基于CdSe的核壳半导体纳米晶的结构及荧光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米晶又常被称为量子点,这类材料通过随粒径变化的荧光颜色直观地展示了纳米材料的量子尺寸效应,并作为一种全新的无机发光材料,在生物、医学、光电器件、太阳能等领域的应用都被寄予极高的期望。
     本文首先对核壳结构半导体纳米晶进行了基于晶体结构差异的研究。以纤锌矿结构(WZ)的CdSe为核的核壳纳米晶在近十多年一直是材料研究领域的主要研究对象,并且在应用中也受到广泛的青睐;而近几年出现的闪锌矿结构(ZB)的CdSe却极少被用在核壳纳米晶的研究中。本文从核壳纳米晶的晶体结构、形貌、荧光性质等几个方面研究发现,基于ZB-CdSe的核壳纳米晶的发光性质要好于以传统的WZ-CdSe为核的样品,更加适合于在医学标记和检测上的应用,并且实验步骤相对简单,也更适合于规模化的量产。
     在核壳纳米晶上本文还进行了CdSe/ZnS的结构演化研究。由于优异的发光性能和稳定性,CdSe/ZnS长期以来一直是最受关注并且在应用研究中使用最广泛的核壳纳米晶,但对其结构变化的研究一直鲜有报道;另一方面,近年来许多异质结构纳米晶的形貌从最初量子点的“点”状逐渐演化出了多种形状,它们在多个领域的研究中被寄予厚望。本文以ZB-CdSe为核,在其表面包裹ZnS,通过对ZnS生长温度的实验发现CdSe/ZnS纳米晶具有随温度演化的形貌,其中在240℃时具有类似甲烷分子的四足体结构;但温度更高时CdSe和ZnS界面间的熔合会破坏四足体结构,并且伴随着明显的荧光蓝移现象。同时,本部分研究还发现CdSe/ZnS四足体中ZnS的生长具有不稳定性,当其生长至一定程度时便会由于晶体缺陷而产生明显分叉结构,使整体的发光效率降低。
     本文最后研究了CdZnSeS合金纳米晶,它克服了CdSe纳米晶的发光难以达到蓝色至绿色波长区域,并且合成步骤简单。本部分实验使用了十二硫醇参与纳米晶合成的反应,一方面它能在高温下分解,作为硫元素的前驱物在纳米晶表面形成-层薄薄的ZnS包覆层,另一方面它能很好的限制纳米晶成型时颗粒的长大,再结合实验中对Cd和Zn两种元素比例的控制,使材料的荧光能够轻易达到蓝色至绿色波长区域,并且可以由实验参数进行调控。该部分研究获得的短波长荧光纳米晶在光电器件和LED等方面具有应用的潜力。
Semiconductor nanocrystals (NCs) are usually referred as quantum dots because of their distinct exhibition of the famous small scale effect in nanomaterials, that the color of their luminescence changes with the particles size. As a whole new type of inorganic emitter, semiconductor nanocrystals have been considered highly potential in applications of biology, photovoltaic device, and displays, etc.
     In this thesis, core/shell NCs were studied from the perspective of crystal structure. For more than a decade, core/shell NCs based on wurtzite CdSe have been the focus of quantum dots research and are widely used in biomedical applications; while studies on core/shell NCs based on the newly developed zinc-blende CdSe NCs are relatively rare. In this thesis, zinc-blende CdSe is found to be more suitable for preparation of core/shell NCs. NCs with a zinc-blende core have higher luminescence efficiency and are easier to prepare, which can be more advantageous in industrial production and in applications such as fluorescent marker.
     Also, as a representative core/shell NCs, CdSe/ZnS has been the most famous one due to its outrageous light-emitting properties and stabilities, but reports on its shape variation are still rare. Meanwhile, for many other types of hetero-structured nanocrystals, they have been manufactured into nearly all kinds of shapes, and these variants are thought to be highly promising in future applications. In this thesis, the conventional "dot" shaped CdSe/ZnS NCs are developed into different shapes. Typical tetrapod CdSe/ZnS NCs are obtained at 240℃, and yet it is found that higher temperature can be destructive to the tetrapod structure due to interface diffusion between CdSe and ZnS, which also leads to obvious blue shift in the luminescence. Also, the growth of ZnS in CdSe/ZnS tetrapod is found to be not straight forward; ZnS first elongates and then splits because of the accumulation of crystal defects. The luminescence efficiency also declines when the splitting starts.
     Finally, CdZnSeS NCs were studied. They showed rare blue to green luminescence which is hard for CdSe to reach, and besides, the preparation process was quite simple. In the experiment,12-dodecanethiol was adopted as a precursor of sulfur because it decomposes at high temperature. Meanwhile, research also found it was potent in controlling the particle size of final NCs. With this effect of 12-dodecanethiol and together with the adjustment of Cd to Zn ratio, the luminescence of obtained NCs can easily reach the wavelength range of blue to green, and moreover, the luminescence color can be tuned by the reaction design. These blue-green-emitting NCs can be useful in many applications such as displays and LEDs.
引文
[1]张志馄,崔作林.《纳米材料与纳米技术》.第四版.北京.国防工业出版社,2001年7月。
    [2]张立德,牟季美.《纳米材料与纳米结构》.第二版.北京.科学出版社,2001年3月。
    [3]Alivisatos, A. P.; Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem.,1996,100(31):13226-13239.
    [4]Ozeki, M.; Shimizu, Y. InAs and GaAs quantum dots grown by hyperthermal source beams. J. Cryst. Growth,2004,262(1-4):139-144.
    [5]Monte, A. F. G.; Qu, F.; Hopkinson, M. Anomalous photocurrent in self-assembled InAs/GaAs quantum dots. Appl. Phys. Lett.,2008,92(18):182102/1-182102/3.
    [6]Jang, Y. D.; Park, J.; Lee, D.; Mowbray, D. J.; Skolnick, M. S.; Liu, H. Y.; Hopkinson, M.; Hogg, R. A. Enhanced room-temperature quantum-dot effects in modulation-doped InAs/GaAs quantum dots. Appl. Phys. Lett.,2009,95(17): 171902/1-171902/3.
    [7]Barik, S.; Tan, H. H.; Jagadish, C. High temperature rapid thermal annealing of phosphorous ion implanted InAs/InP quantum dots. Appl. Phys. Lett.,2007,90: 093106/1-093106/3.
    [8]Xie, R.; Peng, X. Synthesis of Cu-Doped InP Nanocrystals (d-dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters. J. Am. Chem. Soc., 2009,131:10645-10651.
    [9]Allen, P. M.; Walker, B. J.; Bawendi, M. G. Mechanistic Insights into the Formation of InP Quantum Dots. Angew. Chem., Int. Ed.,2010,49(4):760-762
    [10]Li, L.; Reiss, P. One-pot Synthesis of Highly Luminescent InP/ZnS Nanocrystals without Precursor Injection. J. Am. Chem. Soc.,2008,130(35):11588-11589.
    [11]Li, L. S.; Pradhan, N.; Wang, Y.; Peng, X. High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors. Nano Lett.,2004, 4(11):2261-2264.
    [12]Reiss, P.; Quemard, G.; Carayon, S.; Bleuse, J.; Chandezon, F.; Pron, A. Luminescent ZnSe nanocrystals of high color purity. Mater. Chem. Phys.,2004, 84(1):10-13.
    [13]Pinna, N.; Weiss, K.; Sack-Kongehl, H.; Vogel, W.; Urban, J.; Pileni, M. P. Triangular CdS Nanocrystals Synthesis, Characterization, and Stability. Langmuir, 2001,17(26):7982-7987.
    [141 Wuister, S. F.; Swart, I.; van Driel, F.; Hickey, S. G.; Donega, C. de M. Highly Luminescent Water-Soluble CdTe Quantum Dots. Nano Lett.,2003,3(4):503-507.
    [15]Dubavik, A.; Lesnyak, V.; Thiessen, W.; Gaponik, N.; Wolff, T.; Eychmuller, A. Synthesis of Amphiphilic CdTe Nanocrystals. J. Phys. Chem. C,2009,113(12): 4748-4750.
    [16]Ali, M.; Winterer, M. ZnO Nanocrystals:Surprisingly 'Alive'. Chem. Mater.,2010, 22(1):85-91.
    [17]Wang, Y. S.; Thomas, P. J.; O'Brien, P. Nanocrystalline ZnO with Ultraviolet Luminescence. J. Phys. Chem. B,2006,110(9):4099-4104.
    [18]Dayal, S.; Kopidakis, N.; Olson, D. C.; Ginley, D. S.; Rumbles, G. Direct Synthesis of CdSe Nanoparticles in Poly(3-hexylthiophene).J. Am. Chem. Soc., 2009,131(49):17726-17727.
    [19]Han, M. Y.; Gao, X.; Su J. Z.; Nie, S. M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol,2001,19:631-635.
    [20]维基百科网页http://en.wikipedia.org/wiki/Cadmium_selenide.
    [21]Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater.,2003, 15(14):2854-2860.
    [22]维基百科网页http://en.wikipedia.org/wiki/Zinc_selenide.
    [23]维基百科网页http://en.wikipedia.org/wiki/Cadmium_telluride.
    [24]维基百科网页http://en.wi kipedia.org/wiki/Zinc_sulfide.
    [25]维基百科网页http://en.wikipedia.org/wiki/Cadmium_sulfide.
    [26]Yu, W. W.; Peng, X. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents:Tunable reactivity of monomers. Angew. Chem., Int. Ed.,2002,41(13):2368-2371.
    [27]Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotech.,2002,13(1):40-46.
    [28]Cao, Y. C.; Wang, J. One-Pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals. J. Am. Chem. Soc.,2004,126(44):14336-14337.
    [29]Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc.,1993,115(19):8706-8715.
    [30]Peng, Z. A.; Peng, X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc.,2001,123(1):183-184.
    [31]Qu, L.; Peng, Z. A.; Peng, X. Alternative Routes toward High Quality CdSe Nanocrystals. Nano Lett.,2001,1(6):333-337.
    [32]Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphosphine Mixture. Nano Lett., 2001,1(4):207-211.
    [33]Bullen, C. R.; Mulvaney, P. Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene. Nano Lett.,2004,4(12):2303-2307.
    [34]Yu, W. W.; Wang, Y. A.; Peng, X. Formation and Stability of Size-, Shape-, and Structure- Controlled CdTe Nanocrystals:Ligand Effects on Monomers and Nanocrystals. Chem. Mater.,2003,15(22):4300-4308.
    [35]Yang, Y. A.; Wu, H.; Williams, K. R.; Cao, Y. C. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem., Int. Ed.,2005,44(41): 6712-6715.
    [36]Bowers, M. J., Ⅱ; McBride, J. R.; Rosenthal, S. J. White-Light Emission from Magic-Sized Cadmium Selenide Nanocrystals. J. Am. Chem. Soc.,2005,127(44): 15378-15379.
    [37]Qian, L.; Bera, D.; Holloway, P. H. Temporal evolution of white light emission from CdSe quantum dots. Nanotechnology,2008,19(28):285702/1-285702/4.
    [38]Aldana, J.; Wang, Y. A.; Peng, X. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols. J. Am. Chem. Soc.,2001,123(36):8844-8850.
    [39]Wuister, S. F.; De Donega, C.; Meijerink, A. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J. Phys. Chem.B,2004,108(45):17393-17397.
    [40]Pong, B.-K.; Trout, B. L.; Lee, J.-Y. Modified Ligand - Exchange for Efficient Solubilization of CdSe/ZnS Quantum Dots in Water:A Procedure Guided by Computational Studies. Langmuir,2008,24(10):5270-5276.
    [41]Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility.J. Am. Chem. Soc.,1997,119(30):7019-7029.
    [42]Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Optical and Structural Characterization of a Size Series of Highly Luminescent Materials. J. Phys. Chem. B,1997,101(46):9463-9475.
    [43]Reiss, P.; Bleuse, J.; Pron, A. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion. Nano Lett.,2002,2(7):781-784.
    [44]Reiss, P.; Carayon, S.; Bleuse, J. Large fluorescence quantum yield and low size dispersion from CdSe/ZnSe core/shell nanocrystals. Physica E,2003,17(1-4): 95-96.
    [45]Trindade, T.; O'Brien, P.; Pickett, N. L. Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives. Chem. Mater.,2001,13(11):3843-3858.
    [46]Talapin, D. V.; Mekis, I.; Goetzinger, S.; Kornowski, A.; Benson, O.; Weller, H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals. J. Phys. Chem. B,2004,108(49):18826-18831.
    [47]Xie, R.; Kolb, U.; Li, J.; Basche, T.; Mews, A. Synthesis and Characterizationof Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals. J. Am. Chem. Soc.,2005,127(20):7480-7488.
    [48]Peng, Z. A.; Peng, X. Mechanisms of the Shape Evolution of CdSe Nanocrystals. J. Am. Chem. Soc.,2001,123(7):1389-1395.
    [49]Yin, Y.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic inorganic interface. Nature,2005,437(7059):664-670.
    [50]Liu, L.; Zhuang, Z.; Xie, T.; Wang, Y.-G.; Li, J.; Peng, Q.; Li, Y. Shape Control of CdSe Nanocrystals with Zinc Blende Structure. J. Am. Chem. Soc.2009,131: 16423-16429.
    [51]Chan, W. C. W.; Nile, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281(5385):2016-2018.
    [52]Bruchez, M, Jr.; Moronne, M; Gin, P; Weiss, S; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281(5385): 2013-2016.
    [53]Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science,2002,298(5599):1759-1762.
    [54 ]杜桂焕.磁性纳米颗粒的表面修饰及其生物学应用研究:[博士学位论文]。保 存地点:华中科技大学图书馆,2006.
    [55]Dennis, A. M.; Bao, G. Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes. Nano Lett.,2008,8(5):1439-1445.
    [56]Mora-Sero, I.; Gimenez, S.; Fabregat-Santiago, F.; Gomez, R.; Shen, Q.; Toyoda, T.; Bisquert, J. Recombination in Quantum Dot Sensitized Solar Cells. Acc. Chem. Res.,2009,42(11):1848-1857.
    [57]Jun, S.; Jang, E.; Park, J.; Kim, J. Photopatterned Semiconductor Nanocrystals and Their Electroluminescence from Hybrid Light-Emitting Devices. Langmuir,2006, 22(6):2407-2410.
    [58]Steckel, J. S.; Snee, P.; Coe-Sullivan, S.; Zimmer, J. P.; Halpert, J. E.; Anikeeva, P.; Kim, L.-A.; Bulovic, V.; Bawendi, M. G. Color-saturated green-emitting QD-LEDs. Angew. Chem., Int. Ed.,2006,45(35):5796-5799.
    [59]Protiere, M.; Reiss, P. Highly luminescent Cdl-xZnxSe/ZnS core/shell nanocrystals emitting in the blue-green spectral range. Small,2007,3(3):399-403.
    [60]Tan, Z.; Zhang, F.; Zhu, T.; Xu, J.; Wang, A. Y.; Dixon, J. D.; Li, L.; Zhang, Q.; Mohney, S. E.; Ruzyllo, J. Bright and Color-Saturated Emission from Blue Light-Emitting Diodes Based on Solution-Processed Colloidal Nanocrystal Quantum Dots. Nano Lett.,2007,7(12):3803-3807.
    [61]Ali, M.; Chattopadhyay, S.; Nag, A.; Kumar, A.; Sapra, S.; Chakraborty, S.; Sarma, D. D. White-light emission from a blend of CdSeS nanocrystals of different Se:S ratio. Nanotechnology,2007,18(7):075401/1-075401/4.
    [62]Sapra, S.; Mayilo, S.; Klar, T. A.; Rogach, A. L.; Feldmann, J. Bright white-light emission from semiconductor nanocrystals:by chance and by design. Adv. Mater., 2007,19(4):569-572.
    [63]Yeh, C. Y.; Lu, Z. W.; Froyen, S.; Zunger, A. Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B,1992,46(16):10086-972.
    [64]Lim, S. J.; Chon, B.; Joo, T.; Shin, S. K. Synthesis and Characterization of Zinc-Blende CdSe-Based Core/Shell Nanocrystals and Their Luminescence in Water.J.Phys. Chem. C,2008,112(6):1744-1747.
    [65]Qu, L.; Yu, W. W.; Peng, X. In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals. Nano Lett.,2004,4(3):465-469.
    [66]Han, L.; Qin, D.; Jiang, X.; Liu, Y.; Wang, L.; Chen, J.; Cao, Y. Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells. Nanotechnology,2006,17(18):4736-4742.
    [67]Li, J.J.; Wang, Y. A.; Guo, W.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction. J. Am. Chem. Soc.,2003,125(41):12567-12575.
    [68]Fery-Forgues, S.; Lavabre, D. Are Fluorescence Quantum Yields So Tricky to Measure? A Demonstration Using Familiar Stationery Products. J. Chem. Educ. 1999,76,1260-1264.
    [69]罗丹明6G http://omlc.ogi.edu/spectra/PhotochemCAD/html/rhodamine6G.html.
    [70]Mohamed, M. B.; Tonti, D.; Al-Salman, A.; Chemseddine, A.; Chergui, M. Synthesis of High Quality Zinc Blende CdSe Nanocrystals. J. Phys. Chem. B,2005, 109(21):10533-10537.
    [71]Jasieniak, J.; Bullen, C.; van Embden, J.; Mulvaney, P. Phosphine-Free Synthesis of CdSe Nanocrystals. J. Phys. Chem. B,2005,109(44):20665-20668.
    [72]Zhelev, Z.; Bakalova, R.; Ohba, H.; Jose, R.; Imai, Y.; Baba, Y. Uncoated, Broad Fluorescent, and Size-Homogeneous CdSe Quantum Dots for Bioanalyses. Anal. Chem.,2006,78(1):321-330.
    [73]Erwin, S. C.; Zu, L.; Haftel, Michael I.; Efros, Alexander L.; Kennedy, Thomas A.; Norris, David J. Doping semiconductor nanocrystals. Nature,2005,436(7047): 91-94.
    [74]Shieh, F.; Saunders, A. E.; Korgel, B. A. General Shape Control of Colloidal CdS, CdSe, CdTe Quantum Rods and Quantum Rod Heterostructures. J. Phys. Chem. B, 2005,109:8538-8542.
    [75]Carbone, L.; Nobile, C.; De Giorgi, M.; Della Sala, F.; Morello, G.; Pompa, P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R.; Nadasan, M.; Silvestre, A. F.; Chiodo, L.; Kudera, S.; Cingolani, R.; Krahne, R.; Manna, L. Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach. Nano Lett.,2007,7:2942-2950.
    [76]Deka, S.; Quarta, A.; Lupo, M. G.; Falqui, A.; Boninelli, S.; Giannini, C.; Morello, G.; De Giorgi, M.; Lanzani, G.; Spinella, C.; Cingolani, R.; Pellegrino, T.; Manna, L. CdSe/CdS/ZnS Double Shell Nanorods with High Photoluminescence Efficiency and Their Exploitation As Biolabeling Probes.J. Am. Chem. Soc.,2009, 131:2948-2958.
    [77]Xi, L.; Boothroyd, C.; Lam, Y. M. Controlled Synthesis of CdTe and CdSe Multiblock Heteronanostructures. Chem. Mater.,2009,21:1465-1470.
    [78]Chen, W; Chen, K; Peng, Q; Li, Y. Triangular CdS Nanocrystals:Rational Solvothermal Synthesis and Optical Studies. Small,2009,5:681-684.
    [79]Warner, J. H.; Tilley, R. D. Synthesis and Self-Assembly of Triangular and Hexagonal CdS Nanocrystals. Adv. Mater.,2005,17:2997-3001.
    [80]Cheng, Y.; Wang, Y.; Bao, F.; Chen, D. Shape Control of Monodisperse CdS Nanocrystals:Hexagon and Pyramid. J. Phys. Chem. B,2006,110:9448-9451.
    [81]Liu, L.; Zhuang, Z.; Xie, T.; Wang, Y.-G.; Li, J.; Peng, Q.; Li, Y. Shape Control of CdSe Nanocrystals with Zinc Blende Structure. J. Am. Chem. Soc.,2009,131: 16423-16429.
    [82]Cao, H.; Wang, G.; Zhang, S.; Zhang, X. Growth and Photoluminescence Properties of PbS Nanocubes. Nanotechnology,2006,17:3280-3287.
    [83]Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled Growth of Tetrapod-Branched Inorganic Nanocrystals. Nat. Mater.,2003,2: 382-385.
    [84]Cho, J. W.; Kim, H. S.; Kim, Y. J.; Jang, S. Y.; Park, J.; Kim, J.-G.; Kim, Y.-J.; Cha, E. H. Phase-Tuned Tetrapod-Shaped CdTe Nanocrystals by Ligand Effect. Chem. Mater.,2008,20:5600-5609.
    [85]Asokan, S; Krueger, K. M.; Colvin, V. L.; Wong, M. S. Shape-Controlled Synthesis of CdSe Tetrapods Using Cationic Surfactant Ligands. Small,2007,3: 1164-1169.
    [86]Zhong, H.; Zhou, Y.; Yang, Y.; Yang, C.; Li, Y. Synthesis of Type Ⅱ CdTe-CdSe Nanocrystal Heterostructured Multiple-Branched Rods and Their Photovoltaic Applications. J. Phys. Chem. C,2007,111:6538-6543.
    [87]McDaniel, H.; Shim, M. Size and Growth Rate Dependent Structural Diversification of Fe3O4/CdS Anisotropic Nanocrystal Heterostructures. ACS Nano, 2009,3:434-440.
    [88]Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J.; Wang, L.-W.; Alivisatos, A. P. Colloidal Nanocrystal Heterostructures with Linear and Branched Topology. Nature,2004,430:190-195.
    [89]Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.; Sadtler, B.; Alivisatos, A. P. Seeded Growth of Highly Luminescent CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morphologies. Nano Lett.,2007,7:2951-2959.
    [90]Yu, W. W.; Wang, Y. A.; Peng, X. Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals:Ligand Effects on Monomers and Nanocrystals. Chem. Mater.,2003,15:4300-4308.
    [91]Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. J. Am. Chem. Soc.,2000,122:12700-12706.
    [92]Xie, R.; Kolb, U.; Basche, T. Design and Synthesis of Colloidal Nanocrystal Heterostructures with Tetrapod Morphology. Small,2006,2:1454-1457.
    [93]Fiore, A.; Mastria, R.; Lupo, M. G.; Lanzani, G.; Giannini, C.; Carlino, E.; Morello, G.; De Giorgi, M.; Li, Y.; Cingolani, R.; Manna, L. Tetrapod-Shaped Colloidal Nanocrystals of Ⅱ-Ⅵ Semiconductors Prepared by Seeded Growth. J. Am. Chem. Soc.,2009,131:2274-2282.
    [94]Zhong, H.; Scholes, G. D. Shape Tuning of Type Ⅱ CdTe-CdSe Colloidal Nanocrystal Heterostructures through Seeded Growth. J. Am. Chem. Soc.,2009, 131:9170-9171.
    [95]Zhou, Y.; Li, Y.; Zhong, H.; Hou, J.; Ding, Y.; Yang, C.; Li, Y. Hybrid Nanocrystal/Polymer Solar Cells Based on Tetrapod-Shaped CdSexTe1-x Nanocrystals. Nanotechnology,2006,17:4041-4047.
    [96]Zhai, T.; Dong, Y.; Wang, Y.; Cao, Z.; Ma, Y.; Fu, H.; Yao, J. Size-Tunable Synthesis of Tetrapod-Like ZnS Nanopods by Seed-Epitaxial Metal-Organic Chemical Vapor Deposition. J. Solid State Chem.,2008,181:950-956.
    [97]Yin, L.-W.; Bando, Y.; Zhan, J.-H.; Li, M.-S.; Golberg, D. Self-Assembled Highly Faceted Wurtzite-Type ZnS Single-Crystalline Nanotubes with Hexagonal Cross-Sections. Adv. Mater.,2005,17:1972-1977.
    [98]Jun, S.; Jang, E. Interfused Semiconductor Nanocrystals:Brilliant Blue Photoluminescence and Electroluminescence. Chem. Commun.,2005:4616-4618.
    [99]Koo, B.; Korgel, B. A. Coalescence and Interface Diffusion in Linear CdTe/CdSe/CdTe HeterojunctionNanorods. Nano Lett.,2008,8:2490-2496.
    [100]Capek, R. K.; Lambert, K.; Dorfs, D.; Smet, P. F.; Poelman, D.; Eychmuller, A.; Hens, Z. Synthesis of Extremely Small CdSe and Bright Blue Luminescent CdSe/ZnS Nanoparticles by a Prefocused Hot-Injection Approach. Chem. Mater., 2009,21(8):1743-1749.
    [101]Zhong, X.; Han, M.; Dong, Z.; White, T. J.; Knoll, W. Composition-Tunable ZnxCdl-xSe Nanocrystals with High Luminescence and Stability. J. Am. Chem. Soc.,2003,125(28):8589-8594.
    [102]Zhong, X.; Zhang, Z.; Liu, S.; Han, M.; Knoll, W. Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting ZnxCdl-xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength. J. Phys. Chem.B,2004,108(40):15552-15559.
    [103]Zhong, X.; Feng, Y.; Knoll, W.; Han, M. Alloyed ZnxCdl-xS Nanocrystals with Highly Narrow Luminescence Spectral Width. J. Am. Chem. Soc.,2003,125(44): 13559-13563.
    [104]Ouyang, J.; Vincent, M.; Kingston, D.; Descours, P.; Boivineau, T.; Zaman, M. B.; Wu, X.; Yu, K. Noninjection, One-Pot Synthesis of Photoluminescent Colloidal Homogeneously Alloyed CdSeS Quantum Dots. J. Phys. Chem. C,2009,113(13): 5193-5200.
    [105]Ouyang, J; Ratcliffe, C. I.; Kingston, D.; Wilkinson, B.; Kuijper, J.; Wu, X.; Ripmeester, J. A.; Yu, K. Gradiently Alloyed ZnxCdl-xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach. J. Phys. Chem. C,2008,112(13):4908-4919.
    [106]Deng, Z.; Lie, F. L.; Shen, S.; Ghosh, I.; Mansuripur, M.; Muscat, A. J. Water-Based Route to Ligand-Selective Synthesis of ZnSe and Cd-Doped ZnSe Quantum Dots with Tunable Ultraviolet A to Blue Photoluminescence. Langmuir, 2009,25(1):434-442.
    [107]Fang, Z.; Liu, L.; Wang, J.; Zhong, X. Depositing a ZnxCd1-xS Shell around CdSe Core Nanocrystals via a Noninjection Approach in Aqueous Media.J. Phys. Chem. C,2009,113(11):4301-4306.
    [108]Kalasad, M. N.; Rabinal, M. K.; Mulimani, B. G. Ambient Synthesis and Characterization of High-Quality CdSe Quantum Dots by an Aqueous Route. Langmuir,2009,25(21):12729-12735.
    [109]Jun, S; Jang, E.; Chung, Y. Alkyl thiols as a sulfur precursor for the preparation of monodisperse metal sulfide nanostructures. Nanotechnology,2006,17(19): 4806-4810.
    [110]Lim, J.; Jun, S.; Jang, E.; Baik, H.; Kim, H.; Cho, J. Preparation of highly luminescent nanocrystals and their application to light-emitting diodes. Adv. Mater.,2007,19(15):1927-1932.
    [111]Peng, X.; Wickham, J.; Alivisatos, A. P. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ Colloidal Semiconductor Nanocrystal Growth:"Focusing" of Size Distributions. J. Am. Chem. Soc.,1998,120(21):5343-5344.
    [112]Szuchmacher B., Amy; Moore, M. H.; Ratna, B. R. Quantum Dot Fluorescence as a Function of Alkyl Chain Length in Aqueous Environments. Langmuir,2008, 24(17):9194-9197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700