蟾皮中抗肿瘤小分子化合物的获取和抗肿瘤作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分蟾皮中抗肿瘤活性小分子化合物的获取和抗肿瘤作用机制研究
     研究背景和目的
     卫生部《2008中国卫生统计年鉴》中的资料显示,恶性肿瘤已经成为严重危害我国人民生命健康的首要因素,尤其在大城市中,其死亡率占所有死因构成比的28.84%,对我国人民的生活和健康形成了极大的威胁。从世界范围内来看,恶性肿瘤也已经成为人类的头号杀手。尽管恶性肿瘤可以通过手术、化疗、放疗等手段部分根治或缓解,抗肿瘤药物的研发在过去的十多年也取得了长足的进步,但手术治愈率低、放化疗毒副反应严重使患者难于承受的局面没有根本改观,继续寻找特异性强、高效低毒的抗肿瘤药物,仍然是医学领域的研究热点。
     近年来,由于定向设计、合成先导药物及从组合化合物库中获得抗肿瘤药物前体愈来愈困难,并且化学药物相对毒副作用较强,所以人们已将目光转向天然药物。具有悠久历史并能有效治疗肿瘤的中药在医学界备受关注,经常作为放疗或者化疗的辅助方法。从中药中提取有效成分并将之开发成新药,是中药进入国际市场的一种有效方式。我国已在这一领域积累了一定的经验。从中药青蒿中研制出来的青蒿素及其衍生物的制剂,是目前治疗疟疾最好的药物,就是中药发展获得成功的一个典型。
     已经从蟾蜍中分离出来的单体化合物有蟾毒灵、华蟾蜍精醇等蟾蜍二烯内酯类化合物,临床中多作为强心剂使用,对其机制的研究也较为透彻。现代中药学研究表明蟾皮及其制剂治疗肝癌、肺癌等恶性肿瘤疗效确切。目前在临床上广泛应用的蟾蜍来源的抗肿瘤制剂主要有华蟾素注射液、华蟾素胶囊等。但是因为工艺粗糙,纯度不高,成分复杂,易导致毒副反应,且抗肿瘤机理不明,故其治疗价值受限;此外,已经从蟾皮及其制剂中分离出的有抗肿瘤活性的化合物多为脂溶性,对于蟾皮中的水溶性组分尚未见有深入的开发。
     本研究将采用生物检定导向的分离策略,借助于先进的分离纯化手段,对蟾皮水溶性组分进行了深入的分离纯化和活性研究,揭示蟾蜍中的药效组分对肿瘤细胞信号通路的调控作用,明确其抗肿瘤作用机理,为进一步开发天然抗肿瘤药物提供科学的理论依据及特异、有效的小分子药性化合物/先导化合物。
     实验方法:
     1.利用工业色谱、高效液相色谱和纯化工厂技术平台对蟾皮的组分进行层层深入的分离纯化;
     2.采用CCK-8法对分离出的各级组分进行抗肿瘤活性鉴定;
     3.应用流式细胞术分析蟾皮活性组分对肿瘤细胞周期的影响;
     4.利用Western Blot和RT-PCR等分子生物学技术,初步探讨蟾皮活性组分调节肿瘤细胞中目的基因表达的情况;
     5.建立活体成像荷瘤小鼠模型,长期监测药效组分体内治疗效果。
     结果:
     1.在蟾皮的4种工业色谱粗提组分中,Ⅳ号具有抗肿瘤活性;该组分在10-4mg/ml水平就表现出抑制肿瘤细胞增殖的效应,且随着浓度的升高而增强;
     2.在Ⅳ号粗提组分进一步分离出的11种初筛组分中,第11号(HCS411)具有抗肿瘤活性,且活性强于IV号组分;
     3.肝癌、肺癌、白血病和前列腺癌细胞对HCS411最敏感,乳腺癌、骨肉瘤和食管癌细胞较敏感,宫颈癌和结肠癌细胞不敏感;
     4.与正常肝细胞相比较,HCS411对肝癌细胞呈现一定的特异性;
     5. HCS411的抑制肿瘤细胞增殖活性较目前临床抗肿瘤常用的华蟾素注射液及顺铂均强;
     6. HCS411可以通过诱导G2/M期阻滞抑制肿瘤细胞增殖;
     7. HCS411抗肿瘤活性不依赖P53;
     8. HCS411经纯化工厂分离后得到60个精细组分,有7个有较强的抗肿瘤活性;其中以2-SX048429活性最强;
     9.荷瘤动物模型活体成像检测结果显示,2-SX048429活性成份在体内也有较强的抗肿瘤作用。
     结论:
     本研究采用生物鉴定导向的分离方法,首次从蟾皮可溶性组分中逐步分离出了具有抗肿瘤活性的7个精细组分,为进一步发现抗肿瘤小分子化合物奠定了良好的基础;对其抗肿瘤机制进行的初步研究表明,这些组分可以通过不依赖于p53的方式使肿瘤细胞阻滞于G2/M期,进而抑制肿瘤细胞增殖。
     第二部分镍化合物通过调控细胞周期的致癌机制
     研究背景和目的
     肺癌是目前最常见的恶性肿瘤之一,也是全球发病率和死亡率增长最快的肿瘤。在世界大多数国家,肺癌的患病率和死亡率呈逐年上升的趋势,尤其是发达国家,肺癌在男性常见的恶性肿瘤中居首位。尽管目前对于肺癌的诊断和治疗方法较过去都有了很大改进,但肺癌的早期诊断困难、术后复发及转移率高等仍是临床研究的瓶颈问题。目前迫切需要从预防入手,从根源上控制这种对人类威胁极大的疾病。而要采取有效的预防措施,就必须深入了解肺癌发生的病因。虽然肿瘤的发生是环境因素和体内遗传因素相互作用的结果,但从总体上来看,环境因素是致癌的主要原因。据报导,80%~90%的人类癌症与环境中的理化因素有关,其中又以化学因素致癌为主。重金属镍及其化合物就是其中一种主要的环境致癌物。
     流行病学资料显示,接触镍化合物与肺癌发病率的上升关系密切,但到目前为止,镍诱发肺癌的机制尚不清楚。研究者在多种肿瘤组织肺癌组织中都发现,cyclin B1呈过表达状态。近年的研究表明,镍化合物刺激调控的基因中的大多数的转录因子确定为由HIF-1α介导的低氧信号通路的靶蛋白。在肿瘤的发生和发展阶段,紊乱的细胞周期被认为是最重要的细胞内事件之一。在肿瘤发生中,基因突变的细胞被认为是必不可少的。在G1/S期转化过程中,cyclin D1和cyclin E是重要的调控因子,它们和许多肿瘤的发生相关,比如乳腺癌、肺癌和前列腺癌。此外,中国仓鼠卵巢细胞经镍处理后,G2/M期比例会明显增加,这通常和cyclin A和cyclin B相关。p53在G1/S期和G2/M期检查点起作用,其产物p53是一个转录因子,正常情况下很不稳定,这样就不能积累到足够高的水平而促进转录。所以,有必要研究清楚在镍致癌过程中所有的细胞周期蛋白的调控,包括cyclin D1、cyclin E、cyclin A和cyclin B,还有重要的细胞周期调控因子p53,以及它们在其中的生物学功能。
     考虑到肺是镍化合物作用于体内的最主要的靶器官,本研究选择以人支气管上皮细胞Beas2B作为细胞模型,来研究镍化合物在肺癌发生中的机制,主要包括它对细胞周期中多种主要的周期蛋白的表达、细胞周期的进展以及细胞增殖的影响。
     实验方法:
     1.采用流式细胞术检测NiCl2刺激后Beas2B细胞的周期变化;
     2.利用Western Blot和RT-PCR检测NiCl2处理的Beas2B细胞中cyclin D1、cyclin E、cyclin B1和cyclin A的表达水平;
     3.应用报告基因检测的方法分析NiCl2对cyclin D1表达和P53活化的影响;
     4.利用PI和cyclin A2双染法分析NiCl2处理前后Beas2B细胞M期的变化;
     5.应用DNA重组技术构建pSuper/siCyclin B1表达质粒;
     6.采用CCK-8法检测NiCl2对细胞增殖的影响。
     结果:
     1. NiCl2刺激的Beas2B细胞生长明显被抑制,流式细胞术检测发现细胞组滞于G2/M期;
     2. NiCl2上调了Beas2B细胞中cyclin D1和cyclin E的表达;
     3. HIF-1不参与NiCl2诱导的cyclin D1和cyclin E的表达;
     4. P53不参与NiCl2诱导的G2/M期阻滞;
     5. NiCl2刺激后cyclin B1的表达增加;
     6.干扰cyclin B1后,NiCl2诱导的M期阻滞和生长抑制效应被显著削弱。
     结论:
     本研首次发现了在支气管上皮细胞中,镍化合物可以诱导cyclin D1和cyclin E表达上调并促进了细胞的G1/S期转换;转录因子HIF-1不参与这一过程。镍诱导的cyclin B1积累可以引起细胞的M期阻滞并最终导致细胞生长抑制;在细胞周期调控中发挥重要作用的蛋白p53没有参与其中。这些结果不仅加深了我们对于镍化合物致癌机制的理解,也为预防和治疗镍诱发的肿瘤作提供了新的思路。
Part I Isolation of Anticancer Compounds from Toad Skin and the Molecular Mechanism Study
     Cancer has long been the number one killer in many parts of the world. Conventional cancer therapies such as surgery, chemotherapy and radiotherapy have a number of limitations such as relatively high cost, development of resistance and are often accompanied with many adverse side effects. Therefore, there is a pressing need to search for new drugs that are safe and effective for cancer treatments despite significant progress in oncology therapeutics in the last decades. Traditional Chinese medicines are sometimes used as an adjunct to radiotherapy or chemotherapy for cancer. Toad has been found to be a source of agents with anticancer properties for thousands of years in Chinese medicine. Actually, several compounds, such as bufalin and cinobufagin, had been successfully isolated from toad skin and always used in treating cardiovascular diseases. Clinical and laboratorial materials also showed that some of them had the effects of anticancer, but up to now, the exact constituents of toad skin that responsible for this inhibition of tumor have not been identified and its anticancer mechanism has not been fully understood.
     In the present study, we fractionated spray-dried toad skin and used SMMC-7721 (human hepatoma cell line) and A549 (human lung adenocarcinoma epithelial cell line) to assess the inhibitory effects of the fractions. The proliferation of cells was detected by CCK-8 assay. The cell cycle distribution was analized by Flow Cytometry.
     The spray-dried toad skin was fractionated by process-scale chromatography to give 4 fractions,Ⅰ,Ⅱ,ⅢandⅣ.CCK-8 assay demonstrated fractionⅣposses anti-tumor activity, while fractionsⅠ,ⅡandⅢnot. FractionⅣwere then fractionated by HPLC and 11 subfractions were yielded. Further cell proliferation assay showed that HCS411 has inhibitory effect on cancer cell growth and HCS408 has marginal effect, while other subfractions have not inhibitory effect. Further study demonstrated HCS411 significantly inhibited SMMC-7721 cell growth in a dose- and time-dependent manner. And we also found HCS411 triggered a notable G2/M cell cycle arrest in SMMC-7721 cells indicating that the growth inhibition of endothelial cells by HCS411 can be induced by the mitosis inhibition through the arresting at the G2/M phase of the cell cycle. Given the important role of p53 in cell cycle arrest, our result showed P53 was not involved in G2/M arrest in SMMC-7721 cells exposed to HCS411. Further HPLC analysis yielded 60 subfractions from HCS411, and 7 of which were verified to be effective to inhibit cancer cell growth. More importantly, we found that the subfraction 2-SX048429 was extremely potent to inhibit the xenograft tumor growth in vivo.
     A strength of this study was our approach to active constituent identification, which was based on an unbiased, bioassaydirected fractionation of spray-dried toad skin, and yielded consistent and convincing results using relatively small amounts of material. The results of this study demonstrate that some subfractions in spray-dried toad skin may contain bioactive compounds with potential chemopreventive activity. These results lay a solid foundation for the generation of antitumor active microcompound from toad skin and are meanful to the development of new antitumor drug.
     Part II Effects of Nickel on Cyclin Expression, Cell Cycle Progression and Cell Proliferation in Human Pulmonary Cells
     The exposure to nickel has largely increased in industrial societies due to the environmental pollution by heavy metals at all stages of production, use, and disposal. Frequent exposure to high-concentrated nickel compounds has been considered as one of the potential causes of respiratory cancers. Previous studies have demonstrated that the cell signaling activation leading to cell cycle redistribution plays a critical role in carcinogenesis. In current study, notable increase of G1/S cell cycle transition was observed in human bronchial epithelial cells with 12 hours nickel exposure. The inductions of G1/S phase related cyclin D1 and cyclin E by nickel, which were demonstrated for the first time, may be responsible for the nickel induced G1/S transition. In addition, we verified that hypoxia-inducible factor-1alpha (HIF-1α), as an important transcription factor of nickel response, was not required for the cyclin D1 induction. On the other hand, Beas-2B cells treated with nickel compounds for 24 and 48 hours present obvious G2/M cell cycle arrest as well as significant cell proliferation inhibition. Given that the role of p53 in G2/M arrest has been widely proved, its contribution in nickel-induced G2/M arrest was excluded, respecting that its protein level, ser15 phosphorylation and transcriptional activity were not changed in nickel response. Further study revealed that cyclin B1, an important cyclin which prevents cells from M-phase exit and is frequently involved in the promotion of many kinds of tumor, was remarkably up-regulated by nickel on a HIF-independent manner, and the essential role of cyclin B1 in M-phase arrest and cell proliferation inhibition was further verified by knocking down its expression using specific small interference RNA. Taken together, our results demonstrate that nickel exposure can induce G1/S cell cycle transition by facilitating cyclin D1 and/or cyclin E expression, until the M-phase blockage caused by up-regulated cyclin B1 expression (after a latent phase) veiled the effect of cyclin D1 and/or cyclin E and lead to the overall cell cycle blockage and cell proliferation inhibition.
引文
1. Benson JD, Chen YN, Cornell-Kennon SA, Dorsch M, Kim S, Leszczyniecka M, Sellers WR, Lengauer C. Validating cancer drug targets. Nature. 2006; 441:451-62.
    2. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of hosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190-2033.
    3.江成亮,竺叶青.蟾蜍抗肿瘤作用研究进展[J].天然产物研究与开发,1999,12(1): 67-72.
    4.罗茂玉.华蟾素注射液不良反应及防治措施[J].海峡医学,2007,19(11):110-111.
    5. Stone R. Biochemistry. Lifting the veil on traditional Chinese medicine. Science. 2008;319:709-710.
    6. Enserink M. Combating malaria. Malaria treatment: ACT two.Science. 2007;318:560-3.
    7.吴锦燕.现代中西医结合杂志。2006,15(10):1313-1314.
    8.李文华,尹军平,王兴卉,等.联合华蟾素栓塞化疗中晚期肝癌的疗效观察,世界临床药物,2006,27(5):303-306.
    9.姚淑莲,李东辉,陈星,等.华蟾素注射液联合化疗治疗中晚期肺癌24例.现代肿瘤医学,2004 ,12(5):462-463.
    10.刘鲁明.华蟾素抗肿瘤作用的临床研究[J].世界科技:中医药现代化,2008,10(4):126-130.
    11.柴小姝,吴万垠,刘伟胜.消积饮联合华蟾素对小鼠Lewis肺癌细胞增殖抗原的影响.中国中医药杂志,2004,2(2):58-60.
    12.王鹏,吴军,杨秀伟,等.华蟾毒精抑制Hela细胞增殖作用机制的初步探讨.中国药理通讯,2003,20(3):31-32.
    13. Yamada K,Hino K,Tomoyasu S,et a1.Enhancement by bufalin of retinoie acid—induced diferentiation of acute promyelocytic leukemia cells in primary culture.Leuk Res.1998,22(7):589-595.
    14.韩仲明,苏红星,张敏燕,等.华蟾素对喉癌细胞株的诱导分化研究.中国中西医结合耳鼻咽喉科杂志,2004,12(5):241—243
    15.杨海燕,朱宁希,洪用伟,等.华蟾素诱导白血病细胞株HL~60凋亡的实验研究.福建中医药,2002,33(1):43-44.
    16.赵建斌,崔勤,张雪,等.华蟾毒精抗癌作用的体外研究.第四军医大学学报,2001,22(16):1504-1507.
    17.韩克起,顾伟,苏永华.蟾毒灵抗小鼠原位移植性肝癌整体药效学研究.中华外科实验杂志,2004,21(12):1436-1439.
    18.左小东,崔永安,王锦鸿,等.华蟾素对MGC一80—3细胞生长及凋亡影响的实验研究.临床肿瘤学杂志,2003,8(1):33-35,37.
    19.王焰,李军民,张莉,等.华蟾素对Jurkat细胞株的体外作用和动物实验研究.诊断学:理论与实践,2005,4(4):308-312.
    20.左小东,秦叔逵.华蟾素对肿瘤细胞周期及bcl一2蛋白表达的影响.现代中西医结合杂志,2003,12(6):567-568.
    21. Kawazoe N,Watabe M,Masuda Y,et al.Tiaml is involved in the regulation of bufalin—induced apoptosis in human leukemia cells.Oncogene,1999,l8(15):2413~2421.
    22.刘云鹏,曲秀娟.蟾蜍灵诱导K562细胞分化和凋亡过程中wT1表达的下调.中华血液学杂志,2002,23(7):356-359.
    23. Watabe M,Ito K,Masuda Y,et al.Activation of AP一1 is required for bufalin—induced apoptosis in human leukemia U937 cells.Oncogene,1998,16(6):,779-787.
    24. Hashimoto S,Jing Y,Kawazoe N,et o1.Bufalin reduces the level of topoisomerase II in human leukemia cells and affects the cytotoxicity of anticancer drugs.Leuk Res,1997,21(9):875-883.
    25. Watabe M,Nakajo S,Yoshida T,et nf.Treatment of U937 cells with bufalin induces the translocation of casein kinase 2 and modulates the activity of topoisomerase II prior to the induction of apoptosis.Cell Growth Differ,1997,8(8):871-879.
    26. Nuria Pastor,Felipe Co~6s.Bufalin influences the repmr of X—ray—induced DNA breaks in Chinese hamster cells, DNA Rep~r,2003,2:1353-1360.
    27. Masahiro Kurosawa,Yoshihiro Tani,Satoshi Nishimur,et al.Distinct PKC isozymes regulate bufalin—induced diferentiation and apoptosis in human monocytic ceils. Am J Physiol Cell Physiol,2001,280:C459-C464.
    28. Masahiro Kurosawa,Satoshi Numazawa,Yoshihiro Tani.et a1.ERK signaling mediates the induction of inflammato~ cytokines by bufalin in human monocytic cells. Am.J.Physio1.Cell Physiol,2000,278:C500-C508.
    29. Weidemarm H.Na+/K+-ATPase, endogenous digitalis like compounds and cancer development一一a hypothesis.Front Biosci,2005,l(1O):2165-2176.
    30. Numazawa S,Inoue N,Nakura H,et a1.A cardiotonic steroid bufalin—induced differentiation of THP一1 cells.Involvement of Na+/K+一ATPase inhibition in the early changes in proto—oneogene expression.Biochem Pharmacol,1996,52(2):321-329.
    31. Kawazoe N,Aiuchi T,Masuda Y,et a1.Induction of apoptosis by bufalin in human tumor cells is associated with a change of intraeellular concentration of Na+ions. J Biochem (Tokyo),1999,126(2):278-286.
    32. Lee DY,Yasuda M,Yamamoto T,et a1.Bufalin inhibits endothelial cell proliferation and angiogenesis in vitro. Life Sei,1997,60(2):127-134.
    33.吴万垠,柴小姝,刘伟胜.华蟾素联合长春瑞滨对小鼠Lewis肺癌细胞周期的影响.中国癌症杂志,2004,14(4):363-365.
    34.刘祥胜,刘开俊,杨业金.华蟾素对Hela细胞生长和小鼠脾淋巴细胞分泌IL一2的影响.免疫学杂志,2005,21(B06):132-135.
    35.赵兴梅,陈晓明,杨祖怡等.华蟾素注射液对人IL一2水平及LAK细胞活性的影响.中药药理与临床,1999,15(6):33-35.
    36. Enomoto A,Rho MC,Komiyanm K,et a1.Inhibitory effects of bufadienolides on interleukin-6 in MH-60 cells.J Nat Prod,2004,67(12):2070—2072.
    37. Thomas Eferth,Mary Davey,Armin Olbrieh,et a1.Activity of Drugs from Traditional Chinese Medicine toward Sensitive and MDR1一or MRP1-Overexpressing Multidrug -Resistant Human CCRF—CEM Leukemia Cells. Blood Cells,Molecules,and Diseases,2002,28(2):160-168.
    38. Alan L. Harvey. Natural products in drug discovery. Drug DiscoveryToday,2008,13 (19-20) :894-901.
    39. Newman, D.J. and Cragg, G.M. (2007) Natural products as sources of new drugs over the last 25 years. J.Nat.Prod.70, 461–477
    40. Butler, M.S. (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat.Prod.Rep.25, 475–516
    41. Chin, Y.-W. etal.(2006) Drug discovery from natural sources. AAPSJ.8, E239–E253
    42. Lam, K.S. (2007) New aspects of natural products in drug discovery. TrendsMicrobiol. 15, 279–289.
    43. Dvela M, Rosen H, Feldmann T, et al. Diverse biological responses to different cardiotonic steroids.Pathophysiology. 2007,14(34):159-66.
    44. Takai N, Ueda T, Nishida M, et al. Bufalin induces growth inhibition, cell cycle arrest and apoptosis in human endometrial and ovarian cancer cells. Int J Mol Med. 2008, 21(5):637-43.
    1. Bennett, B.G. (1982) Exposure of man to environmental nickel--an exposure commitment assessment. Sci Total Environ, 22, 203-12.
    2. Doll, R., Mathews, J.D. and Morgan, L.G. (1977) Cancers of the lung and nasal sinuses in nickel workers: a reassessment of the period of risk. Br J Ind Med, 34, 102-5.
    3. Doll, R., Morgan, L.G. and Speizer, F.E. (1970) Cancers of the lung and nasal sinuses in nickel workers. Br J Cancer, 24, 623-32.
    4. Bennett, B.G. (1984) Environmental nickel pathways to man. IARC Sci Publ, 487-95.
    5. Hartwig, A., Asmuss, M., Ehleben, I., Herzer, U., Kostelac, D., Pelzer, A., Schwerdtle, T. and Burkle, A. (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect, 110 Suppl 5, 797-9.
    6. Zoroddu, M.A., Schinocca, L., Kowalik-Jankowska, T., Kozlowski, H., Salnikow, K. and Costa, M. (2002) Molecular mechanisms in nickel carcinogenesis: modeling Ni(II) binding site in histone H4. Environ Health Perspect, 110 Suppl 5, 719-23.
    7. Costa, M., Davidson, T.L., Chen, H., Ke, Q., Zhang, P., Yan, Y., Huang, C. and Kluz, T. (2005) Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat Res, 592, 79-88.
    8. Andrew, A. and Barchowsky, A. (2000) Nickel-induced plasminogen activator inhibitor-1 expression inhibits the fibrinolytic activity of human airway epithelial cells. Toxicol Appl Pharmacol, 168, 50-7.
    9. Barchowsky, A., Soucy, N.V., O'Hara, K.A., Hwa, J., Noreault, T.L. and Andrew, A.S. (2002) A novel pathway for nickel-induced interleukin-8 expression. J Biol Chem, 277, 24225-31.
    10. Namiki, A., Brogi, E., Kearney, M., Kim, E.A., Wu, T., Couffinhal, T., Varticovski, L. and Isner, J.M. (1995) Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem, 270, 31189-95.
    11. Zhou, D., Salnikow, K. and Costa, M. (1998) Cap43, a novel gene specifically induced by Ni2+ compounds. Cancer Res, 58, 2182-9.
    12. Ding, J., Zhang, X., Li, J., Song, L., Ouyang, W., Zhang, D., Xue, C., Costa, M., Melendez, J.A. and Huang, C. (2006) Nickel compounds render anti-apoptotic effect to human bronchial epithelial Beas-2B cells by induction of cyclooxygenase-2 through an IKKbeta/p65-dependent and IKKalpha- and p50-independent pathway. J Biol Chem, 281, 39022-32.
    13. Viemann, D., Schmidt, M., Tenbrock, K., Schmid, S., Muller, V., Klimmek, K., Ludwig, S., Roth, J. and Goebeler, M. (2007) The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol, 178, 3198-207.
    14. Kaczmarek, M., Timofeeva, O.A., Karaczyn, A., Malyguine, A., Kasprzak, K.S. and Salnikow, K. (2007) The role of ascorbate in the modulation of HIF-1alpha protein and HIF-dependent transcription by chromium(VI) and nickel(II). Free Radic Biol Med, 42, 1246-57.
    15. Kang, G.S., Li, Q., Chen, H. and Costa, M. (2006) Effect of metal ions on HIF-1alpha and Fe homeostasis in human A549 cells. Mutat Res, 610, 48-55.
    16. Davidson, T.L., Chen, H., Di Toro, D.M., D'Angelo, G. and Costa, M. (2006) Soluble nickel inhibits HIF-prolyl-hydroxylases creating persistent hypoxic signaling in A549 cells. Mol Carcinog, 45, 479-89.
    17. Chen, F., Ding, M., Castranova, V. and Shi, X. (2001) Carcinogenic metals and NF-kappaB activation. Mol Cell Biochem, 222, 159-71.
    18. Huang, Y., Davidson, G., Li, J., Yan, Y., Chen, F., Costa, M., Chen, L.C. and Huang, C. (2002) Activation of nuclear factor-kappaB and not activator protein-1 in cellular response to nickel compounds. Environ Health Perspect, 110 Suppl 5, 835-9.
    19. Cruz, M.T., Goncalo, M., Figueiredo, A., Carvalho, A.P., Duarte, C.B. and Lopes, M.C. (2004) Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line. Exp Dermatol, 13, 18-26.
    20. Li, J., Davidson, G., Huang, Y., Jiang, B.H., Shi, X., Costa, M. and Huang, C. (2004) Nickel compounds act through phosphatidylinositol-3-kinase/Akt- dependent, p70(S6k)-independent pathway to induce hypoxia inducible factor transactivation and Cap43 expression in mouse epidermal Cl41 cells. Cancer Res, 64, 94-101.
    21. Huang, C., Li, J., Costa, M., Zhang, Z., Leonard, S.S., Castranova, V., Vallyathan, V., Ju, G. and Shi, X. (2001) Hydrogen peroxide mediates activation of nuclear factor of activated T cells (NFAT) by nickel subsulfide. Cancer Res, 61, 8051-7.
    22. Lu, H., Shi, X., Costa, M. and Huang, C. (2005) Carcinogenic effect of nickel compounds. Mol Cell Biochem, 279, 45-67.
    23. Cohen, S.M. and Ellwein, L.B. (1988) Cell growth dynamics in long-term bladder carcinogenesis. Toxicol Lett, 43, 151-73.
    24. Charnley, G. and Wilson, J.D. (1991) Evaluation of the form of the cell growth rate function of the two-stage model for carcinogenesis. Prog Clin Biol Res, 369, 291-301.
    25. Kowara, R., Karaczyn, A., Cheng, R.Y., Salnikow, K. and Kasprzak, K.S. (2005) Microarray analysis of altered gene expression in murine fibroblasts transformed by nickel(II) to nickel(II)-resistant malignant phenotype. Toxicol Appl Pharmacol, 205, 1-10.
    26. Alao, J.P. (2007) The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer, 6, 24.
    27. Foulkes, W.D., Brunet, J.S., Stefansson, I.M., Straume, O., Chappuis, P.O., Begin, L.R., Hamel, N., Goffin, J.R., Wong, N., Trudel, M., Kapusta, L., Porter, P. and Akslen, L.A. (2004) The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res, 64, 830-5.
    28. Shiao, Y.H., Lee, S.H. and Kasprzak, K.S. (1998) Cell cycle arrest, apoptosis and p53 expression in nickel(II) acetate-treated Chinese hamster ovary cells. Carcinogenesis, 19, 1203-7.
    29. Huang, C., Ma, W.Y., Li, J., Hecht, S.S. and Dong, Z. (1998) Essential role of p53 in phenethyl isothiocyanate-induced apoptosis. Cancer Res, 58, 4102-6.
    30. Jiang, B.H., Jiang, G., Zheng, J.Z., Lu, Z., Hunter, T. and Vogt, P.K. (2001) Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ, 12, 363-9.
    31. Gomez, L.A., de Las Pozas, A., Reiner, T., Burnstein, K. and Perez-Stable, C. (2007) Increased expression of cyclin B1 sensitizes prostate cancer cells to apoptosis induced by chemotherapy. Mol Cancer Ther, 6, 1534-43.
    32. Brummelkamp, T.R., Bernards, R. and Agami, R. (2002) A system for stableexpression of short interfering RNAs in mammalian cells. Science, 296, 550-3.
    33. Soni, D.V., Sramkoski, R.M., Lam, M., Stefan, T. and Jacobberger, J.W. (2008) Cyclin B1 is rate limiting but not essential for mitotic entry and progression in mammalian somatic cells. Cell Cycle, 7, 1285-300.
    34. Ekholm-Reed, S., Mendez, J., Tedesco, D., Zetterberg, A., Stillman, B. and Reed, S.I. (2004) Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol, 165, 789-800.
    35. Kawamura, K., Izumi, H., Ma, Z., Ikeda, R., Moriyama, M., Tanaka, T., Nojima, T., Levin, L.S., Fujikawa-Yamamoto, K., Suzuki, K. and Fukasawa, K. (2004) Induction of centrosome amplification and chromosome instability in human bladder cancer cells by p53 mutation and cyclin E overexpression. Cancer Res, 64, 4800-9.
    36. Jiang, B.H., Agani, F., Passaniti, A. and Semenza, G.L. (1997) V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res, 57, 5328-35.
    37. Shweiki, D., Itin, A., Soffer, D. and Keshet, E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 359, 843-5.
    38. Yu, H. and Yao, X. (2008) Cyclin B1: conductor of mitotic symphony orchestra. Cell Res, 18, 218-20.
    39. Langard, S. (1994) Nickel-related cancer in welders. Sci Total Environ, 148, 303-9.
    40. Shen, H.M. and Zhang, Q.F. (1994) Risk assessment of nickel carcinogenicity and occupational lung cancer. Environ Health Perspect, 102 Suppl 1, 275-82.
    41. Weinstat-Saslow, D., Merino, M.J., Manrow, R.E., Lawrence, J.A., Bluth, R.F., Wittenbel, K.D., Simpson, J.F., Page, D.L. and Steeg, P.S. (1995) Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat Med, 1, 1257-60.
    42. Roy, P.G. and Thompson, A.M. (2006) Cyclin D1 and breast cancer. Breast, 15, 718-27.
    43. Gautschi, O., Ratschiller, D., Gugger, M., Betticher, D.C. and Heighway, J. (2007) Cyclin D1 in non-small cell lung cancer: a key driver of malignant transformation. Lung Cancer, 55, 1-14.
    44. Ouyang, W., Zhang, D., Li, J., Verma, U.N., Costa, M. and Huang, C. (2009) Soluble and insoluble nickel compounds exert a differential inhibitory effect on cell growth through IKKalpha-dependent cyclin D1 down-regulation. J Cell Physiol, 218, 205-14.
    45. Berglund, P. and Landberg, G. (2006) Cyclin e overexpression reduces infiltrative growth in breast cancer: yet another link between proliferation control and tumor invasion. Cell Cycle, 5, 606-9.
    46. Costa, M., Cantoni, O., de Mars, M. and Swartzendruber, D.E. (1982) Toxic metals produce an S-phase-specific cell cycle block. Res Commun Chem Pathol Pharmacol, 38, 405-19.
    47. Salnikow, K., Davidson, T., Kluz, T., Chen, H., Zhou, D. and Costa, M. (2003) GeneChip analysis of signaling pathways effected by nickel. J Environ Monit, 5, 206-9.
    48. Salnikow, K., An, W.G., Melillo, G., Blagosklonny, M.V. and Costa, M. (1999) Nickel-induced transformation shifts the balance between HIF-1 and p53 transcription factors. Carcinogenesis, 20, 1819-23.
    49. Lee, S.H., Choi, J.G. and Cho, M.H. (2001) Apoptosis, bcl2 expression, and cell cycle analyses in nickel(II)-treated normal rat kidney cells. J Korean Med Sci, 16, 165-8.
    50. Zhang, Z., Suo, Z., Sudbo, J., Holm, R., Boysen, M. and Reith, A. (1997) Diagnostic implications of p53 protein reactivity in nasal mucosa of nickel workers. Anal Quant Cytol Histol, 19, 345-50.
    51. Pines, J. (2006) Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol, 16, 55-63.
    52. Mashal, R.D., Lester, S., Corless, C., Richie, J.P., Chandra, R., Propert, K.J. and Dutta, A. (1996) Expression of cell cycle-regulated proteins in prostate cancer. Cancer Res, 56, 4159-63.
    53. Chang, T.H. and Schlegel, R. (1996) SV40 T antigen increases the expression and activities of p34cdc2, cyclin A, and cyclin B prior to immortalization of human diploid fibroblasts. J Cell Biochem, 60, 161-72.
    54. Soria, J.C., Jang, S.J., Khuri, F.R., Hassan, K., Liu, D., Hong, W.K. and Mao, L. (2000) Overexpression of cyclin B1 in early-stage non-small cell lung cancer and its clinical implication. Cancer Res, 60, 4000-4.
    55. Hassan, K.A., Ang, K.K., El-Naggar, A.K., Story, M.D., Lee, J.I., Liu, D.,Hong, W.K. and Mao, L. (2002) Cyclin B1 overexpression and resistance to radiotherapy in head and neck squamous cell carcinoma. Cancer Res, 62, 6414-7.
    56. Shi, F.D., Zhang, J.Y., Liu, D., Rearden, A., Elliot, M., Nachtsheim, D., Daniels, T., Casiano, C.A., Heeb, M.J., Chan, E.K. and Tan, E.M. (2005) Preferential humoral immune response in prostate cancer to cellular proteins p90 and p62 in a panel of tumor-associated antigens. Prostate, 63, 252-8.
    57. Rieder, C.L. and Maiato, H. (2004) Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell, 7, 637-51.
    58. Semenza, G.L. (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 3, 721-32.
    59. Ouyang, W., Li, J., Shi, X., Costa, M. and Huang, C. (2005) Essential role of PI-3K, ERKs and calcium signal pathways in nickel-induced VEGF expression. Mol Cell Biochem, 279, 35-43.
    60. Robinson, C.J. and Stringer, S.E. (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci, 114, 853-65.
    61. Blagosklonny, M.V. (2004) Antiangiogenic therapy and tumor progression. Cancer Cell, 5, 13-7.
    62. Larcher, F., Murillas, R., Bolontrade, M., Conti, C.J. and Jorcano, J.L. (1998) VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene, 17, 303-11.
    1. Sneader, W. (1996) Drug Prototypes and Their Exploitation.Wiley, UK.
    2. Mark S. Butler.(2004)The Role of Natural Product Chemistry in Drug Discovery. J. Nat. Prod. 2004, 67, 2141-2153.
    3. Newman, D.J. and Cragg, G.M. (2007) Natural products as sources of new drugs over the last 25 years. J.Nat.Prod.70, 461–477.
    4. Butler, M.S. (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat.Prod.Rep.25, 475–516.
    5. Chin, Y.-W. etal.(2006) Drug discovery from natural sources. AAPSJ.8, E239–E253.
    6. Lam, K.S. (2007) New aspects of natural products in drug discovery. Trends Microbiol. 15, 279–289.
    7. Ganesan, A. (2008) The impact of natural products upon modern drug discovery. Curr.Opin.Chem.Biol.12, 306–317.
    8. Singh, S.B. and Barrett, J.F. (2006) Empirical antibacterial drug discovery–foundation in natural products. Biochem.Pharmacol.71, 1006–1015.
    9. Baker, D.D. etal.(2007) The value of natural products to future pharmaceutical discovery. Nat.Prod.Rep.24, 1225–1244.
    10. McChesney, J.D. (2007) Plant natural products: back to the future or into extinction? Phytochemistry ,68, 2015–2022.
    11. Rishton, G.M. (2008) Natural products as a robust source of new drugs and drug leads: past successes and present day issues. Am.J.Cardiol.101 (Suppl.), 43D– 49D.
    12. Harvey, A.L. (2001) Natural Product Pharmaceuticals: A Diverse Approach to Drug Discovery, ScripReports.PJB Publications.
    13. Charlish, P. (2008) Traditional remedies: latter day medicines. Scrip World Pharmaceutical News 3351, 31–34.
    14. Feher, M. and Schmidt, J.M. (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci.43, 218–227.
    15. Grabowski, K. and Schneider, G. (2007) Properties and architecture of drugs and natural products revisited. Curr.Chem.Biol.1, 115–127.
    16. Galm, U. and Shen, B. (2007) Natural product drug discovery: the times have never been better. Chem.Biol.14, 1098–1104.
    17. Harvey, A.L. (2000) Strategies for discovering drugs from previously unexplored natural products. DrugDis.Today5, 294–300.
    18. Lam, K.S. (2006) Discovery of novel metabolites from marine actinomycetes. Curr.Opin.Microbiol.9, 245–251.
    19. Fenical, W. and Jensen, P.R. (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat.Chem.Biol.2, 666–673.
    20. Bull, A.T. and Stach, J.E. (2007) Marine actinobacteria: new opportunities for natural product search and discovery. TrendsMicrobiol.15, 491–499.
    21. Tan, L.T. (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry68, 954–979.
    22. Harvey, A.L. (2007) Natural products as a screening resource. Curr. Opin. Chem. Biol.11, 480–484.
    23. Cox, R.J. (2007) Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org.Biomol.Chem.5, 2010–2026.
    24. Zhang, M.Q. and Wilkinson, B. (2007) Drug discovery beyond the‘rule-of-five’. Curr.Opin.Biotechnol.18, 478–488.
    25. Floss, H.G. (2006) Combinatorial biosynthesis– potential and problems. J. Biotechnol. 124, 242–257.
    26. Chang, M.C.Y. and Keasling, J.D. (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat.Chem.Biol.2, 674–681.
    27. Chemler, J.A. etal.(2007) Combinatorial mutasynthesis of ?avonoid analogues from acrylic acids in microorganisms. Org.Lett.9, 1855–1858.
    28. McAlpine, J.B. etal.(2005) Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J. Nat. Prod.68, 493–496.
    29. Kennedy, J. etal.(2007) Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl.Microbiol.Biotechnol.75, 11–20.
    30. Lefevre, F. etal.(2008) Drugs from hidden bugs: their discovery via untapped resources. Res.Microbiol.159, 153–161.
    31. Barrios-Llerena, M.E. etal.(2007) Genetic analysis of polyketide synthase and peptide synthetase genes in cyanobacteria as a mining tool for secondary metabolites. J.Ind.Microbiol.Biotechnol.34, 443–456.
    32. Gillespie, D.E. etal.(2002) Isolation of antibiotics turbomycin a and B from a metagenomic library of soil microbial DNA. Appl.Environ.Microbiol.68, 4301– 4306.
    33. Kennedy, J. (2008) Mutasynthesis, chemobiosynthesis, and back to semi-synthesis: combining synthetic chemistry and biosynthetic engineering for diversifying natural products. Nat.Prod.Rep.25, 25–34.
    34. Kopp, F. and Marahiel, M.A. (2007) Where chemistry meets biology: the chemoenzymatic synthesis of nonribosomal peptides and polyketides. Curr. Opin. Biotechnol. 18, 513–520.
    35. Lamb, D.C. etal.(2007) Cytochromes P450 and drug discovery. Curr. Opin. Biotechnol. 18, 504–512.
    36. Wilson, R.M. and Danishefsky, S.J. (2006) Small molecule natural products in the discovery of therapeutic agents: the synthesis connection. J.Org.Chem.71, 8329– 8351.
    37. Newman, D.J. (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J.Med.Chem.51, 2589–2599.
    38. Sunazuka, T. etal.(2008) Efficient total synthesis of novel bioactive microbial metabolites. Acc.Chem.Res.41, 302–314.
    39. Boldi, A.M. (2004) Libraries from natural product-like scaffolds. Curr. Opin. Chem.Biol.8, 281–286.
    40. Yao, N. etal.(2007) Synthesis of ?avonoid analogues as scaffolds for natural product-based combinatorial libraries. J.Comb.Chem.9, 668–676.
    41. Ertl, P. etal.(2008) Natural product-likeness score and its application for pri- oritization of compound libraries. J.Chem.Inf.Model.48, 68–74.
    42. Wu, S. etal.(2007) Multi-channel counter-current chromatography for high- throughput fractionation of natural products for drug discovery. J. Chromatogr .A 1180, 99–107.
    43. Quinn, R.J. etal.(2008) Developing a drug-like natural product library. J. Nat. Prod. 71, 464–468.
    44. Littleton, J. etal.(2005) Novel approaches to plant drug discovery based on high throughput pharmacological screening and genetic manipulation. LifeSci.78, 467– 475.
    45. Singh,B.etal.(2007) Highly sensitive target-based whole-cell antibacterial discovery strategy by antisense RNA silencing. Curr. Opin. Drug Discov. Dev.10, 160–166.
    46. Wang, J. etal.(2007) Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc.Natl.Acad.Sci.U.S.A.104, 7612–7616.
    47. Parsons, A.B. etal.(2006) Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell126, 611–625.
    48. Cheng, Y. etal. (2006) A causal relationship discovery-based approach to identifying active components of herbal medicine. Comput.Biol.Chem.30, 148–154.
    49. Wang, Y. etal.(2008) Discovering active compounds from mixtures of natural products by data mining approach. Med.Biol.Eng.Comput.46, 605–611.
    50. Ehrman, T.M. etal. (2007) Virtual screening of Chinese herbs with Random Forest. J.Chem.Inf.Model.47, 264–278.
    51. Ehrman, T.M. etal.(2007) Phytochemical informatics of traditional Chinese medicine and therapeutic relevance. J.Chem.Inf.Model.47, 2316–2334.
    52. Chen, X. etal.(2006) Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation. Brit.J.Pharmacol.149, 1092–1103.
    53. Xu, Q. etal. (2007) NCL-3D: a 3D nat ural compound library for structure-based drug discovery. 1st International Conference Bioinform. Biomed. Eng.ICBBEpp. 367–369.
    54. Do, Q.Y. etal.(2007) Reverse pharmacognosy: identifying biological properties for plants by means of their molecule constituents: application to meranzin. PlantaMed. 73, 1235–1240.
    55. Koch, M.A. etal.(2005) Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc.Natl.Acad.Sci.U.S.A.102, 17272–17277.
    56. No¨ren-Mu¨ller, A. etal.(2006) Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. Proc.Natl.Acad.Sci.U.S.A.103, 10606– 10611.
    57. Koch, M.A. etal. (2004) Compound library development guided by protein structure similarity clustering and natural product structure. Proc. Natl. Acad. Sci. U.S.A.101, 16721–21676.
    58. Scheck, M. etal.(2008) Synthesis of dysidiolide-inspired compound library and discovery of acetylcholinesterase inhibitors based on protein structure similarity clustering. Tetrahedron64, 4792–4802.
    59. Stockwell, B.R. (2004) Exploring biology with small organic molecules. Nature432, 846–854.
    60. Bol, D. and Ebner, R. (2006) Gene expression profiling in the discovery, optimization and development of novel drugs: one universal screening platform. Pharmacogenomics7, 227–235.
    61. Sleno, L. and Emili, A. (2008) Proteomic methods for drug target discovery. Curr.Opin.Chem.Biol.12, 46–54.
    1. Salnikow K, Costa M. Epigenetic mechanisms of nickel carcinogenesis. J Environ Pathol Toxicol Oncol 2000;19: 307-318.
    2. Rosetto FE, Turnbull JD, Nieboer E. Characterization of nickel-induced mutations. Sci Total Environ 1994;148:201-206.
    3. Huang C, Li J, Costa M, Zhang Z, Leonard SS, Castranova V, Vallyathan V, Ju G, Shi X. Hydrogen peroxide mediates activation of nuclear factor of activated T cells(NFAT) by nickel subsulfide. Cancer Res 2001;61: 8051-8057.
    4. Aleksandra Witkiewicz-Kucharczyk, Wojciech Bal. Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicology Letters 2006;162: 29-42.
    5. Harris GK, Shi X. Signaling by carcinogenic metals and metal-induced reactive oxygen species. Mutat Res 2003;533:183-200.
    6. Reinke LA, Moore DR, McCay PB. Free radical formation in livers of rats treated acutely and chronically with alcohol. Alcohol Clin Exp Res 1997;21:642-646.
    7. Shibanuma M, Kuroki T, Nose K. Stimulation by hydrogen peroxide of DNA synthesis, competence family gene expression and phosphorylation of a specific protein in quiescent Balb/3T3 cells. Oncogene 1990;5:1025-1032.
    8. Devary Y, Gottlieb RA, Lau LF, Karin M. Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol Cell Biol 1991;11:2804-2811.
    9. Nose K, Shibanuma M, Kikuchi K, Kageyama H, Sakiyama S, Kuroki T. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur J Biochem 1991;201:99-106.
    10. Yin Z, Ivanov VN, Habelhah H, Tew K, Ronai Z. Glutathione S-transferase p elicits protection againstH2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res 2000;60:4053-4057.
    11. Rincon M, Flavell RA. Transcription mediated by NFAT is highly inducible in effector CD4+ T helper 2 (Th2) cells but not in Th1 cells. Mol Cell Biol 1997;17:1522-1534.
    12. Durand DB, Shaw JP, Bush MR, Replogle RE, Belagaje R, Crabtree GR. Characterization of antigen receptor response elements within the interleukin-2 enhancer. Mol Cell Biol 1988;8:1715-1724.
    13. Serfling E, Barthelmas R, Pfeuffer I, Schenk B, Zarius S, Swoboda R, Mercurio F, Karin M. Ubiquitous and lymphocyte-specific factors are involved in the induction of the mouse interleukin 2 gene in T lymphocytes. EMBO J 1989;8:465-473.
    14. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a putative regulator of early T cell activation genes. Science 1988;241:202-205.
    15. Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 1997;15: 707-747.
    16. Huang C, Mattjus P, Ma WY, Rincon M, Chen NY, Brown RE, Dong Z. Involvement of nuclear factor of activated T cells activation in UV response: evidence from cell culture and transgenic mice. J Biol Chem 2000;275:9143-9149.
    17. Crabtree GR, Clipstone NA. Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu Rev Biochem 1994;63:1045-1083.
    18. Northrop JP, Ho SN, Chen L, Thomas DJ, Timmerman LA, Nolan GP, Admon A, Crabtree GR. NFAT components define a family of transcription factors targeted in T-cell activation. Nature 1994;369:497-502.
    19. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a putative regulator of early T cell activation genes. Science 1988;241:202-205.
    20. Shibasaki F, Price ER, Milan D, McKeon F. Role of kinases and the phosphatase calcineurin in the nuclear shuttling of transcription factor NF-AT4. Nature 1996;382: 370-373.
    21. Chow CW, Rincon M, Cavanagh J, Dickens M, Davis RJ. Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science 1997;278:1638-1641.
    22. Tsatsanis C, Patriotis C, Tsichlis PN. Tpl-2 induces IL-2 expression in T-cell lines by triggering multiple signaling pathways that activate NFAT and NF-kappaB. Oncogene 1998;17:2609-2618.
    23. Iniguez MA, Martinez-Martinez S, Punzon C, Redondo JM, Fresno M. An essential role of the nuclear factor of activated T cells in the regulation of the expression of the cyclooxygenase-2 gene in human T lymphocytes. J Biol Chem 2000;275:23627-23635.
    24. Jauliac S, Lopez-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. J Cell Biol 2002;4:540-544.
    25. Jiang H, Yamamoto S, Nishikawa K, Kato R. Anti-tumor-promoting action of FK506, a potent immunosuppressive agent. Carcinogenesis 1993;14:67-71.
    26. Singh RK, Gutman M, Reich R, Bar-Eli M. Ultraviolet B irradiation promotes tumorigenic and metastatic properties in primary cutaneous melanoma via induction of interleukin 8. Cancer Res 1995;55:3669-3674.
    27. Li J, Song L, Zhang D, Wei L, Huang C. Knockdown of NFAT3 blocked TPA-induced COX-2 and iNOS expression, and enhanced cell transformation in Cl41 cells. J Cell Biochem.
    28. Jin Ding, Jingxia Li, Chuanshu Huang. The induction of COX-2 by arsenite is through Calcinuerin/NFAT-dependent pathway and plays anti-apoptotic role in Beas-2B cells. Journal of Biological Chemistry.
    29. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998;16:225-260.
    30. Baldwin A. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996;14:649-683.
    31. Sweeney C, Li L, Shanmugam R, Bhat-Nakshatri P, Jayaprakasan V, Baldridge LA, Gardner T, Smith M, Nakshatri H, Cheng L. Nuclear factor-kappa B is constitutively activated in prostate cancer in vitro and is overexpressed in prostatic intraepithelial neoplasia and adenocarcinoma of the prostate. Clin Cancer Res 2004;10:5501-5507.
    32. Cruz MT, Con?alo M, Figueiredo A, Carvalho AP, Duarte CB, Lopes MC. Contact sensitizer nickel sulfate activates the transcription factors NF-κB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line. Exp Dermatol 2004;13:18-26.
    33. Denkhaus E, Salnikow K. Nickel essentiality, toxicity and carcinogenicity of nickel compounds. Crti Rev Oncol Hematol 2002;42:35-56.
    34. Goebeler M, Roth J, Brocker EB, Sorg C, Schulze-Osthoff K. Activation of nuclear factor-kappa B and gene expression in human endothelial cells by the common haptens nickel and cobalt. J Immunol 1995;155:2459-2467.
    35. Kasprzak KS, Sunderman FW Jr., Salnikow K. Nickel carcinogenesis. Mutat Res 2003;533:67-97.
    36. Jin Ding, Jingxia Li, Dongyun Zhang, Lun Song, Caifang Xue, Chuanshu Huang. Essential role of IKKβ/p65NFkB in COX-2 induction by Nickel compounds in human Beas-2B cells. Cancer Research .(Submitted).
    37. Lewis JB, Wataha JC, McCloud V:Au(III), Pd(II), Ni(II), and Hg(II) alter NF kappa B signaling in THP1 monocytic cells. J Biomed Mater Res A. 2005;74:474-481.
    38. Boislève F, Kerdine-R?mer S, Rougier-Larzat N, Pallardy M. Nickel and DNCB induce CCR7 expression on human dendritic cells through different signaling pathways: role of TNF-αand MAPK. J Invest Dermatol 2004;123:494-502.
    39. Govindarajan B, Klafter R, Miller MS, Mansur C, Mizesko M, Bai X, LaMontagne K Jr, Arbiser JL. Reactive oxygen-induced carcinogenesis causes hypermethylation of p16(Ink4a) and activation of MAP kinase. Mol Med 2002;8:1-8.
    40. Mizuashi M, Ohtani T, Nakagawa S:Redox imbalance induced by contact sensitizers triggers the maturation of dendritic cells. J Invest Dermatol. 2005; 124:579-8.
    41. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999;15:551-578.
    42. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WGJ. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001;292:464-468.
    43. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292:468-472.
    44. Yu F, White SB, Zhao Q, Lee FS. HIF-1αbinding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA 2001;98:9630-9635.
    45. McNeill LA, Hewitson KS, Claridge TD, Seibel JF, Horsfall LE, Schofield CJ. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803. Biochem J 2002;367:571-575.
    46. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transcription domain a hypoxic switch. Science 2002;295:858-861.
    47. Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolitic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994;269:23757-23763.
    48. Garayoa M, Martinez A, Lee S, Pio R, An WG, Neckers L, Trepel J, Montuenga LM, Ryan H, Johnson R, Gassmann M, Cuttitta F. Hypoxia-inducible factor-1 (HIF-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol Endocrinol 2000;14:848-862.
    49. Costa M, Yan Y, Zhao DJ, Salnikow K. Molecular mechanisms of nickel carcinogenesis: gene silencing by nickel delivery to the nucleus and gene activation/inactivation by nickel-induced cell signaling. J Environ Monit 2003; 5:222-223.
    50. Salnikow K, Davidson T, Zhang QW, Chen LC, Su W, Costa M. The involvement of hypoxia-inducible transcription factor-1-dependent pathway in nickel carcinogenesis. Cancer Res 2003;63:3524-3530.
    51. Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci 2000;97:9082-9087.
    52. Cangul H, Salnikow K, Yee H, Zagzag D, Commes T, Costa M. Enhanced overexpression of an HIF-1/hypoxia-related protein in cancer cells. Environ Health Perspect 2002;110(Suppl.5):783-788.
    53. Salnikow K, Davidson T, Kluz T, Chen H, Zhou D, Costa M. GeneChip analysis of signaling pathways effected by nickel. J Environ Monit 2003;5:206-209.
    54. Huang SM, Schonthal AH, Stallcup MR. Enhancement of p53-dependent gene activation by the transcriptional co-activator Zac1. Oncogene 2001;20:2134-2143.
    55. Konstantin S, Steven PD, Richard KB, Anatoly Z,James MP, and Kazimierz SK. Depletion of Intracellular Ascorbate by the Carcinogenic Metals Nickel and Cobalt Results in the Induction of Hypoxic Stress. The Journal Of Biological Chemistry 2004;279:40337-40344.
    56. Li J, Davidson G, Huang Y, Jiang BH, Shi X, Costa M, Huang C. Nickel compounds act through phosphatidylinositol-3-kinase/Akt-dependent, p70S6k-independent pathway to induce hypoxia inducible factor transactivation and Cap43 expression in mouse epidermal C141 cells. Cancer Res 2004;64:94-101.
    57. Pennisi E. Behind the scenes of gene expression. Science2001;293:1064-1067.
    58. Hernandez-Boussard T, Rodriguez-Tome P, Montesano R, Hainaut P. IARC p53 mutation database. a relational database to compile and analyze p53 mutations in human tumors and cell lines. Hum Mutat 1999;14:1-8.
    59. Weghorst CM, Dragnev KH, Buzard GS, Thorne KL, Vandeborne GF, Vincent KA, Rice JM. Low incidence of point mutations detected in the p53 tumor suppressor gene from chemically induced rat renal mesenchymal tumors. Cancer Res 1994;154:215-219.
    60. Salnikow K, Costa M, Yan Y, Zhao D, Salnikow K. Molecular mechanisms of nickel carcinogenesis. gene silencing by nickel delivery to the nucleus and gene activation/inactivation by nickel-induced cell signaling. J Environ Monit 2003;5:206-209.
    61. Salnikow K, An WG, Melillo G, Blagosklonny MV, Costa M. Nickel-induced transformation shifts the balance between HIF-1 and p53 transcription factors. Carcinogenesis 1999;20:1819-1823.
    62. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature 1998;392:405-408.
    63. Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 1999;68:821-861.
    64. Kouzarides T. Transcriptional control by the retinoblastoma protein. Semin Cancer Biol 1995;6:91-98.
    65. Lin X, Dowjat WK, Costa M. Nickel-induced transformation of human cells causes loss of the phosphorylation of the retinoblastoma protein. Cancer Res 1994;54:2751-2754.
    66. Trapasso F, Krakowiak A, Cesari R, Arkles J, Yendamuri S, Ishii H, Vecchione A, Kuroki T, Bieganowski P, Pace HC, Huebner K, Croce CM, Brenner C. Designed FHIT alleles establish that Fhit-induced apoptosis in cancer cells is limited by substrate binding. Proc Natl Acad Sci 2003;100:1592-1597.
    67. Kowara R, Karaczyn A, Fivash MJ, Kasprzak KS. in vitro inhibition of the enzymatic activity of tumor suppressor FHIT gene product by carcinogenic transition metals. Chem Res Toxicol 2002;15:319-325.
    68. Kowara R, Salnikow K, Diwan AB, Bare RM, Waalkes MP, Kasprzak KS. Reduced Fhit protein expression in nickel-transformed mouse cells and innickel-induced murine sarcomas. Mol Cell Biochem 2004;255:195-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700