上海地区臭氧数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类社会的快速发展使得环境问题日益凸显,其中城市空气污染更是最主要的问题之一。上海作为中国的经济最发达城市,也是2010年世界博览会的承办城市,同样也面临着臭氧超标、灰霾等空气污染问题。本文在对2010年世博会期间上海地区几次污染过程中臭氧等污染物统计分析的基础上,采用耦合城市冠层模型(UCM)的中尺度数值模式WRF-Chem对污染个例进行数值模拟研究,并利用该模式对臭氧光化学反应前体物氮氧化物(NOx)和挥发性有机物(VOCs)的排放量以及区域污染物排放进行敏感性测试。主要工作及结论如下:
     (1)通过对上海世博会期间三个监测站点几次空气污染过程中各污染物浓度的平均日变化进行统计分析发现,臭氧浓度的日变化呈单峰单谷型变化,最低值出现在清晨5-6时,浓度峰值则在14时左右出现;颗粒物与NOx的日浓度变化有较好的一致性,均受早晚车流高峰影响呈双峰型分布,晚高峰相对早高峰浓度较低且不同站点间出现的时间及峰值浓度存在差异。NOx和O3浓度的日变化存在显著的负相关,NOx的浓度峰值要早于O3峰值的出现,滞后时间一般在5h以上,在此期间,NOx在太阳辐射作用下发生一系列光化学反应而被消耗,同时大量的臭氧迅速生产。NOx为O3的形成提供了物质条件。
     (2)运用WRF-Chem模式就上海4次高浓度臭氧污染过程进行了数值模拟试验,并探讨了臭氧污染与风、温、湿等气象要素的关系。结果表明,模式对气象场具有较强的模拟能力。在污染物的模拟上,臭氧浓度模拟的结果与实测值有很好的一致性,氮氧化物和颗粒物PM2.5的模拟在位于市中心地区的静安七一中学站结果与实际情况基本吻合,城郊站的模拟则存在一定误差,明显低估了实际污染。此外,气象要素对臭氧浓度的变化具有重要作用。强太阳辐射、高温度、低相对湿度都是臭氧污染形成的有利环境条件。高风速对局地臭氧有扩散作用。同时,随着气流风场的变化,臭氧的浓度分布往下风向区域发展。臭氧的时空分布与近地面温度场、相对湿度场以及风场的配置有很好的一致性。高浓度臭氧区域对应了高温度区、低相对湿度区和风场辐合区。
     (3)利用WRF-Chem模式,就一次臭氧超标个例设计几组灵敏性试验,研究不同的NOx和VOCs排放量对臭氧浓度的影响。灵敏性试验结果对比发现,在现有排放清单基础上,VOCs源排放不变的情况下,NOx排放增加臭氧浓度反而减少;保持NOx排放不变时,臭氧浓度随着VOCs排放的增加而增加,说明了上海地区臭氧的生成对VOCs更为敏感。此外,为研究臭氧在垂直空间的输送,设置一组仅增加近地层臭氧前体物的对比试验,结果表明臭氧在垂直空间上存在对流交换,并且在不同时刻不同站点这种垂直交换存在一定差异,且以午间时刻垂直对流最强。这是由于在太阳辐射作用下,不均匀的下垫面热力分布引起了局地湍流强度的差异。
     (4)对长三角区域的排放源进行几组情景试验,分别对长三角区域内上海地区各方向上的排放源进行零排放处理,并以此探讨了臭氧的区域输送。情景试验的结果表明上海周边地区的污染物减排确实能有效降低上海地区的臭氧浓度,特别是臭氧的浓度峰值。在不同的风场影响下,上海地区的臭氧浓度对各个方向的排放源呈现不同的敏感性,上风向排放源对下风向的臭氧分布影响最大。同时,根据距离的远近,排放源的影响程度也有所差异,上海周边地区的排放源对上海远郊地区的影响要大于上海中心城区。情景试验较好地呈现了在风场背景下,上海周边地区污染源对上海本地臭氧浓度的影响,为区域减排措施的建立提供了科学的研究途径。
The rapid development of human society makes the environmental problems more and more notable, of which the urban air pollution is one of the most important problems. Air pollution like ozone excess and haze commonly occurred in Shanghai, the most economically developed city of China and the host city of the World Expo 2010.This paper analyses statistically on the ozone pollution in Shanghai during the World Expo 2010, based on which, the mesoscale numerical model WRF-Chem coupled with urban canopy model (UCM) was used to do numerical simulation research on the pollution cases and sensitivity test on the emission of NOx、VOCs and regional pollutants. The main researches and conclusions can be summarized as:
     (1) According to the statistic analysis of pollutant concentration diurnal variations the results were got, the diurnal variations of ozone concentrations are characterized by a unimodal curve with the minimum and maximum concentration occurred at 5-6 o'clock and 14 o'clock respectively. There is a good consistency between particles and the diurnal variation of NOx, both of which show a double-peak under the effects of vehicles in rush hours. Concentrations of evening peak are lower than those of morning peak, while time and peak concentrations of pollutants differ among stations. A negative correlation was found between NOx and O3 concentrations in diurnal variation as peak concentration of NOx appears earlier than O3, with the lag time being less than 5hours, during which NOx was consumed by a series of photochemical reactions with solar radiation. Meanwhile, quantities of O3 were generated rapidly. In a word, NOx laid material conditions for the generation of O3.
     (2) WRF-Chem numerical model was used to simulate 4 high concentration ozone pollution events, and the relationship between ozone pollution and meteorological elements such as wind, temperature, humidity and so on was also discussed. The results show that the numerical model has a strong ability of simulating meteorological field. Meanwhile, ozone simulations and observations have a good consistency; the simulations of NOx and PM2.5 concentrations are nearly coincide with observations at Jingan station sitting in urban area. But the simulations in suburban stations are obviously lower than observations. In addition, Meteorological elements play an important role in ozone concentrations variation. Strong shortwave radiation, high temperature and low humidity are favorable to O3 formation. High wind speed has diffusion effect in ozone variation, and the distribution of ozone tend to downwind direction along with the wind field changes. There is a good consistency between ozone special distribution and meteorological fields like temperature field, humidity field and wind field. High ozone concentration area matches high temperature, low humidity and wind convergence zone.
     (3) Several sensitivity experiments were done by using WRF-Chem to research the effects on ozone concentrations with different emission of NOx and VOCs. The results of the sensitivity experiments shows that, based on the recent emission list, keeping VOCs emission constant the ozone concentrations reduce as NOx emission increases, while keeping NOx emission constant the ozone concentrations increases as VOCs emission increases, which means the ozone generation in Shanghai is more sensitive to VOCs emission than that of NOx. Furthermore, in order to study the ozone transport in vertical space a contrast test was added. The results show that the ozone exchanges in vertical space are different at different time and places, and the exchange is strongest at noon. That is because uneven surface heat distribution due to solar radiation leads to different local turbulence.
     (4) In order to study the regional transport of ozone, several scene experiments were done with different emission reduction schemes by using WRF-Chem numerical model. The experiments show that the emission reduction of pollutants in surrounding areas of Shanghai can effectively reduce the ozone concentration in Shanghai, especially the concentration peak. With different wind field, the ozone concentration appears various reactions to emissions of different direction, of all directions emissions from upwind have the greatest contribution to local ozone concentrations. Meanwhile, the influence of pollutant emission varies to the distances from Shanghai center. The pollutant emissions of Shanghai surrounding area have more effect on Shanghai suburban districts than Shanghai urban districts. The scene experiments well present the impact of pollutant emissions emitted by surrounding areas on the local ozone concentrations in Shanghai, under the background of wind field. It provides scientific research approaches for the establishment of regional emissions reduction measures.
引文
[1]Haggen-Smit A J. Chemistry and physiology of Los Angeles Smong. Industrial. Engineering, 1952,44: 1342-1346.
    [2]Wang T., Vincent T. F. Cheung M. A., et al. Ozone and related gaseous pollutants in the boundary layer of eastern China: Overview of the recent measurements at a rural site. Geophysical research letters,2001,28(12):2373-2376.
    [3]王会详,唐孝炎,王木林,等.长江三角洲痕量气态污染物的时空分布特征.中国科学(D辑),2003,33(2):114-118.
    [4]王庚辰.大气臭氧层和臭氧洞.北京:气象出版社2003.
    [5]唐孝炎,张远航,邵敏,大气环境化学(第二版).北京:高等教育出版社,2006.
    [6]王雪松,李金龙.人为源排放VOC对北京地区臭氧生成的贡献.中国环境科学,2002,22(6):501-505.
    [7]程麟生.中尺度大气数值模式和模拟.北京:气象出版社,1994.
    [8]ENVIRON. User's guide for the Comprehensive Air Quality Model with Extensions(CAMx). Version 3.00. Noavto, California: ENVIRON International Corporation,2000.
    [9]Byun D W, Ching J K S. Science algorithms of the EPA models - 3 community multiscale air quality (CMAQ) modeling system. EPA/600/R - 99/030, USEPA, March 1999.
    [10]Robin L D, Byun D W, Novak J H, et al. The nest generation of integrated air quality modeling: EPA' s models- 3. Atmospheric Environment,1996,30(2):1925-1938.
    [11]Brulfer, G., Galvez O., Yang F., et al. A regional modeling study of the high ozone episode of June 2001 in southern Ontario. Atmospheric Environment,2007,41(18):3777-3788.
    [12]Chen D.S., Cheng S.Y., Liu L.,et al. An integrated MM5-CMAQ modeling approach for assessing trans-boundary PM10 contribution to the host city of 2008 Olympic summer games—Bejing, China, atmospheric environment,2007,41:1237-1250.
    [13]邓伟,陈怀亮,杨海鹰,等. Models-3/CMAQ模式对郑州市大气污染物的预报分析研究.气象与环境科学,2007,30(1):54-57.
    [14]李莉,陈长虹,黄海英.应用Models-3/CMAQ研究长三角区域大气污染及输送.上海环境科学,2007,26(4):159-165.
    [15]王益柏,费建芳,黄小刚.应用Models-3/CMAQ模式对华北地区一次强沙尘天气的研究初探.气象,2009,35(6):46-53.
    [16]Geng Fuhai, Zhao Chunsheng, Tang Xu, et, al. Analysis of ozone and VOCs measured in Shanghai:A case study. Atmospheric Environment 41,2007:989-1001.
    [17]G.A. Grell, S.E. Peckham, R. Schmitz, et al. Fully coupled "online" chemistry within the WRF model,Atmospheric Environment 39 (2005) 6957-6975.
    [18]Xuexi Tie, Sasha Madronich, GuoHui Li, et, al. Characterizations of chemical oxidants in Mexico City: A regional chemical dynamical model (WRF-Chem) study, Atmospheric Environment 41,2007,1989-2008.
    [19]韩素芹,冯银厂,边海,等.天津大气污染物日变化特征的WRFChem数值模拟.中国环境科学,2008,28(9):828-832.
    [20]Wang Xuemei, Wu Zhiyong, Liang Guixiong. WRF/CHEM modeling of impacts of weather conditions modified by urban expansion on secondaty organic aerosol formation over Pearl River Delta. Particuology,7,2009,384-391.
    [21]赵春生,彭丽,孙爱东,等.长江三角洲地区对流层臭氧的数值模拟研究.环境科学学报,2004,24(3):525-533.
    [22]蒋维楣,蔡晨霞,李昕.城市低层大气臭氧生成的模拟研究.气象科学,2001,21(2):154-161.
    [23]李杰,吴其重,高超,等.东亚春季边界层臭氧的数值模拟研究.环境科学研究,2009,22(1):1-6.
    [24]王自发,谢付莹,王喜全,等.嵌套网格空气质量预报模式系统的发展与应用.大气科学,2006,30(5):778-790.
    [25]陈仁杰,陈秉衡,阚海东.上海市近地面臭氧污染的健康影响评价.中国环境科学,2010,30(5):603-608.
    [26]张爱东,王晓燕,修光利.上海市中心城区低空大气臭氧污染特征和变化状况.环境科学与管理,2006,31(6):21-26.
    [27]谈建国,陆国良,耿福海,等.上海夏季近地面臭氧浓度及其相关气象因子的分析和预报.热带气象学报,2007,23(5):515-520.
    [28]刘明花,乐群,吕劲文.上海市城郊臭氧浓度变化分析及模拟预报.环境科技,2008,21(6):1-4.
    [29]Fuhai Geng, Chunsheng Zhao, Xu Tang, et al. Analysis of ozone and VOCs measured in Shanghai: A case study. Atmospheric Environment 412007:989-1001.
    [30]Ooyama K. V.,1990:A thermodynamic foundation for modeling the moist atmosphere, J. Atmos. Sci.,47,2580-2593.
    [31]Laprise R.,1992:The Euler Equations of motion with hydrostatic pressure as as independent variable, Mon. Wea. Rev.,120,197-207.
    [32]Wicker, L. J., and R. B. Wilhelmson,1995:Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci.,52,2675-2703.
    [33]Lin, Y.-L., R. D. Farley, and H. D. Orville,1983:Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor.,22,1065-1092.
    [34]Rutledge, S. A., and P. V. Hobbs,1984:The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Ⅻ: A diagnostic modeling study of precipitation development in narrow cloud-frontal rainbands. J. Atmos. Sci.,20,2949-2972.
    [35]Hong, S.-Y., J. Dudhia, and S.-H. Chen,2004: A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation, Mon. Wea. Rev.,132, 103-120.
    [36]Dudhia, J., S.-Y. Hong, and K.-S. Lim,2008:A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. J. Met. Soc. Japan, in press.
    [37]Betts, A. K.,1986: A new convective adjustment scheme. Part Ⅰ: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc.,112,677-691.
    [38]Betts, A. K., andM. J. Miller,1986:A new convective adjustment scheme. Part Ⅱ: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc.,112,693-709.
    [39]Grell, G. A., and D. Devenyi,2002:A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett,29(14), Article 1693.
    [40]Noilhan, J., and S. Planton,1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev.,117,536-549.
    [41]Noh, Y., W.G. Cheon, S.-Y. Hong, and S. Raasch,2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor.,107,401-427.
    [42]Mellor, G. L., and T. Yamada,1982:Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys.,20,851-875.
    [43]Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura,2001:A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor.,101,329-358.
    [44]Kusaka, H. and F. Kimura,2004:Coupling a single-layer urban canopy model with a simpleatmospheric model:Impact on urban heat island simulation for an idealized case.J. Meteor.Soc. Japan,82,67-80.
    [45]Wesley, M.L.,1989: Parameterization of surface resistance to gaseous dry deposition in regional numerical models. Atmos. Environ.,16,1293-1304.
    [46]Erisman, J.W., van Pul, A., Wyers, P.,1994: Parameterization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos. Environ.,28, 2595-2607.
    [47]Chang, J.S., F. S. Binkowski, N. L. Seaman, J. N. McHenry, P. J. Samson, W. R. Stockwell, C. J. Walcek, S. Madronich, P. B. Middleton, J. E. Pleim, H. H. Lansford,1989: The regional acid deposition model and engineering model. State-of-Science/Technology, Report 4, National Acid Precipitation Assessment Program, Washington, DC.
    [48]Stockwell, W.R., P. Middleton, J. S. Chang, X. Tang,1990:The second-generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res.,95, 16343-16367.
    [49]Middleton, P., W. R. Stockwell, W. P. L. Carter,1990: Aggregation and analysis ofvolatile organic compound emissions for regional modeling. Atmos. Environ.,24A,1107-1133.
    [50]Madronich, S.,1987:Photodissociation in the atmosphere,1, actinic flux and the effects of ground reflections and clouds. J. of Geophys. Res.,92,9740-9752.
    [51]Jones, A., Roberts, D.L., Slingo, A.,1994. A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature,370,450-453.
    [52]Ruggaber, A., R. Dlugi, T. Nakajima,1994: Modeling of radiation quantities and photolysis frequencies in the troposphere. Journal of Atmospheric Chemistry,18,171-210.
    [53]Boucher, O., and U. Lohmann,1995:The sulfate-CCN-cloud albedo effect, A sensitivity study with two general circulation models. Tellus,47B,281-300.
    [54]Ackermann, I.J., H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski, U. Shankar,1998: Modal aerosol dynamics model for Europe: development and first applications. Atmos. Environ., 32 (17),2981-2999.
    [55]Binkowski, F.S., U. Shankar,1995:The regional particulate matter model,1. Mode description and preliminary results. J. of Geophys. Res.,100,26191-26209.
    [56]Kulmala, Laaksonen, Pirjola,1998:Parameterization for sulphuric acid/water nucleation rates.J. of Geophys. Res.,103,8301-8307.
    [57]Whitby, E.R., P.H. McMurry, U. Shankar, F. S. Binkowski,1991:Modal aerosol dynamics modeling, Rep.600/3-91/020, Atmospheric Research and Exposure Assessment Laboratory, US Environmental Protection Agency, Research Triangle Park, NC,1991 (Available as NTIS PB91-1617291AS from National Technical Information Service, Springfield, VA).
    [58]Saxena, P., A.B., Hudischewskyj, C. Seigneur, J. H. Seinfeld,1986: A comparative study of equilibrium approaches to the chemical characterization of secondary aerosols. Atmos. Environ., 20,1471-1483.
    [59]Odum, J.R., T. Hoffmann, F. Bowman, D. Collins, R. C. Flagan, J. H. Seinfeld,1996: Gas/particle partitioning and secondary organic aerosol yields. Environmental Science Technology, 30,2580-2585.
    [60]http://www.envir.gov.cn/law/airql.htm
    [61]唐文苑,赵春生,耿福海,等.上海地区臭氧周末效应研究中国科学(D辑).2009,39(1):99-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700