitting diode confocal fluorescence detection [J]. Electrophoresis.2003,24(4):714-721.
    [68]Dolnik, V. Wall coating for capillary electrophoresis on microchips [J]. Electrophoresis. 2004,25(21-22):3589-3601.
    [69]Dang, F., Zhang, L., Hagiwara, H., Mishina, Y., Baba, Y. Ultrafast analysis of oligosaccharides on microchip with light-emitting diode confocal fluorescence detection [J]. Electrophoresis.2003,24(4):714-721.
    [70]Dang, F., Kakehi, K., Cheng, J., Tabata, O., Kurokawa, M., Nakajima, K., Ishikawa, M., Baba, Y. Hybrid dynamic coating with n-dodecyl β-d-maltoside and methyl cellulose for high-performance carbohydrate analysis on poly (methyl methacrylate) chips [J]. Analytical Chemistry.2006,78(5):1452-1458.
    [71]Zhang, J., Das, C., Fan, Z. H. Dynamic coating for protein separation in cyclic olefin copolymer microfluidic devices [J]. Microfluidics and Nanofluidics.2008,5(3):327-335.
    [72]Han, B., Xu, Y., Zhang, L., Yang, X., Wang, E. Surface modification of poly (dimethylsiloxane) microchips using a double-chained cationic surfactant for efficiently resolving fluorescent dye adsorption [J]. Talanta.2009,79(3):959-962.
    [73]Liu, J., Pan, T., Woolley, A.T., Lee, M.L. Surface-modified poly (methyl methacrylate) capillary electrophoresis microchips for protein and peptide analysis [J]. Analytical Chemistry.2004,76(23):6948-6955.
    [74]Wu, D., Qin, J., Lin, B. Self-assembled epoxy-modified polymer coating on a poly (dimethylsiloxane) microchip for EOF inhibition and biopolymers separation [J]. Lab on a Chip.2007,7(11):1490-1496.
    [75]Hu, S., Ren, X., Bachman, M., Sims, C.E., Li, G., Allbritton, N.L. Tailoring the surface properties of poly (dimethylsiloxane) microfluidic devices [J]. Langmuir.2004, 20(13):5569-5574.
    [76]Fu, L.-M., Yang, R.-J., Lee, G.-B. Electrokinetic focusing injection methods on microfluidic devices [J]. Analytical Chemistry.2003,75(8):1905-1910.
    [77]Harrison, D.J., Manz, A., Fan, Z., Luedi, H., Widmer, H.M. Capillary electrophoresis and sample injection systems integrated on a planar glass chip [J]. Analytical Chemistry.1992, 64(17):1926-1932.
    [78]Seiler, K., Harrison, D.J., Manz, A. Planar glass chips for capillary electrophoresis:repetitive sample injection, quantitation, and separation efficiency [J]. Analytical Chemistry.1993, 65(10):1481-1488.
    [79]Jacobson, S.C., Hergenroder, R., Koutny, L.B., Warmack, R.J., Ramsey, J.M. Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices Stephen C. Jacobson,1 Roland Hergenroder,1 Lance B. Koutny,1 R [J]. Analytical Chemistry.1994,66(7):1107-1113.
    [80]Ermakov, S.V., Jacobson, S.C., Ramsey, J.M. Computer simulations of electrokinetic injection techniques in microfluidic devices [J]. Analytical Chemistry.2000, 72(15):3512-3517.
    [81]Alarie, J.P., Jacobson, S.C., Culbertson, C.T., Ramsey, J.M. Effects of the electric field distribution on microchip valving performance [J]. Electrophoresis.2000,21(1):100-106.
    [82]Shultz-Lockyear, L.L., Colyer, C.L., Fan, Z.H., Roy, K.I., Harrison, D.J. Effects of injector geometry and sample matrix on injection and sample loading in integrated capillary electrophoresis devices [J]. Electrophoresis.1999,20(3):529-538.
    [83]Lee, G.-B. Variable-volume-injection methods using electrokinetic focusing on microfluidic chips [J]. Journal of separation science.2002,25:996-1010.
    [84]Fu, L.-M.,Yang, R.-J., Lee, G.-B., Liu, H.-H. Electrokinetic injection techniques in microfluidic chips [J]. Analytical Chemistry.2002,74(19):5084-5091.
    [85]Fu, L.-M.,Yang, R.-J., Lee, G.-B. Electrokinetic focusing injection methods on microfluidic devices [J]. Analytical Chemistry.2003,75(8):1905-1910.
    [86]Tsai, C.H., Yang, R.J., Tai, C.H., Fu, L.M. Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips [J]. Electrophoresis.2005,26(3):674-686.
    [87]Jacobson, S.C., Culbertson, C.T., Daler, J.E., Ramsey, J.M. Microchip structures for submillisecond electrophoresis [J]. Analytical Chemistry.1998,70(16):3476-3480.
    [88]Zhang, C.-X., Manz, A. Narrow sample channel injectors for capillary electrophoresis on microchips [J]. Analytical Chemistry.2001,73(11):2656-2662.
    [89]Jacobson, S.C., Hergenroder, R., Moore, A.W.J., Ramsey, J.M. Precolumn reactions with electrophoretic analysis integrated on a microchip [J]. Analytical Chemistry.1994, 66(23):4127-4132.
    [90]Jacobson, S.C., Koutny, L.B., Hergenroeder, R., Moore, A.W., Ramsey, J.M. Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor [J]. Analytical Chemistry. 1994,66(20):3472-3476.
    [91]Roper, M.G., Shackman, J.G., Dahlgren, G.M., Kennedy, R.T. Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay [J]. Analytical Chemistry.2003,75(18):4711-4717.
    [92]Shackman, J.G., Dahlgren, G.M., Peters, J.L., Kennedy, R.T. Perfusion and chemical monitoring of living cells on a microfluidic chip [J]. Lab on a Chip.2005,5(1):56-63.
    [93]Backofen, U., Matysik, F.-M., Lunte, C.E. A chip-based electrophoresis system with electrochemical detection and hydrodynamic injection [J]. Analytical Chemistry.2002, 74(16):4054-4059.
    [94]Luo, Y., Wu, D., Zeng, S., Gai, H., Long, Z., Shen, Z., Dai, Z., Qin, J., Lin, B. Double-Cross Hydrostatic Pressure Sample Injection for Chip CE:Variable Sample Plug Volume and Minimum Number of Electrodes [J]. Analytical Chemistry.2006,78(17):6074-6080.
    [95]Lin, C.-C., Chen, C.-C., Lin, C.-E., Chen, S.-H. Microchip electrophoresis with hydrodynamic injection and waste-removing function for quantitative analysis [J]. Journal of Chromatography A.2004,1051(1):69-74.
    [96]Zhang, L., Yin, X., Fang, Z. Negative pressure pinched sample injection for microchip-based electrophoresis [J]. Lab on a Chip.2006,6(2):258-264.
    [97]Koh, C.G., Tan, W., Zhao, M.-q., Ricco, A.J., Fan, Z.H. Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection [J]. Analytical Chemistry.2003,75(17):4591-4598.
    [98]Mourzina, Y., Steffen, A., Kalyagin, D., Carius, R., Offenhausser, A. Capillary zone electrophoresis of amino acids on a hybrid poly (dimethylsiloxane)-glass chip [J]. Electrophoresis.2005,26(9):1849-1860.
    [99]Shi, M., Huang, Y., Li, X., Zhao, S. Detection of Agmatine and Octopamine in Rat Brain and Human Plasma by Microchip Electrophoresis [J]. Chromatographia.2009, 70(11-12):1651-1657.
    [100]Kelly, R.T., Li, Y., Woolley, A.T. Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips [J]. Analytical Chemistry.2006,78(8):2565-2570.
    [101]Sun, X., Yang, W., Geng, Y., Woolley, A.T. A general microchip surface modification approach using a spin-coated polymer resist film doped with hydroxypropyl cellulose [J]. Lab on a Chip.2009,9(7):949-953.
    [102]Nilsson, C., Harwigsson, I., Becker, K., Kutter, J.P., Birnbaum, S., Nilsson, S. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions [J]. Electrophoresis.2010,31(3):459-464.
    [103]Naruishi, N., Tanaka, Y., Higashi, T., Wakida, S.-i. Highly efficient dynamic modification of plastic microfluidic devices using proteins in microchip capillary electrophoresis [J]. Journal of Chromatography A.2006,1130(2):169-174.
    [104]Jiang, G., Attiya, S., Ocvirk, G., Lee, W.E., Harrison, D.J. Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis [J]. Biosensors and Bioelectronics.2000,14(10):861-869.
    [105]Figeys, D., Ning, Y., Aebersold, R. A microfabricated device for rapid protein identification by microelectrospray ion trap mass spectrometry [J]. Analytical Chemistry.1997, 69(16):3153-3160.
    [106]Zhang, B., Liu, H., Karger, B., Foret, F. Microfabricated devices for capillary electrophoresis-electrospray mass spectrometry [J]. Analytical Chemistry.1999, 71(15):3258-3264.
    [107]Barnidge, D.R., Nilsson, S., Markides, K.E. A design for low-flow sheathless electrospray emitters [J]. Analytical Chemistry.1999,71(19):4115-4118.
    [108]Barnidge, D.R., Nilsson, S., Markides, K.E., Rapp, H., Hjort, K. Metallized sheathless electrospray emitters for use in capillary electrophoresis orthogonal time-of-flight mass spectrometry [J]. Rapid Communications in Mass Spectrometry.1999,13(11):994-1002.
    [109]Chang, Y.Z., Chen, Y.R., Her, G.R. Sheathless capillary electrophoresis/electrospray mass spectrometry using a carbon-coated tapered fused-silica capillary with a beveled edge [J]. Analytical Chemistry.2001,73(21):5083-5087.
    [110]Muck, A., Svatos, A. Atmospheric molded poly (methylmethacrylate) microchip emitters for sheathless electrospray [J]. Rapid Communications in Mass Spectrometry.2004, 18(13):1459-1464.
    [111]Le Gac, S., Arscott, S., Rolando, C. A planar microfabricated nanoelectrospray emitter tip based on a capillary slot [J]. Electrophoresis.2003,24(21):3640-3647.
    [112]Gobry, V., van Oostrum, J., Martinelli, M., Rohner, T.C., Reymond, F., Rossier, J.S., Girault, H.H. Microfabricated polymer injector for direct mass spectrometry coupling [J]. Proteomics.2002,2(4):405-412.
    [113]Wu, C.-C., Saito, T., Yasukawa, T., Shiku, H., Abe, H., Hoshi, H., Matsue, T. Microfluidic chip integrated with amperometric detector array for< i> in situ estimating oxygen consumption characteristics of single bovine embryos [J]. Sensors and Actuators B:Chemical. 2007,125(2):680-687.
    [114]Dawoud, A.A., Kawaguchi, T., Jankowiak, R. In-channel modification of electrochemical detector for the detection of bio-targets on microchip [J]. Electrochemistry Communications. 2007,9(7):1536-1541.
    [115]Pumera, M., Wang, J., Opekar, F., Jelinek, I., Feldman, J., Lowe, H., Hardt, S. Contactless conductivity detector for microchip capillary electrophoresis [J]. Analytical Chemistry.2002, 74(9):1968-1971.
    [116]VanDijken, J., Kaigala, G.V., Lauzon, J., Atrazhev, A., Adamia, S., Taylor, B.J., Reiman, T., Belch, A.R., Backhouse, C.J., Pilarski, L.M. Microfluidic chips for detecting the t (4; 14) translocation and monitoring disease during treatment using reverse transcriptase-polymerase chain reaction analysis of IgH-MMSET hybrid transcripts [J]. The Journal of Molecular Diagnostics.2007,9(3):358-367.
    [117]Qin, J., Liu, Z., Wu, D., Zhu, N., Zhou, X., Fung, Y., Lin, B. Genotyping the-6A/G functional polymorphism in the core promoter region of angiotensinogen gene by microchip electrophoresis [J]. Electrophoresis.2005,26(1):219-224.
    [118]Colyer, C.L., Mangru, S.D., Harrison, D.J. Microchip-based capillary electrophoresis of human serum proteins [J]. Journal of Chromatography A.1997,781(1):271-276.
    [119]Yao, S., Anex, D.S., Caldwell, W.B., Arnold, D.W., Smith, K.B., Schultz, P.G. SDS capillary gel electrophoresis of proteins in microfabricated channels [J]. Proceedings of the National Academy of Sciences.1999,96(10):5372-5377.
    [120]Bousse, L., Mouradian, S., Minalla, A., Yee, H., Williams, K., Dubrow, R. Protein sizing on a microchip [J]. Analytical Chemistry.2001,73(6):1207-1212.
    [121]Kohlheyer, D., Eijkel, J.C., Schlautmann, S., van den Berg, A., Schasfoort, R.B. Microfluidic high-resolution free-flow isoelectric focusing [J]. Analytical Chemistry.2007, 79(21):8190-8198.
    [122]Li, Y., Buch, J.S., Rosenberger, F., DeVoe, D.L., Lee, C.S. Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfludic network [J]. Analytical Chemistry.2004, 76(3):742-748.
    [123]Liu, B.-F., Ozaki, M., Utsumi, Y., Hattori, T., Terabe, S. Chemiluminescence detection for a microchip capillary electrophoresis system fabricated in poly (dimethylsiloxane) [J]. Analytical Chemistry.2003,75(1):36-41.
    [124]Piehl, N., Ludwig, M., Belder, D. Subsecond chiral separations on a microchip [J]. Electrophoresis.2004,25(21-22):3848-3852.
    [125]Benetton, S., Kameoka, J., Tan, A., Wachs, T., Craighead, H., Henion, J. D. Chip-based P450 drug metabolism coupled to electrospray ionization-mass spectrometry detection [J]. Analytical Chemistry.2003,75(23):6430-6436.
    [1]Chiu, H., Lin, Z., Tu, H., Whang, C. Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection [J]. Journal of Chromatography A.2008,1177(1):195-198.
    [2]George, J., Prasad, S., Mahmood, Z., Shukla, Y. Studies on glyphosate-induced carcinogenicity in mouse skin:A proteomic approach [J]. Journal of Proteomics.2010, 73(5):951-964.
    [3]US Environmental Protection Agency (EPA), National primary drinking water standards. http://www.epa.gov/safewater/consumer/pdf/mcl.pdf, June 2003 (accessed 06.01.2013).
    [4]Food and Agriculture Organization (FAO) and World Health Organiza-tion (WHO), Joint FAO/WHO food standards programme. http://www. codexalimentarius.net/download/report/655/al2924e.pdf,2006 (accessed 06.01.2013).
    [5]Tseng, S.-H., Lo, Y.-W., Chang, P.-C., Chou, S.-S., Chang, H.-M. Simultaneous Quantification of Glyphosate, Glufosinate, and Their Major Metabolites in Rice and Soybean Sprouts by Gas Chromatography with Pulsed Flame Photometric Detector [J]. Journal of Agricultural and Food Chemistry.2004,52(13):4057-4063.
    [6]Motojyuku, M., Saito, T., Akieda, K., Otsuka, H., Yamamoto, I., Inokuchi, S. Determination of glyphosate, glyphosate metabolites, and glufosinate in human serum by gas chromatography-mass spectrometry [J]. Journal of Chromatography B.2008, 875(2):509-514.
    [7]Moye, H.A., Miles, C.J., Scherer, S.J. A simplified high-performance liquid chromatographic residue procedure for the determination of glyphosate herbicide and (aminomethyl)phosphonic acid in fruits and vegetables employing postcolumn fluorogenic labeling [J]. Journal of Agricultural and Food Chemistry.1983,31(1):69-72.
    [8]Hanke,1., Singer, H., Hollender, J. Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography-tandem mass spectrometry:performance tuning of derivatization, enrichment and detection [J]. Analytical and Bioanalytical Chemistry.2008, 391(6):2265-2276.
    [9]Khrolenko, M.V., Wieczorek, P.P. Determination of glyphosate and its metabolite aminomethylphosphonic acid in fruit juices using supported-liquid membrane preconcentration method with high-performance liquid chromatography and UV detection after derivatization with p-toluenesulphonyl chloride [J]. Journal of Chromatography A.2005, 1093(1-2):111-117.
    [10]See, H.H., Hauser, P.C., Sanagi, M.M., Ibrahim, W.A.W. Dynamic supported liquid membrane tip extraction of glyphosate and aminomethylphosphonic acid followed by capillary electrophoresis with contactless conductivity detection [J]. Journal of Chromatography A.2010,1217(37):5832-5838.
    [11]Corbera, M., Hidalgo, M., Salvado, V., Wieczorek, P.P. Determination of glyphosate and aminomethylphosphonic acid in natural water using the capillary electrophoresis combined with enrichment step [J]. Analytica Chimica Acta.2005,540(l):3-7.
    [12]Jiang,J., Lucy, C.A. Determination of glyphosate using off-line ion exchange preconcentration and capillary electrophoresis-laser induced fluorescence detection [J]. Talanta.2007,72(1):113-118.
    [13]Goodwin, L., Startin, J.R., Keely, B.J., Goodall, D.M. Analysis of glyphosate and glufosinate by capillary electrophoresis-mass spectrometry utilising a sheathless microelectrospray interface [J]. Journal of Chromatography A.2003,1004(1-2):107-119.
    [14]Eberbach, P.L., Douglas, L.A. Method for the determination of glyphosate and (aminomethyl)phosphonic acid in soil using electron capture gas chromatography [J]. Journal of Agricultural and Food Chemistry.1991,39(10):1776-1780.
    [15]Alferness, P.L., Iwata, Y. Determination of Glyphosate and (Aminomethyl)phosphonic Acid in Soil, Plant and Animal Matrixes, and Water by Capillary Gas Chromatography with Mass-Selective Detection [J]. Journal of Agricultural and Food Chemistry.1994, 42(12):2751-2759.
    [16]Piriyapittaya, M., Jayanta, S., Mitra, S., Leepipatpiboon, N., Micro-scale membrane extraction of glyphosate and aminomethylphosphonic acid in water followed by high-performance liquid chromatography and post-column derivatization with fluorescence detector [J]. Journal of Chromatography A.2008,1189(l-2):483-492.
    [17]Sun, Y., Wang, C., Wen, Q., Wang, G., Wang, H., Qu, Q., Hu, X. Determination of glyphosate and aminomethylphosphonic acid in water by LC using a new labeling reagent, 4-methoxybenzenesulfonyl fluoride [J]. Chromatographia.2010,72(7-8):679-686.
    [18]Glass, R. L. Liquid chromatographic determination of glyphosate in fortified soil and water samples [J]. Journal of Agricultural and Food Chemistry.1983,31(2):280-282.
    [19]Yang, W., Sun, X., Wang, H.-Y., Woolley, A.T. Integrated Microfluidic Device for Serum Biomarker Quantitation Using Either Standard Addition or a Calibration Curve [J]. Analytical Chemistry.2009,81(19):8230-8235.
    [20]Dittrich, P.S., Tachikawa, K., Manz, A. Micro Total Analysis Systems. Latest Advancements and Trends [J]. Analytical Chemistry.2006,78(12):3887-3908.
    [21]Wang, H., Chen, J., Zhu, L., Shadpour, H., Hupert, M.L., Soper, S.A. Continuous Flow Thermal Cycler Microchip for DNA Cycle Sequencing[J]. Analytical Chemistry.2006, 78(17):6223-6231.
    [22]Nunes, P.S., Ohlsson, P.D., Ordeig, O., Kutter, J.P. Cyclic olefin polymers:emerging materials for lab-on-a-chip applications [J]. Microfluidics and Nanofluidics.2010, 9(2-3):145-161.
    [23]Park, J., Lee, D., Kim, W., Horiike, S., Nishimoto, T., Lee, S.H., Ahn, C.H. Fully packed capillary electrochromatographic microchip with self-assembly colloidal silica beads [J]. Analytical Chemistry.2007,79(8):3214-3219.
    [24]Faure, K., Albert, M., Dugas, V., Cretier, G., Ferrigno, R., Morin, P., Rocca, J.-L. Development of an acrylate monolith in a cyclo-olefin copolymer microfluidic device for chip electrochromatography separation [J]. Electrophoresis.2008,29(24):4948-4955.
    [25]Zhang, J., Das, C., Fan, Z. Dynamic coating for protein separation in cyclic olefin copolymer microfluidic devices [J]. Microfluidics and Nanofluidics.2008,5(3):327-335.
    [26]Luna-Vera, F., Ferguson, J.D., Alvarez, J.C. Real Time Detection of Lysozyme by Pulsed Streaming Potentials Using Polyclonal Antibodies Immobilized on a Renewable Nonfouling Surface Inside Plastic Micro fluidic Channels [J]. Analytical Chemistry.2011, 83(6):2012-2019.
    [27]Lin, R., Burns, M.A. Surface-modified polyolefin microfluidic devices for liquid handling [J]. Journal of Micromechanics and Microengineering.2005,15(11):2156.
    [28]Wang, L., Wu, J., Wang, Q., He, C., Zhou, L., Wang, J., Pu, Q. Rapid and Sensitive Determination of Sulfonamide Residues in Milk and Chicken Muscle by Microfluidic Chip Electrophoresis [J]. Journal of Agricultural and Food Chemistry.2012,60(7):1613-1618.
    [29]Kelly, R.T., Pan, T., Woolley, A.T. Phase-Changing Sacrificial Materials for Solvent Bonding of High-Performance Polymeric Capillary Electrophoresis Microchips [J]. Analytical Chemistry.2005,77(11):3536-3541.
    [30]Das, C., Fredrickson, C.K., Xia, Z., Fan, Z.H. Device fabrication and integration with photodefinable microvalves for protein separation [J]. Sensors and Actuators A:Physical. 2007,134:271-277.
    [31]Das, C., Fan, Z.H. Effects of separation length and voltage on isoelectric focusing in a plastic microfluidic device [J]. Electrophoresis.2006,27:3619-3626.
    [32]Das, C., Zhang, J., Denslow, N.D., Fan, Z.H. Integration of isoelectric focusing with multi-channel gel electrophoresisby using microfluidic pseudo-valves [J]. Lab on a Chip. 2007,7:1806-1812.
    [33]Pu, Q., Oyesanya, O., Thompson, B., Liu, S., Alvarez, J.C. On-chip micropatterning of plastic (cylic olefin copolymer, COC) microfluidic channels for the fabrication of biomolecule microarrays using photografting methods [J]. Langmuir.2007,23(3):1577-1583.
    [34]Hutt, L.D., Glavin, D.P., Bada, J.L., Mathies, R.A. Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration [J]. Analytical Chemistry.1999, 71(18):4000-4006.
    [35]Chen, Z.Z., Li, Q.L., Sun, Q.Q., Chen, H., Wang, X., Li, N., Yin, M., Xie, Y. X., Li, H.M., Tang, B. Simultaneous Determination of Reactive Oxygen and Nitrogen Species in Mitochondrial Compartments of Apoptotic HepG2 Cells and PC 12 Cells Based On Microchip Electrophoresis-Laser-Induced Fluorescence [J]. Analytical Chemistry.2012, 84(11):4687-4694.
    [36]Navarrete-Casas, M., Segura-Carretero, A., Cruces-Blanco, C., Fernandez-Gutierrez, A. Potential determination of aminated pesticides and metabolites by cyclodextrin capillary electrophoresis-laser-induced fluorescence using FITC as labelling [J]. Pest Management Science.2005,61(2):197-203.
    [37]Crabtree, H.J., Cheong, E.C.S., Tilroe, D.A., Backhouse, C.J. Microchip Injection and Separation Anomalies Due to Pressure Effects [J]. Analytical Chemistry.2001, 73(17):4079-4086.
    [38]Wang, Q., Zhang, Y., Ding, H., Wu, J., Wang, L., Zhou, L., Pu, Q. The use of ethylene glycol solution as the running buffer for highly efficient microchip-based electrophoresis in unmodified cyclic olefin copolymer microchips [J]. Journal of Chromatography A.2011, 1218(52):9422-9427.
    [I]Jacobson, S.C., Culbertson, C.T., Daler, J.E., Ramsey, J.M. Microchip Structures for Submillisecond Electrophoresis [J]. Analytical Chemistry.1998,70(16):3476-3480.
    [2]Emrich, C.A., Tian, H., Medintz, I.L., Mathies, R.A. Microfabricated 384-Lane Capillary Array Electrophoresis Bioanalyzer for Ultrahigh-Throughput Genetic Analysis [J]. Analytical Chemistry.2002,74(19):5076-5083.
    [3]Du, W.-B., Fang, Q., He, Q.-H., Fang, Z.-L. High-Throughput Nanoliter Sample Introduction Microfluidic Chip-Based Flow Injection Analysis System with Gravity-Driven Flows [J]. Analytical Chemistry.2005,77(5):1330-1337.
    [4]Dittrich, P.S., Tachikawa, K., Manz, A. Micro Total Analysis Systems. Latest Advancements and Trends [J]. Analytical Chemistry.2006,78(12):3887-3908.
    [5]Soper, S.A., Ford, S.M., Qi, S., McCarley, R.L., Kelly, K., Murphy, M.C. Peer Reviewed: Polymeric Microelectromechanical Systems [J]. Analytical Chemistry.2000,72(19):642 A-651A.
    [6]Boone, T.D., Fan, Z.H., Hooper, H.H., Ricco, A.J., Tan, H., Williams, S. J. Peer Reviewed: Plastic Advances Microfluidic Devices [J]. Analytical Chemistry.2002,74(3):78 A-86 A.
    [7]Soper, S.A., Henry, A.C., Vaidya, B., Galloway, M., Wabuyele, M., McCarley, R.L. Surface modification of polymer-based microfluidic devices [J]. Analytica Chimica Acta.2002, 470(1):87-99.
    [8]Muck, A., Svatos, A. Chemical modification of polymeric microchip devices [J]. Talanta. 2007,74(3):333-341.
    [9]Alvarez-Martos, I., Fernandez-Abedul, M.T., Anillo, A., Fierro, J.L.G., Garcia Alonso, F.J., Costa-Garcia, A. Poly (acrylic acid) microchannel modification for the enhanced resolution of catecholamines microchip electrophoresis with electrochemical detection [J]. Analytica Chimica Acta.2012,724(0):136-143.
    [10]Lin, R., Burns, M.A. Surface-modified polyolefin microfluidic devices for liquid handling [J]. Journal of Micromechanics and Microengineering.2005,15(11):2156.
    [11]Li, C., Yang, Y., Craighead, H.G., Lee, K.H. Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method [J]. Electrophoresis.2005,26(9):1800-1806.
    [12]Luna-Vera, F., Ferguson, J.D., Alvarez, J.C. Real Time Detection of Lysozyme by Pulsed Streaming Potentials Using Polyclonal Antibodies Immobilized on a Renewable Nonfouling Surface Inside Plastic Microfluidic Channels [J]. Analytical Chemistry.2011, 83(6):2012-2019.
    [13]Zhou, H., Miller, A.W., Sosic, Z., Buchholz, B., Barron, A.E., Kotler, L., Karger, B.L. DNA Sequencing up to 1300 Bases in Two Hours by Capillary Electrophoresis with Mixed Replaceable Linear Polyacrylamide Solutions [J]. Analytical Chemistry.2000, 72(5):1045-1052.
    [14]Xu, F., Baba, Y. Polymer solutions and entropic-based systems for double-stranded DNA capillary electrophoresis and microchip electrophoresis [J]. Electrophoresis.2004, 25(14):2332-2345.
    [15]Zhang, J., Das, C., Fan, Z.H. Dynamic coating for protein separation in cyclic olefin copolymer microfluidic devices [J]. Microfluidics and Nanofluidics.2008,5(3):327-335.
    [16]Hu, S., Zhang, Z., Cook, L.M., Carpenter, E.J., Dovichi, N.J. Separation of proteins by sodium dodecylsulfate capillary electrophoresis in hydroxypropylcellulose sieving matrix with laser-induced fluorescence detection [J]. Journal of Chromatography A.2000, 894(1-2):291-296.
    [17]Wang, L., Wu, J., Wang, Q., He, C., Zhou, L., Wang, J., Pu, Q. Rapid and Sensitive Determination of Sulfonamide Residues in Milk and Chicken Muscle by Microfluidic Chip Electrophoresis [J]. Journal of Agricultural and Food Chemistry.2012,60(7):1613-1618.
    [18]Han, B., Xu, Y., Zhang, L., Yang, X., Wang, E. Surface modification of poly(dimethylsiloxane) microchips using a double-chained cationic surfactant for efficiently resolving fluorescent dye adsorption [J]. Talanta.2009,79(3):959-962.
    [19]Kang, J., Yan, J., Liu, J., Qiu, H., Yin, X.-B., Yang, X., Wang, E. Dynamic coating for resolving rhodamine B adsorption to poly(dimethylsiloxane)/glass hybrid chip with laser-induced fluorescence detection [J]. Talanta.2005,66(4):1018-1024.
    [20]Roman, G.T., McDaniel, K., Culbertson, C.T. High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips [J]. Analyst. 2006,131(2):194-201.
    [21]Woolley, A.T., Mathies, R.A. Ultra-High-Speed DNA Sequencing Using Capillary Electrophoresis Chips [J]. Analytical Chemistry.1995,67(20):3676-3680.
    [22]Culbertson, C.T., Jacobson, S.C., Ramsey, J.M. Microchip Devices for High-Efficiency Separations [J]. Analytical Chemistry.2000,72(23):5814-5819.
    [23]Thomas, C.D., Jacobson, S.C., Ramsey, J.M. Strategy for Repetitive Pinched Injections on a Microfluidic Device [J]. Analytical Chemistry.2004,76(20):6053-6057.
    [24]Jin, S., Anderson, G.J., Kennedy, R.T. Western Blotting Using Microchip Electrophoresis Interfaced to a Protein Capture Membrane [J]. Analytical Chemistry.2013, 85(12):6073-6079.
    [25]Zhang, P., Nan, H., Lee, M.-J., Kang, S.H. Ultra-fast separation of infectious disease-related small DNA molecules by single- and multi-channel microchip electrophoresis [J]. Talanta. 2013,106(0):388-393.
    [26]Wang, Q., Zhang, Y., Ding, H., Wu, J., Wang, L., Zhou, L., Pu, Q. The use of ethylene glycol solution as the running buffer for highly efficient microchip-based electrophoresis in unmodified cyclic olefin copolymer microchips [J]. Journal of Chromatography A.2011, 1218(52):9422-9427.
    [27]Li, R., Wang, L., Gao, X., Du, G., Zhai, H., Wang, X., Guo, G., Pu, Q. Rapid separation and sensitive determination of banned aromatic amines with plastic microchip electrophoresis [J]. Journal of Hazardous materials.2013,248-249(0):268-275.
    [28]Schneider, M.H., Willaime, H., Tran, Y., Rezgui, F., Tabeling, P. Wettability Patterning by UV-Initiated Graft Polymerization of Poly(acrylic acid) in Closed Microfluidic Systems of Complex Geometry [J]. Analytical Chemistry.2010,82(21):8848-8855.
    [29]Ocvirk, G., Munroe, M., Tang, T., Oleschuk, R., Westra, K., Harrison, D.J. Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices [J]. Electrophoresis.2000,21(1):107-115.
    [30]Lee, C.S., Blanchard, W.C., Wu, C.T. Direct control of the electroosmosis in capillary zone electrophoresis by using an external electric field [J]. Analytical Chemistry.1990, 62(14):1550-1552.
    [31]Lee, C.S., McManigill, D., Wu, C.T., Patel, B. Factors affecting direct control of electroosmosis using an external electric field in capillary electrophoresis [J]. Analytical Chemistry.1991,63(15):1519-1523.
    [1]Pumera, M., Merkoci, A., Alegret, S. Carbon nanotube detectors for microchip CE: Comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces [J]. Electrophoresis.2007, 28(8):1274-1280.
    [2]Crevillen, A.G., Pumera, M., Gonzalez, M.C., Escarpa, A. The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains [J]. Analyst.2009,134(4):657-662.
    [3]Crevillen, A.G., Avila, M., Pumera, M., Gonzalez, M.C., Escarpa, A. Food analysis on microfluidic devices using ultrasensitive carbon nanotubes detectors [J]. Analytical Chemistry.2007,79(19):7408-7415.
    [4]Dolnik, V., Liu, S., Jovanovich, S. Capillary electrophoresis on microchip [J]. Electrophoresis. 2000,21(1):41-54.
    [5]Becker, H., Gartner, C. Polymer microfabrication methods for microfluidic analytical applications [J]. Electrophoresis.2000,21(1):12-26.
    [6]Sato, K., Tokeshi, M, Odake, T., Kimura, H., Ooi, T., Nakao, M., Kitamori, T. Integration of an immunosorbent assay system:analysis of secretory human immunoglobulin A on polystyrene beads in a microchip [J]. Analytical Chemistry.2000,72(6):1144-1147.
    [7]Boone, T.D., Fan, Z.H., Hooper, H.H., Ricco, A.J., Tan, H., Williams, S.J. Peer reviewed: plastic advances microfluidic devices [J]. Analytical Chemistry.2002,74(3):78 A-86 A.
    [8]Soper, S.A., Ford, S.M., Qi, S., McCarley, R.L., Kelly, K., Murphy, M.C. Peer Reviewed: Polymeric Microelectromechanical Systems [J]. Analytical Chemistry.2000,72(19):642 A-651A.
    [9]Xia, Y., Whitesides, G.M. Soft lithography [J]. Annual Review of Materials Science.1998, 28(1):153-184.
    [10]Muck, A., Wang, J., Jacobs, M., Chen, G., Chatrathi, M.P., Jurka, V., Vyborny, Z., Spillman, S.D., Sridharan, G., Schoning, M.J. Fabrication of poly (methyl methacrylate) microfluidic chips by atmospheric molding [J]. Analytical Chemistry.2004,76(8):2290-2297.
    [11]Mair, D.A., Geiger, E., Pisano, A.P., Frechet, J.M., Svec, F. Injection molded microfluidic chips featuring integrated interconnects [J]. Lab on a Chip.2006,6(10):1346-1354.
    [12]Becker, H., Heim, U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures [J]. Sensors and Actuators A:Physical.2000,83(1):130-135.
    [13]Kricka, L.J., Fortina, P., Panaro, N.J., Wilding, P., Alonso-Amigo, G., Becker, H. Fabrication of plastic microchips by hot embossing [J]. Lab on a Chip.2002,2(1):1-4.
    [14]Studer, V., Pepin, A., Chen, Y. Nanoembossing of thermoplastic polymers for microfluidic applications [J]. Applied Physics Letters.2002,80(19):3614-3616.
    [15]Steigert, J., Haeberle, S., Brenner, T., Muller, C., Steinert, C., Koltay, P., Gottschlich, N., Reinecke, H., Ruhe, J., Zengerle, R. Rapid prototyping of microfluidic chips in COC [J]. Journal of Micromechanics and Microengineering.2007,17(2):333.
    [16]Becker, H., Gartner, C. Polymer microfabrication methods for microfluidic analytical applications [J]. Electrophoresis.2000,21(1):12-26.
    [17]Qi, S., Liu, X., Ford, S., Barrows, J., Thomas, G., Kelly, K., McCandless, A., Lian, K., Goettert, J., Soper, S.A. Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection [J]. Lab on a Chip.2002,2(2):88-95.
    [18]Effenhauser, C.S., Bruin, G.J., Paulus, A., Ehrat, M. Integrated capillary electrophoresis on flexible silicone microdevices:analysis of DNA restriction fragments and detection of single DNA molecules on microchips [J]. Analytical Chemistry.1997,69(17):3451-3457.
    [19]Kaigala, G.V., Ho, S., Penterman, R., Backhouse, C.J. Rapid prototyping of microfluidic devices with a wax printer [J]. Lab on a Chip.2007,7(3):384-387.
    [20]Tse, L., Hesketh, P., Rosen, D., Gole, J. Stereolithography on silicon for microfiuidics and microsensor packaging [J]. Microsystem Technologies.2003,9(5):319-323.
    [21]Friedrich, C.R., Vasile, M.J. Development of the micromilling process for high-aspect-ratio microstructures [J]. Journal of Microelectromechanical Systems.1996,5(1):33-38.
    [22]Heng, Q., Tao, C., Tie-chuan, Z. Surface roughness analysis and improvement of micro-fluidic channel with excimer laser [J]. Microfluidics and Nanofluidics.2006, 2(4):357-360.
    [23]Bundgaard, F., Nielsen, T., Nilsson, D., Shi, P., Perozziello, G., Kristensen, A., Geschke, O. CYCLIC OLEFIN COPOLYMER (COC/TOPAS(?))-AN EXCEPTIONAL MATERIAL FOR EXCEPTIONAL LAB-ON-A-CHIP SYSTEMS [J]. SPECIAL PUBLICATION-ROYAL SOCIETY OF CHEMISTRY.2004,297:372-374.
    [24]Vulto, P., Glade, N., Altomare, L., Bablet, J., Del Tin, L., Medoro, G., Chartier, I., Manaresi, N., Tartagni, M., Guerrieri, R. Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips [J]. Lab on a Chip.2005,5(2):158-162.
    [25]Li, D., Influence of three-dimensional roughness on pressure-driven flow through microchannels [J]. Journal of Fluids Engineering.2003,125:871-879.
    [26]Croce, G., D'Agaro, P. Numerical simulation of roughness effect on microchannel heat transfer and pressure drop in laminar flow [J]. Journal of Physics D:Applied Physics.2005, 38(10):1518.
    [27]Wang, X.Q., Yap, C., Mujumdar, A.S. Effects of two-dimensional roughness in flow in micro-channels [J]. Journal of Electronic Packaging.2005,127:357-361.
    [28]Ryntz, R.A. Coating adhesion to low surface free energy substrates [J]. Progress in Organic Coatings.1994,25(1):73-83.
    [29]Noeske, M., Degenhardt, J., Strudthoff, S., Lommatzsch, U. Plasma jet treatment of five polymers at atmospheric pressure:surface modifications and the relevance for adhesion [J]. International Journal of Adhesion and Adhesives.2004,24(2):171-177.
    [30]Chambers, L.D., Stokes, K.R., Walsh, F.C., Wood, R.J. Modern approaches to marine antifouling coatings [J]. Surface and Coatings Technology.2006,201(6):3642-3652.
    [31]Bi, H., Zhong, W., Meng, S., Kong, J., Yang, P., Liu, B. Construction of a biomimetic surface on microfluidic chips for biofouling resistance [J]. Analytical Chemistry.2006, 78(10):3399-3405.
    [32]Herr, A., Molho, J., Santiago, J., Mungal, M., Kenny, T., Garguilo, M. Electroosmotic capillary flow with nonuniform zeta potential [J]. Analytical Chemistry.2000, 72(5):1053-1057.
    [33]Culbertson, C.T., Ramsey, R.S., Ramsey, J.M. Electroosmotically induced hydraulic pumping on microchips:differential ion transport [J]. Analytical Chemistry.2000,72(10):2285-2291.
    [34]Zhu, X., Liu, G., Guo, Y., Tian, Y. Study of PMMA thermal bonding [J]. Microsystem Technologies.2007,13(3-4):403-407.
    [I]Huang, X.C., Quesada, M.A., Mathies, R.A. DNA sequencing using capillary array electrophoresis [J]. Analytical Chemistry.1992,64(18):2149-2154.
    [2]Liu, S., Shi, Y., Ja, W.W., Mathies, R.A. Optimization of high-speed DNA sequencing on microfabricated capillary electrophoresis channels [J]. Analytical Chemistry.1999, 71(3):566-573.
    [3]Zhang, B., Liu, H., Karger, B.L., Foret, F. Microfabricated Devices for Capillary Electrophoresis-Electrospray Mass Spectrometry [J]. Analytical Chemistry.1999, 71(15):3258-3264.
    [4]Munro, N.J., Huang, Z., Finegold, D.N., Landers, J.P. Indirect Fluorescence Detection of Amino Acids on Electrophoretic Microchips [J]. Analytical Chemistry.2000, 72(13):2765-2773.
    [5]Jacobson, S.C., Culbertson, C.T., Daler, J.E., Ramsey, J.M. Microchip Structures for Submillisecond Electrophoresis [J]. Analytical Chemistry.1998,70(16):3476-3480.
    [6]Du, W.-B., Fang, Q., He, Q.-H., Fang, Z.-L. High-Throughput Nanoliter Sample Introduction Microfluidic Chip-Based Flow Injection Analysis System with Gravity-Driven Flows [J]. Analytical Chemistry.2005,77(5):1330-1337.
    [7]Emrich, C.A., Tian, H., Medintz, I.L., Mathies, R.A. Microfabricated 384-Lane Capillary Array Electrophoresis Bioanalyzer for Ultrahigh-Throughput Genetic Analysis [J]. Analytical Chemistry.2002,74(19):5076-5083.
    [8]Harrison, D.J., Manz, A., Fan, Z., Luedi, H., Widmer, H. M. Capillary electrophoresis and sample injection systems integrated on a planar glass chip [J]. Analytical Chemistry.1992, 64(17):1926-1932.
    [9]Effenhauser, C.S., Manz, A., Widmer, H.M. Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights [J]. Analytical Chemistry.1993, 65(19):2637-2642.
    [10]Woolley, A.T., Mathies, R.A. Ultra-high-speed DNA sequencing using capillary electrophoresis chips [J]. Analytical Chemistry.1995,67(20):3676-3680.
    [11]Harrison, D.J., Fluri, K., Seiler, K., Fan, Z., Effenhauser, C.S., Manz, A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip [J]. SCIENCE-NEW YORK THEN WASHINGTON-.1993,261:895.
    [12]Fu, L.-M., Yang, R.-J., Lee, G.-B. Electrokinetic Focusing Injection Methods on Microfluidic Devices [J]. Analytical Chemistry.2003,75(8):1905-1910.
    [13]Harrison, D.J., Manz, A., Fan, Z., Luedi, H., Widmer, H.M. Capillary electrophoresis and sample injection systems integrated on a planar glass chip [J]. Analytical Chemistry.1992, 64(17):1926-1932.
    [14]Effenhauser, C.S., Manz, A., Widmer, H.M. Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights [J]. Analytical Chemistry.1993, 65(19):2637-2642.
    [15]Fu, L.-M., Yang, R.-J., Lee, G.-B., Liu, H.-H. Electrokinetic injection techniques in microfluidic chips [J]. Analytical Chemistry.2002,74(19):5084-5091.
    [16]Jacobson, S.C., Hergenroder, R.., Koutny, L.B., Warmack, R.J., Ramsey, J.M. Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices [J]. Analytical Chemistry.1994,66(7):1107-1113.
    [17]Jacobson, S.C., Hergenroder, R., Moore, A.W.J., Ramsey, J.M. Precolumn reactions with electrophoretic analysis integrated on a microchip [J]. Analytical Chemistry.1994, 66(23):4127-4132.
    [18]Bias, M., Delaunay, N., Rocca, J.-L. Electrokinetic-based injection modes for separative microsystems [J]. Electrophoresis.2008,29(1):20-32.
    [19]Fu, L.-M., Yang, R.-J., Lee, G.-B. Electrokinetic Focusing Injection Methods on Microfluidic Devices [J]. Analytical Chemistry.2003,75(8):1905-1910.
    [20]Slentz, B.E., Penner, N.A., Regnier, F. Sampling BIAS at Channel Junctions in Gated Flow Injection on Chips [J]. Analytical Chemistry.2002,74(18):4835-4840.
    [21]Alarie, J.P., Jacobson, S.C., Ramsey, J.M. Electrophoretic injection bias in a microchip valving scheme [J]. Electrophoresis.2001,22(2):312-317.
    [22]Shultz-Lockyear, L.L., Colyer, C.L., Fan, Z.H., Roy, K.I., Harrison, D.J. Effects of injector geometry and sample matrix on injection and sample loading in integrated capillary electrophoresis devices [J]. Electrophoresis.1999,20(3):529-538.
    [23]Karlinsey, J.M. Sample introduction techniques for microchip electrophoresis:A review [J]. Analytica Chimica Acta.2012,725:1-13.
    [24]Jacobson, S.C., Hergenroder, R., Koutny, L.B., Warmack, R.J., Ramsey, J.M. Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices [J]. Analytical Chemistry.1994,66(7):1107-1113.
    [25]Jacobson, S.C., Hergenroder, R., Koutny, L.B., Ramsey, J.M. High-Speed Separations on a Microchip [J]. Analytical Chemistry.1994,66(7):1114-1118.
    [26]Thomas, C.D., Jacobson, S.C., Ramsey, J.M. Strategy for repetitive pinched injections on a microfluidic device [J]. Analytical Chemistry.2004,76(20):6053-6057.
    [27]Karlinsey, J.M., Monahan, J., Marchiarullo, D.J., Ferrance, J.P., Landers, J.P. Pressure injection on a valved microdevice for electrophoretic analysis of submicroliter samples [J]. Analytical Chemistry.2005,77(11):3637-3643.
    [28]Luo, Y., Wu, D., Zeng, S., Gai, H., Long, Z., Shen, Z., Dai, Z., Qin, J., Lin, B. Double-cross hydrostatic pressure sample injection for chip CE:Variable sample plug volume and minimum number of electrodes [J]. Analytical Chemistry.2006,78(17):6074-6080.
    [29]Lin, C.-C., Chen, C.-C., Lin, C.-E., Chen, S.-H. Microchip electrophoresis with hydrodynamic injection and waste-removing function for quantitative analysis [J]. Journal of Chromatography A.2004,1051(1):69-74.
    [30]Blas, M., Delaunay, N., Rocca, J.L. Electrokinetic-based injection modes for separative microsystems [J]. Electrophoresis.2008,29(l):20-32.
    [31]Fu, L.-M., Yang, R.-J., Lee, G.-B., Liu, H.-H. Electrokinetic injection techniques in microfluidic chips [J]. Analytical Chemistry.2002,74(19):5084-5091.
    [32]Thomas, C.D., Jacobson, S.C., Ramsey, J.M. Strategy for repetitive pinched injections on a microfluidic device [J]. Analytical Chemistry.2004,76(20):6053-6057.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700