燃料电池/燃气轮机混合动力系统数值模拟与催化燃烧实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从上个世纪末开始,各国科研人员就开始了对熔融碳酸盐燃料电池/微型燃气轮机(MCFC/MGT)混合动力系统的研究。通过对这种新型的混合动力系统的研究,人们发现燃料电池/燃气轮机混合动力系统具有传统动力系统所不具有的优点,其能量转化效率和污染物的排放水平都达到了令人满意的水平。因此,目前这种混合动力系统已成为各国重点发展的新能源技术。在本文中,首先应用数学手段建立了燃料电池及混合动力系统的仿真模型,对电池和系统在设计工况、非设计工况的稳态和动态特性进行了详细的分析。燃料电池的尾气中有部分没有完全反应的燃料,这部分燃料具有可燃成分含量少、流动速度快等特点,这些特点使得在混合动力系统中需要应用催化燃烧。催化燃烧室可以将这部分能量继续转化,从而可以提高系统效率、改善系统性能、降低系统污染物排放,因此在混合动力系统中必需采用催化燃烧室。同时,催化燃烧室的应用还为混合动力系统的燃料多样化提供了必要的基础。在对催化燃烧室进行了详细的理论分析的基础上,设计搭建了催化燃烧实验平台,对催化燃烧进行了深入的实验研究。本文所做的工作为MCFC/MGT混合动力系统的实际开发和应用提供了必要的理论指导和实验基础。本文主要在以下几个方面取得了一定的进展。
     (1)燃料电池数学模型的建立
     基于质量、能量、动量守恒原理和热力学特性,考虑各种极化损失、传热形式及详细的气体特性,建立了熔融碳酸盐燃料电池的数学模型。在模型的建立过程中考虑了热力学和电化学两个方面,考虑了电流密度场与温度场之间的偶合关系。考虑了反应气体的温度、流量、组分及相应的热力学特性沿流动方向的变化,合理的处理温度场和电流密度场、反应气体组分场的耦合关系。在热力学模型的建立过程中不仅考虑了各种传热形式导致的热量传递,同时也考虑了由传质所引起的能量转移。在电化学模型的建立过程中,计算极化特性时使用的是由实验回归拟合数据。在对混合动力系统的研究中,建立考虑了如此多参数详细的燃料电池模型并不多见。详细的燃料电池模型可以为系统特性变化时分析燃料电池的具体反应特性提供必要的条件。所建立的数学模型中包括非线性的偏微分方程,温度和流量之间存在耦合关系。为了提高数学模型的求解速度实现模型的快速求解,引入了容阻特性建模和分布-集总参数法将复杂的偏微分方程进行了转换,建立了适用于快速动态仿真的电池模型。利用该模型分析了某一工况下熔融碳酸盐燃料电池的性能,通过与实验数据的对比表明,该模型可以反映熔融碳酸盐燃料电池的特性。
     (2)混合动力系统模型建立及变负荷特性分析
     在系统设计过程中考虑采用增压型MCFC。由MCFC对工作压力的要求及模块化设计的特点,在本文中突破了传统的基于MCFC的混合动力系统的设计,而是采用了基于现有燃气轮机的混合动力系统的设计。建立了系统的稳态、动态模型,对混合动力系统大范围工况变动情况下的热力系统特性、控制对象调节等特性进行了研究,揭示出混合动力系统特性变化的机理和规律。对系统采用不同的运行方式时的非设计工况特性进行了比较,分析了不同运行方式对系统的影响。对系统在启动、关机、负荷变化等的动态特性进行了研究。针对所研究系统的特点,对系统启动关机过程中可能出现的问题及对系统产生的影响进行了分析,并提出了相应的解决策略。为将系统从冷态启动到正常运行及从正常运行到关机,在系统中加入了一系列的辅助设备,以保证系统安全正常的启动关机。针对所研究的系统,提出了详细的启动关机步骤,并应用数学模型对系统启停过程中的特性进行了研究,为实验系统的控制与管理提供借鉴。
     (3) MCFC/MGT混合动力系统催化燃烧特性研究
     应用数学的手段建立了催化燃烧室的数学模型,所建立的数学模型是基于详细的化学反应动力学的分布参数的微通道模型,并将模型计算结果与实验结果进行了对比,确认了模型的准确性。应用数学模型,分析了混合动力系统在启动、设计工况及非设计工况运行时催化燃烧室的反应特性及不同运行参数和燃料成分对燃烧室特性的影响。在数值模拟的基础上搭建了催化燃烧实验平台,对催化燃烧室的特性进行了实验分析。在所搭建的催化燃烧实验平台上,对混合动力系统在不同工况时燃烧室的工作特性进行了研究。应用了七种不同的金属氧化物催化剂,针对混合动力系统在启动和正常运行时催化燃烧的反应特性进行了实验研究。分析了不同的运行参数(如入口温度、流速等)对燃料转化率的影响,研究了不同燃料及混合气在应用不同的催化剂时的反应特性。所获得的实验结果,对于催化燃烧室的应用及混合动力系统的建立都具有重要意义。
Many researchers have begun the research on the molten carbonate fuel cell/micro-gas turbine (MCFC/MGT) since the end of last century. People found the MCFC/MGT hybrid system has the advantages different from traditional power system, in which the energy conversation rate and level of pollution emission all reached a satisfactory level according to the research on this new kind of hybrid system. Nowadays many countries have focused on the development of this new kind of energy technologies. In this paper, the simulation modeling of MCFC/MGT hybrid system has been built up firstly. And then the performance of MCFC and hybrid system on design and off-design conditions have been analyzed carefully using the mathematic modeling. There is some fuel in the exhaust of fuel cell with the characteristics of low heat value and higher flowing speed. These characteristics make the catalytic combustor is necessary to the hybrid system. The whole efficiency can be higher, the properties can be improved and the contamination outlet can be decreased when the catalytic combustion techinique is connected with the hybrid system. At the same time the catalytic combustor can provide the base for the use of different fuel. Based on the theoretical analysis in detail, a experimental platform has been built up for the the purpose of deeply understanding of the catalytic combustion. Some experiments have been performed on the experimental platform. The work performed in this paper can provided the necessary theoretical guide and experimental base for the development and use of MCFC/MGT hybrid system. Some developments have been achieved as follows.
     (1) Numerical model of fuel cell
     A one-dimensional mathematical model for molten carbonate fuel cell has been built. The mass, monument, energy, specifies mass balance equations and thermodynamic properties have been included, at the same time the different polarization loss, heat conversation ways and detailed gas characteristics have been considered in the modeling. During the building of modeling the thermodynamic and electrochemical characteristics have been considered, the coincidence between the current density field and temperature field were also included. The temperature, flux, compositions and related thermal characteristics will change along the flowing direction which should be considered. And the solution of coupling relation between temperature field, current density field and gas compositions is very important. The energy transfer methods considered include not only different heat transfer methods but the energy transfer connected with the mass transfer during the foundation of the thermodynamic mdel. The data for the polarization properties are from the experiment for the electrochemical model. The fuel cell model with so detailed parameters is rare for the study of hybrid system. The detailed fuel cell model can provide the detailed information about the fuel cell when the properties of the hybrid system changed. In the mathematic modeling there exists non-linear partial differential equations and the temperature and flow exits coupling relationship which cause the difficulties to solve the modeling quickly. Using the V-R (volume-resistance) modeling and distributed and lumped parameter method the partial differential equations for cell mass and momentum balance can be changed to ordinary differential equations which met the demand for real-time dynamic simulation. Steady state and dynamic characteristics of MCFC have been analyzed using the model. The results indicate that the V-R characteristic modeling method is valuable and viable in the MCFC system, and the model can be used for the simulation of MCFC.
     (2) Foundation of hybrid system and variable load performance analysis
     The pressurized MCFC has been considered during the system design. The traditional design method based on MCFC has been broken through instead of using a more meaningful hybrid system design method based on a commercial available micro-gas turbine according to the MCFC working pressure requirement and modular design feature. Establishing the steady-state and dynamic model of the hybrid system, the thermal characteristic, regulation of controlled object and other characteristics have been studied for the hybrid system under wide range working condition changes. The mechanism and laws of hybrid system characteristics changes has been revealed. The non-design operation characteristics of hybrid system have been compared under different operation methods. The effects of different operation methods on the system characteristics were analyzed. The dynamic characteristics of hybrid system at starup, shutdown and load change have been studied. The problems and impact on the system occurred during the startup and shutdown have been analyzed according to the characteristics of the system. The corresponding solution strategies have also been mentioned. A series of auxiliary equipment have been added into the system for the system startup and shutdown, which can ensure the system security. The detailed steps for the system startup and shutdown have been presented for the studied system, and the system statup and shutdown characteristics have been calculated using the mathmatics model. This work can become a reference to the system control and management for the experimental system.
     (3) Research on the characteristics of catalytic combustion in the MCFC/MGT hybrid system
     The concept has ever been mentioned for the research of MCFC/MGT hybrid system, but the associated experiments have never been done. In this paper, a mathematical model of catalytic combustion chamber has been built. The mathematical model is a micro-channel model of one-dimensional distributed parameters based on a detailed chemical kinetic parameters. The accuracy of mathematic model was confirmed according to the comparison between the calculations and experimental results. The operations of catalytic combustion chamber including startup, design point and off-design point have been analyzed, at the same time the effects of different fuel compositions and operation parameters on the operations of catalutic combustion chamber have also been studied based on the model. The catalytic combustion experimental platform has been built for the experimental analysis to the catalytic combustion based on the results from calculations. The working characteristics of catalytic combustion burner of hybrid system under different working conditions have been analyzed on the experimental platform. The catalytic combustion reaction characteristics for the system starup and normal operation are studied experimentally for 7 different kinds of mental oxide catalysts. The effects of different operation parameters, such as inlet temperature, flow rate and so on, on the fuel conversion rate are analyzed; the reaction characteristics of different fuels and synthetic gas are studied when using different catalyst. The experimental results are important to the use of catalytic combustor and the foundation of the hybrid system.
引文
[1] EIA. World consumption of promary energy by selected country groups(BTU),EIA,2001
    [2]朱顺清.燃料电池的应用及研究进展[J].天中学刊,2005, 20 (2):22-24
    [3] Christoph stiller. Design, operation and control modeling of SOFC/GT hybrid systems[D], Doctoral theses,2006
    [4] Norman T. Holcombe.NETL Hybrid Program. U.S. DOE/FETC
    [5] Robert Selman.Molten salt fuel cells—Technical and economic challenges [J]. Journal of Power Sources, 2006, 160(2): 852-857
    [6] Williams,J.P. Strakey,Subhash C.U.S. distributed generation fuel cell program[J]. Journal of Power Sources , 2004, 131 (1) : 79-85
    [7]吴承伟,张伟.国外燃料电池研究动向[J].能源工程,2003(2):1-5
    [8]孔宪文,桂敏言,冯玉全.燃料电池发电技术现状与前景[J].东北电力技术,2002(3):28-33
    [9] Grillo O, Magistri L, Massardo A F. Hybrid systems for distributed power generation based on pressurization and heat recovering of an existing 100 kW molten carbonate fuel cell [J]. Journal of Power Sources, 2003, 115(2): 252-267
    [10] Paolo E, Santangelo,Paolo Tartarini. Fuel cell system and traditional technologies. Part I: experimental CHP approach[J]. Applied Thermal Enginerring, 2007, 27(89): 1278-1284
    [11] János M. Beér.High efficiency electric power generation:The environmental role[J].Progress in Energy and Combustion Science, 2007, 33(2): 107-134
    [12] EG&G technical services, Inc. Fuel cell handbook, seventh edition. Nov. 2004
    [13] Dicks Andrew, Siddle Angie. Assessment of commercial prospects of molten carbonate fuel cells [J]. Journal of Power Sources,2000, 86(12): 316-323
    [14] Cassir M., Belhomme C. Technological applications of molten salts: the case of the molten carbonate fuel cell[J]. Plasmas & Ions,1999, 2(1): 315
    [15] Bosio Barbara, Costamagna Paola, Parodi Filippo, et al. Industrial experience on the development of the molten carbonate fuel cell technology[J]. Journal of Power Sources, 1998, 74(2): 175-187
    [16] Mark C. Williams and Hansraj C. Maru. Distributed generation—Molten carbonate fuel cells[J]. Journal of Power Sources, 2006, 160(2): 863-867
    [17] Lagergren C, D. Simmosson. The effects of oxidant gas composition on the polarization of porous LiCoO electrodes for the molten carbonate fuel cell[J]. Journal of the electrochemical society, 1997, 144(11):3813-3818
    [18] H. Morita, M. Komoda, Y. Mugikura, et. Al, Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte[J]. Journal of Power sources, 2002, 112(1) :509-518
    [19] Wee, J.H., D.J.Song, et al. Evaluation of NiNi3Al(5 wt.%)Al(3 wt.%) as an anode electrode for molten carbonate fuel cell. Part II: wetting ability and performance in unit cell operation[J]. Journal of Alloys and Compounds. 2005,390(12) :161-167
    [20] Elisabetta Arato, Barbara Bosio, Paolo Costa. Preliminary experimental and theoretical analysis of limit performance of molten carbonate fuel cells[J]. Journal of Power Sources, 2001, 102(12): 74-81
    [21] Tsunefumi Ishikawa, Hiroo Yasue. Startup, testing and operation of 1000 kW class MCFC power plant[J]. Journal of Power Sources, 2000, 86 (1) : 145-150
    [22] Rory A. Roberts, Jack Brouwer, Eric Liese, et al. Dynamic simulation of carbonate fuel cell gas turbine hybrid systems[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(2):294-301
    [23] German project to operate Ansaldo MCFC on sewage off gas, Fuel Cells Bulletin. 2004(1): 67
    [24] Peter Heidebrecht,Kai Sundmachera.Molten carbonate fuel cell (MCFC) with internal reforming:model based analysis of cell dynamics[J].Chemical Engineering Science,2003(58):1029-1036
    [25] Andrew L Dicks. Molten carbonate fuel cells [J].Current Opinion in Solid State and Materials Science, 2004, 8(5): 379-383
    [26] Rofessor Scott Samuelsson.Fuel cell/gas turbine hybrid system[P].National Fuel cell Research Center
    [27]骆仲泱,张小丹等.高温燃料电池技术分析及前景展望[J].热力发电.2003(1):6-9
    [28] Wolf,Wilemski.Molten carbonate fuel cell performance model[J].Electrochem,1983,130:48-55
    [29] T.Watanabe,E.Koda.Development of molten carbonate fuel cell stack performance analysis model[P].Yokosuda Research Laboratory,Rep. no.W90028,Japan,1991
    [30] Barbara Bosio,Paola Costamagna.Modeling and experimentation of molten carbonate fuel cell reactors in a scale up process[J].Chemical Engineering Science,1999, 54(1-2):2907-2916
    [31] T.Watanabe,E.Koda.Development of molten carbonate fuel cell stack performance analysismodel[P].Yokosuda Research Laboratory,Rep. no.W90028,Japan,1991
    [32] S.Takashima.MCFC stack modeling and test at hitachi,workshop molten carbonate fuel cells systems[J].British Gas,1993, 27: 32-37
    [33] H.Fujimura,N.Kobayashi,K.Ohtsuka. Heat and mass transfer in a molten carbonate fuel cell(perfomance and temperature distribution in a cell stack)[J].JSME Int J,1992,35(1):81-88
    [34] Wei He.Three dimensional simulation of a molten carbonate fuel cell stack using computational fluid dynamics technique[J].Journal of Power Sources,1995,55(1):25-32
    [35] Murat Baranak, Husnu Atakul. A basic model for analysis of molten carbonate fuel cell behavior[J]. Journal of Power Sources,2007,172(2): 831-839
    [36] T.Watanabe,Yoshihiro Mugikura.Modeling analysis on molten carbonate fuel cells and stacks[J].Trans.of the Japan Society of Mechanical Engineers,1986,52(481): 35-42
    [37] Sasaki,Matsumoto,Tanaka,T.,et al.Dynamic characters tics of a molten carbonate fuel cell stack.decision and control[P].Proceedings of the 27th IEEE Conference on,1988,2:1044-1049
    [38] Yamaguchi.IEEE Transaction on Industrial Electronics
    [39] W.He.A Simulation Model for Integrated Molten Carbonate Fuel Cell systems[J].Journal of Power Sources,1994, 49(1):283-290
    [40] A. Carlos Fernandez-Pellp. Micropower generation using combustion: issues and approaches[J], Proceedings of the Combustion Institute, 2002, 29(1): 883-899
    [41] Volchko SJ, Sung CJ, Huang YM, et al. Catalytic combustion of rich methane/oxygen mixtures for micropropulsion applications[J], Journal of Propulsion and Power, 2006, 22( 3): 684-693
    [42] Ahn J., Eastwood C., Sitzki L., et al. Gas phase and catalytic combustion in heat recirculating burners[J], Proceedings of the Combustion Institute, 2005, 30(2):2463-2472
    [43] Schwiedernoch R., Tischer S., Correa C., et al. Experimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic monolith[J], Chemical Engineering Science, 2003, 58(2): 633-642
    [44] Kee, R.J., Zhu H., Goodwin, D.G. Solid oxide fuel cells with hydrocarbon fuels[J], Proceedings of the Combustion Institute, 2004, 30(2): 2379-2404
    [45] Kolb G, Zapf R, Hessel V, et al. Propane steam reforming in microchannels results from catalyst screening and optimization[J], Applied Catalysis A: General, 2004, 277(12): 155-166
    [46] Bond TC, Noguchi, RA., Chou CP,et al. Catalytic oxidation of natural gas over supported platinum: flow reactor experiments and detailed numerical modeling[J], Proceedings of the Combustion Institute, 1996, 26(2):1771-1778
    [47] Deutschmann, Schmidt, Behrendtet al, Numerical modeling of catalytic ignition[J]. Proceedings of the Combustion Institute, 1996, 26(1):747-754
    [48] Westbrook, C.K., Mizobuchi, et al. Computational combustion[J]. Proceedings of the Combustion Institute, 2005, 30(1): 125-157
    [49] Ferguson, N.B., Finlayson. Transient modeling of a catalytic converter to reduce nitric-oxide in automobile exhaust[J]. AICHE Journal, 1974, 20(3): 539-550
    [50] T’ien, J.S.. Transient catalytic combustor model[J]. Combustion Science and Technology, 1981,26(12): 65-75
    [51] S.K.Park, T.S.Kim. Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cellgas turbine system[J]. Journal of power sources, 2006, 163(2): 490-499
    [52] Gemmen, R.S., Lise, et al. Development of dynamic modeling tools for solid oxide and molten carbonate hybrid fuel cell gas turbine system[P]. 2000 ASME Turbo Expo, Munich, Germany 2000GT-0554
    [53] White Paper on Distributed Generation, Nartional Rural Electric Cooperative Association, 1999
    [54] James H. Watts, Micro-turbines: a new class of gas turbine engines, ASME International Gas Turbine Institute, Global Gas Turbine News, NO.1, 1999.01
    [55] Jon Lane, Run up to the millennium: state of the power generation gas industry, ASEM International Gas Turbine Institute, Global Gas Turbine News, NO.2, 2000.06
    [56] T.A.Fuller, T.L.Wolf, J.Hartvigsen. A novel fuel cell/microturbine combined cycle system[P]. Presented at the 2000 Fuel Cell Seminar, 2000
    [57] P. Costamagna, L.Magistri, A. F. Massardo. Design and partload performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine[J]. Journal of Power Sources , 2001, 96 (1): 352-368
    [58] H. Ide, T. Yoshida, H.Ueda, et al. Natural gas reformed fuel cell power generation system[P]. Proceedings of the IEEE, 1998,1517-1522
    [59] Ito K, Gamou S, Yokoyama R. Optimal unit sizing of fuel cell cogeneration systems inconsideration of performance degradation[P]. Flowers 1997, Florence, Italy, 1997
    [60] Ghezel Ayagh, H., Daly, et al. Advances in direct fuel cell/gas turbine power plants[P]. 2003 ASME Turbo Expo, Atlanta, Georgian GT2003-38941
    [61] S.Veyo, Westinghouse Fuel Cell Combined Cycle Systems, Westinghouse Science&Technology Center,1996
    [62]近藤,元博.熔融碳酸盐燃料电池-微型燃气轮机混合发电装置的开发.燃料电池,2003,3(1):23-26
    [63] Development of molten carbonate fuel cell,IHI Engineering Review,2003(36)1:5-13
    [64]郝洪亮.熔融碳酸盐燃料电池/燃气轮机混合装置系统仿真与半物理实验研究[D].上海:上海交通大学,2007
    [65] Liese, R.S. Gemmen. Dynamic modelling results of a 1 MW MCFC/GT power system[P]. Proceedings of the ASME Turbo Expo 2002, Amsterdam, 36 June 2002
    [66] Piero Lunghi, Stefano Ubertini, Umberto Desideri. Highly efficient electricity generation through a hybrid molten carbonate fuel cell closed loop gas turbine plant [J]. Energy Conversion and Management, 2001, 42(14): 1657-1672
    [67] Piero Lunghi, Roberto Bove, Umberto Desideri. Analysis and optimization of hybrid MCFC gas turbine plants[J]. Journal of power sources, 2003, 118(1): 108-117
    [68] CHEMCAD Version 3.0, Chemistations Inc., Houston, Texas
    [69] G. De Simon,F. Parodi,M. Fermeglia et al. Simulation of process for electrical energy production based on molten carbonate fuel cells [J]. Journal of Power Sources, 2003,115 (2):210-218
    [70] P. J. Kortbeek, J. A. F. de Ruijter, P. C. van der Laag,et al. A dynamic simulator for a 250 kW class ERMCFC system [J]. Journal of Power Sources, 1998, 71(12): 278-280
    [71] Rory A. Robers, Eric Liese. Dynamic simulation of carbonate fuel cellgas turbine hybrid systems[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128 (1) :294-301
    [72] Liese, R.S. Gemmen. Dynamic modelling results of a 1 MW MCFC/GT power system[J]. Proceedings of the ASME Turbo Expo 2002, Amsterdam, 36 June 2002
    [73] P. Bedont, O. Grillo A. F. Massardo. Off-design performance analysis of a hybrid system based on an existing molten fuel cell stack[J], Journal of Engineering for Gas Turbines Power, 2003, 125 (4) :986-993
    [74] Heidebrecht P, K. Sundmacher. Molten carbonate fuel cell with internal reforming: model based analysis of cell dynamics[J]. Chemical Engineering Science, 2003,58(36): 1029-1036
    [75]杨华.熔融碳酸盐燃料电池本体与系统性能分析研究[D].中国科学院, 2001
    [76]陈启梅翁一武朱新坚翁史烈.熔融碳酸盐燃料电燃气轮机混合动力系统特性分析,中国电机工程学报,2007, 27(8): 94-98
    [77] Xiao-juan Wu, Xinjian Zhu. Modeling of a SOFC stack based on GA-RFB neutral networks identification[J]. Journal of Power Sources, 2007, 167(1): 145-150
    [78] Fan Yang, Xin-jian Zhu, Guang-yi Cao. Nonlinear fuzzy modeling of a MCFC stack by an identification method[J]. Journal of Power Sources, 2007, 166(2): 354-361
    [79]王礼进张会生翁史烈.内重整固体氧化物燃料电池控制策略研究.中国电机工程学报,2008(28): 94-98
    [80] Jens Palsson, Azra Selimovic, Lars Sjunnesson. Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation[J].Journal of Power Sources,2000, 86(1):442-448
    [81] Piero Lunghi,Stefano Ubertini. Highly efficient electricity generation through a hybrid molten carbonate fuel cellclosed loop gas turbine plant[J].Energy Conversion and Management,2001,42(1):657-672
    [82] Piero Lunghi,Roberto Bove, Umberto Dedider.Analysis and optimization of hybrid MCFC gas turbines plantes[J]. Journel of Power Sources, 2003, 118(1): 108-117
    [83] Kyong Sok Oh, Tong Seop Kim, Performance analysis on various system layouts for the combination of an ambient pressure molten carbonate fuel cell and a gas turbine[J]. Journal of Power Sources, 2006, 158 (1) : 455-463
    [84] B. Sam Kang, Joon Ho Koh, Hee Chun Lim. Effects of system configuration and operating condition on MCFC system efficiency[J]. Journal of Power Sources, 2002, 108(1) :232-238
    [85]陈启梅. MCFCGT混合动力系统非线性特征及其协调控制研究[D].上海:上海交通大学, 2007
    [86]郝洪亮,张会生,翁史烈,底层与顶层MCFCMGT联合循环系统性能分析[J],热能动力工程,2007(27):451-457
    [87] F.Standaert, K.Hemmes, N.Woudstra. Nerst loss and multistage oxidation in fuel cells[P]: Proceedings of the Fuel cell seminar, 1619 November 1998, Palm Spring, California, USA, 92-95
    [88] Fuel cell handbook, 5th edition, EG&G Services, Parspns Inc., 2000
    [89] S.T.Au, N.Woudstra, K. Hemmes. Study of multistage oxidation by flowsheet calculations on a combined heat and power molten carbonate fuel cell plant[J]. Journal of power sources, 2003, 122(1) :28-36
    [90] S.Vivanpatarakij, S.Assabumrungrat, N.Laosiripojana. Improvement of solid oxide fuel cell performance by using nonuniform potential operation[J]. Journal of power sources , 2007, 167(1) :139-144
    [91] Azar S, Jens P. Networked solid oxide fuel cell stacks combined with a gas turbine cycle[J].Journal of power sources, 2002, 106(1) :76-82
    [92] F.Standeart. Analytical fuel cell modeling and exergy analysis of fuel cells[D], Ph.D. Thesis, Delft university of technology, 1998
    [93] H.A.Liebhafsky, E.J.Cairns, Fuel cells and fuel batteries[M], Wiley, New York, 1968
    [94] He W, Chen Q. Threedimensional simulation of a molten carbonate fuel cell stack under transient conditions[J]. Journal of Power Sources, 1998, 73(2): 182-192
    [95] Hao H L, Zhang H S, Weng S L. Dynamic numerical simulation of a molten carbonate fuel cell[J]. Journal of Power Sources, 2006, 161(2): 849-855
    [96] Koh J H, Kang B S, Lim H C. Effect of various stack parameters on temperature rise in molten carbonate fuel cell stack operation[J]. Journal of Power Sources, 2000, 91(2):161-171
    [97]陈启梅,翁一武,顾伟.基于加权残值法的高温燃料电池温度分布特性的数值分析[J].动力工程,2005,25(4): 603-608
    [98] Yoshiba F, Abeb T, Watanabe T. Numerical analysis of molten carbonate fuel cell stack performance: diagnosis of internal conditions using cell voltage profiles[J]. Journal of Power Sources, 2000, 87(12): 21-27
    [99] Heidebrechta P, Sundmachera K. Molten carbonate fuel cell (MCFC) with internal reforming: modelbased analysis of cell dynamics[J]. Chemical Engineering Science. 2003, 58(36): 1029-1036
    [100] Leah R T, Brandon N P, Aguiar P. Modeling of cells, stacks and systems based around metalsupported planar ITSOFC cells with CGO electrolytes operating at 500-600[J]. Journal of Power Sources,2005, 145(2): 336-352
    [101]翁史烈,翁一武,苏明.熔融碳酸盐燃料电池动态特性的研究[J].中国电机工程学报. 2003, 23(7): 168-200
    [102]郝洪亮,蔡锋,张会生.熔融碳酸盐燃料电池单体数值模拟及性能分析[J].华东电力,2007,35( 4):13-16
    [103] Yoshiba F, Abeb T, Watanabe T. Numerical analysis of molten carbonate fuel cell stack performance: diagnosis of internal conditions using cell voltage profiles[J]. Journal of Power Sources, 2000, 87(12): 21-27
    [104]汤根土,骆仲泱,倪明江,等.平板阳极支撑固体氧化物燃料电池的数值模拟及性能分析[J].中国电机工程学报,2005,25(10):117-121
    [105]史翊翔,蔡宁生.固体氧化物燃料电池阴极数学模型与性能分析[J].中国电机工程学报,2006,26(4):82-87
    [106] P.Aguiar, C.S.Adjiman, N.P. Brandon. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: modelbased steadystate performance[J]. Journal of Power sources, 2004, 138(1) :120-136
    [107] K. Kordesch, G. Simader, Fuel Cells and Their Applications, VCH, New York, 1996:111-119
    [108] J.M.Smith, H.C.Van Ness, M.M. Abbott, Introduction to chemical engineering thermodynamics, 7th ed., McGrawHill, New York, 2005:140-141
    [109] Hitchings C, Fuel Cell Handbook, Sixth Ed., EG&G Technical Services, Inc., Virginia, 2002
    [110] Brouwer J, Jabbari F, Leal e M. Analysis of a molten carbonate fuel cell: Numerical modeling and experimental validation[J]. Journal of Power Sources. 2006, 158(1): 213-224
    [111] Clarke S H, Dicks A L, Pointon K. Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells[J]. Catalysis Today, 1997, 38(4): 411-423
    [112] Iora P,Aguiar P,Adjiman C S.Comparison of two IT DIRSOFC models: Impact of variable thermodynamic,physical, and flow properties,Steadystate and dynamic analysis [J].Chemical Engineering Science,2005,60(11) :2963-2975
    [113] Koh J H, Seo H K, Yoo Y S. Consideration of numerical simulation parameters and heat transfer models for a molten carbonate fuel cell stack[J]. Chemical Engineering Journal. 2002, 87(3): 367-379
    [114] Todd B, Young J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modeling[J]. Journal of Power sources, 2002, 110(1): 186-200
    [115] Joon Ho Koh, HaiKung Seo, YoungSung Yoo, Het al. Consideration of numerical simulation parameters and heat transfer models for a molten carbonate fuel cell stack [J]. Chemical Engineering Journal. 2002, 87(1):367-379
    [116] Wang L J, Zhang H S, Weng S L. Modeling and simulation of solid oxide fuel cell based on the volume–resistance characteristic modeling technique[J]. Journal of Power Sources, 2008, 177(2): 579-589
    [117]王礼进,张会生,翁史烈.内重整高温固体氧化物燃料电池建模与仿真[J].中国电机工程学报. 2007, 27 (35): 78-83
    [118] Zhang H S,Weng S L,Su M.Dynamic modeling and simulation of distributed parameter heat exchanger[C].Processing of ME TUBRO EXPO,Nevada,2005
    [119] E. Arato, B. Bosio, P.Costa. Preliminary experimental and theoretical analysis of limit performance of molten carbonate fuel cells[J]. Jounal of Power Sources, 2001, 102(1) :74-81
    [120] S. Bedogni, S. Campanari, P. Iora, et al. Experimental analysis and modeling for acircularplanar type IT-SOFC[J]. Journal of Power Sources, 2007, 171(2) :617-625
    [121] R.T.Leah, N.P.Brandon, P.Aguiar. Modelling of cells, stacks and systems based around metral supported planar ITSOFC cells with CGO electrolytes operating at 500-600℃[J]. Journal of power sources, 2005, 145(1) :336-352
    [122]翁史烈.燃气轮机与蒸气轮机[M].上海:上海交通大学出版社,1996
    [123]朱行健,王雪瑜.燃气轮机工作原理及性能[M].北京:科学出版社,1992
    [124]倪维斗.自动调节原理与透平机械自动调节[M].北京:机械工业出版,1991
    [125]张会生,刘永文,苏明,等.燃气轮机速度调节过程的仿真研究[J].计算机仿真,2002, 19(1):79-81
    [126] Na zhang, Ruixian Cai. Analytical solutions and typical characteristics of part-load performances of single shaft gas turbine and its cogeneration[J], Energy conversation and management, 2002, 43(2) :1323-1337
    [127] Wei wang, Ruixian Cai, Na Zhang. General characteristics of single shaft microturbine set at variable speed operation and its optimization[J], Applied thermal engineering, 2004, 24 (1) :1851-1863
    [128]王建飞. 2.6kW微型燃气发电机与燃料电池混合装置的建模与动态仿真研究[D].上海:上海交通大学,2003
    [129]张世红,宋鹏,刘雪莲,周琦.催化燃烧炉近零污染排放和其技术利用的研究[J].北京建筑工程学院学报, 2005, 21(1): 9-12
    [130]杜鹃,田成文,范庆伟.催化燃烧技术研究进展及其应用[J].节能,2006, 25(2): 37-39
    [131] Grillo O. Design and part load performance of a hybrid system based on a molten carbonate fuel cell MCFC and a micro gas turbine [D]. University of Genoa, in Italian, June 2001
    [132] S.K. Park, K.S. Oh, T.S. Kim. Analysis of the design of a pressurized SOFC hybrid system using a fixed gas turbine design[J]. Journal of Power Sources, 2007, 170(1) :130-139
    [133] T.W. Song, J.L. Sohn, T.S. Kim, S.T. Ro. Performance characteristics of a MW class SOFC/GT hybrid system based on a commercially available gas turbine[J]. Journal of Power Sources, 2006, 158(1) :361-367
    [134] Fumihiko Yoshiba, Yoshiyuki Izaki, Takao Watanabe. Wide range load controllable MCFC cycle with pressure swing operation[J]. Journal of Power Sources, 2004, 137(1):196-205
    [135] Stephano Campanari. Full load and part load performance prediction for integrated SOFC and microturbine systems[J]. Journal of Engineering for Gas Turbines Power, 2000, 122(2):239-246
    [136] Song, T.W., J.L. Sohn et al. Analysis on the performance characteristics of the SOFC/GT hybridsystem based on a commercially available MWclass gas turbine[P]. Third International Conference on Fuel Cell Science, Engineering and Technology, Ypsilanti, MI
    [137] Thorud, B. Dynamic modeling and characterization of a solid oxide fuel cell integrated in a gas turbine cycle[D], NTNU, Doctoral thesis 2005:176,Trondheim, October 2005
    [138] C. Hitchings. Fuel Cell Handbook, Sixth Ed., EG&G Technical Services, Inc., Virginia, 2002
    [139] Tsunefumi Ishikawa, Hiroo Yasue. Startup, testing and operation of 1000kW class MCFC power plant[J]. Journal of power sources, 2000, 86(1-2) :145-150
    [140] David Tucker, Larry Lawson, Randy Gemmen. Evaluation of hybrid fuel cell turbine system startup with compressor bleed[P]. ASME Turbo Expo 2005, USA
    [141] Michael Shelton, Eric Liese. A study in the process modeling of the startup of fuel cell/gas turbine hybrid systems[P]. ASME Turbo Expo 2005, USA.
    [142] L.Petruzzi, S. Cocchi, F. Fineschi. A global thermoelectrochemical model for SOFC systems design and engineering[J]. Journal of power sources, 2003, 118 (1-2) : 96-107
    [143] PoHsu Lin, CheWun Hong. On the startup transient simulation of a turbo fuel cell system[J]. Journal of power sources, 2006, 160 (2) :1230-1241
    [144] Michael J. Stutz, Robert N. Grass, Stefan Loher, et al. Fast and exergy efficient startup of micro-solid oxide fuel cell systems by using the reformer or the postcombustor for startup heating[J]. Journal of power sources, 2008, 182 (2) :558-564
    [145] H. Jung, W.L. Yoon, H. Lee, et al. Fast startup reactor for partial oxidation of methane with electrically heated metallic monolith catalyst[J]. Journal of Power Sources, 2003,124(1) : 76-80
    [146] L.D. Schmidt, E.J. Klein, C.A. Leclerc, et al. Syngas in millisecond reactor: higher alkanes and fast lightoff[J]. Chemical Engineering Science, 2003, 58 (3-6):1037-1041
    [147] S.K. Ryi, J.S. Park, S.H. Cho,et al. Fast startup of microchannel fuel processor integrated with an igniter for hydrogen combustion[J]. Journal of Power Sources, 2006, 161 (1-2) :1234-1240
    [148] D.A. Kearl, R.B. Peterson, K.D. Monte, Fuel cell using a catalytic combustor to exchange heat, US Patent 2004/0081871 (2004)
    [149] Veyo s., Shocking LA., Dederer, J.T., et al. Tubular solid oxidant fuel cell/gas turbine hybrid cycle power system: status[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(2) :845-849
    [150] Chan SH, Ho HK, Tian Y, Modeling for part-load operation of SOFC-Gas turbine hybrid power plant[J], Journal of power sources, 2003, 114(1-2) :213-227
    [151] Hildebrandt A., Assadi M. Sensitivity analysis of transient compressor operation behavior inSOFC-GT hybrid system[P], ASME Turbo Expo 2005
    [152] Farrauto R J, Heck R M. Environmental catalysis into the 21st century[J]. Catalysis Today, 2000, 55(1-2):179-187
    [153] Spivey J J. Catalysis in the development of clean energy technologies[J]. Catalysis Today, 2005,100(1-2):171-180
    [154] Deutschmann O, Behrendt F, Warnatz J. Formal treatment of catalytic combustion and catalytic conversion of methane[J]. Catalysis Today, 1998, 46(2-3):155-163
    [155] Schmidt L D, Deutschmann O, Goralski C T. Modeling the partial oxidation of methane to syngas at millisecond contact times[J]. Studies in Surface Science and Catalysis, 1998, 119:685-692
    [156] Reinke M, Mantzaras J, Bombach R et al. Gas phase chemistry in catalytic combustion of methane/air mixtures over platinum at pressures of 1 to 16 bar[J]. Combustion and Flame, 2005, 141(4): 448-468
    [157] Deutschmann O, Schmid L D. Modeling the partial oxidation of methane in a shortcontact time reactor[J]. AIChE Journal, 1998, 44(11): 2465-2477
    [158] Veser G, Frauhammer J, Schmidt L D. Catalytic ignition of methane oxidation in a monolithic reactor[P]. Annual Meeting of the American Institute of Chemical Engineerings, Los Angeles, CA, 1997
    [159] Albow C M, Wise H. Theoretical analysis of catalytic combustion in a monolith reactor[J]. Combustion Science and Technology, 1979, 21(1):35-42
    [160] Hickmann D A, Schmidt L D. Steps in CH4 oxidation on Pt and Rh surface: hightemperature reactor simulations[J]. AIChE J, 1993, 39(7):1164-1177
    [161] Raja, L.L., Kee, R.J., Deutschmann, O., et al. A critical evaluation of Navier-Stokes, boundarylayer, and plugflow models of the flow and chemistry in a catalyticcombustion monolith[J], Catalysis Today, 2000, 59(12): 47-60
    [162] Prefferle L D, Griffin T A, Winter M et al. The influence of catalytic activity on the ignition of boundary layer flows part I: hydroxyl radical measurements[J]. Combustion and Flame, 1989, 76: 325-338
    [163] YeiChin Chao, GuanBang Chen, HungWei Hsu et al. Catalytic combustion of gasified biomass in a platinum monolith honeycomb reactor [J]. Applied Catalysis A: General, 2004, 261(1): 99-107
    [164] Shi su, Jenny Agnew. Catalytic combustion of coal mine ventilation air methane[J]. Fuel, 2006,85(6) :1201-1210
    [165] Choudhary T V, Banerjee S, Choudhary V R. Catalysts for combustion of methane and lower alkanes[J]. Applied Catalysis A: General, 2002, 234(1-2):1-23
    [166] Eguchi K, Arai H. Low temperature oxidation of methane over Pd-based catalysts effect of support oxide on the combustion activity [J]. Appllied. Catalysis A., 2001, 222(12): 359-367
    [167] Thevenin P O, Alcalde A, Pettersson L J, et al. Catalytic combustion of methane over ceriumdoped palladium catalysts [J]. Jounal of Catalusis, 2003, 215(1): 78-86
    [168] Labhsetwar N K, Watanabe A, Biniwale R B. Alumina supported perovskite oxide based catalytic materials and their autoexhaust application [J]. Appllied. Catalysis. B, 2001, 33(2): 165-173
    [169] E.M.Johansson, K.M.J.Danielsson, A.G.Ersson et al. Development of hexaaluminate catalysts for combustion of gasified biomass in gas turbine[J]. Journal of engineering for gas turbine and power, 2002, 124(2): 235-238
    [170] E.Pocoroba, E. Magnus Johansson, Sven G.. Ageing of palladium, platinum and manganese-based combustion catalysts for biogas applications[J]. Catalysis Today, 2000, 59 (1-2) : 179-189
    [171]王亮,何洪,戴洪兴等.天然气预混催化燃烧的特性[J].燃烧科学与技术,2007, 5(13): 474-477
    [172]刘敏,陈艳芬,韩立中等.燃气轮机催化燃烧室的实验研究[J].热能动力工程,2000, 15(4):376-378,381
    [173] J.J.witton, E.Noordally, J.M.Przybylski. Clean catalytic combustion of low heat value fuels from gasification processes[J]. Chemical Engineering Journal, 2003, 91(2-3):115-121
    [174] YeiChi Chao, GuanBang Chen, HungWei Hsu rt al. Catalytic combustion of gasified biomass in a platinum monolith honeycomb reactor[J]. Appplied Catalysis A: General, 2004, 261(1): 99-107
    [175] J.C.G.Andrae, D.Johansson, M.Bursell et al, High pressure catalytic combustion of gasified biomass in a hybrid combustor[J]. Applied Catalysis A: General, 2005, 293:129-136
    [176] Su S,Cai S, Xu YQ. Calculations of compositions and thermophysical parametersof combustion gas in industrial combustion facilities[J]. Journal of Southeast University 1994, 24(4):67-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700