柔性集尘极应用于燃煤脱硫烟气深度净化的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿式静电除尘技术具有高效去除微细颗粒物、低压损、防止二次携带等优点,目前已经广泛应用于煤气生产、硫酸制造、磷矿加工等行业。然而目前的湿式静电技术仍存在一些问题,集中体现在集尘极材料选择和表面水膜分布不均引发的系列问题上。例如集尘极表面水膜不均引起的“干斑点”和“火花放电”故障、大部分设备采用的停机冲洗操作缺陷、集尘极采用耐腐蚀材料造成的设备成本较高等问题,限制了湿式静电技术的大规模工业应用。针对上述问题,本文提出以柔性绝缘疏水纤维织物用作集尘极材料,旨在解决传统湿式静电技术电气与设备故障根源。通过研究柔性集尘极表面水膜形成过程、内在动力与液滴浸入蔓延规律,论证水在柔性疏水纤维织物集尘极表面形成均匀水膜的可行性;通过分析S03\酸雾气溶胶核化、吸收竞争机制,揭示燃煤烟气S03进入湿法脱硫塔前后的形态转化与吸收规律;以S03转化物粒度分布特征为据,建立酸雾气溶胶深度净化小型试验台,通过测量不同给水率条件下柔性绝缘集尘极电阻率变化及V—I曲线,揭示柔性集尘极表面水膜特性与静电场性能之间的耦合关系,提出柔性集尘极应用于燃煤脱硫烟气深度净化的理论分析模型,指导中试试验系统设计;通过中试试验研究得出柔性集尘极应用于燃煤脱硫烟气深度净化的组合操作参数,并在2×220t/h锅炉上实现工业化应用。
     (1)采用浸润质量实时监测法,在柔性集尘极毛细浸润实验台上,测量了三种浸润液体对两种疏水性纤维织物(丙纶织物:840A;涤纶织物:728)浸润过程中集尘极质量的变化;利用浸润过程分步吸收、材料表面胶化处理方式,得到液体浸润织物过程存在的两种独立浸润途径,揭示了水在柔性绝缘疏水性纤维织物集尘极表面形成均匀水膜的可行性及内在动力。研究发现:液体对柔性集尘极毛细浸润过程,可分为浸入、毛细吸附、液固分离、织物表面液体蒸发四个阶段;织物编织结构、材料表面自由能、液体性质等参数对织物毛细浸润特性影响显著;当液体浸润同一织物,经向和纬向浸润规律表现相同,水浸润840A、728织物过程分别符合ExpAssoc指数分布和Hill分布;液体浸润量由织物纤维间隙毛细吸附量和织物表面空穴容液量两个相互独立部分组成,毛细吸附与空穴充满过程同时发生并存在质量交换;纤维间隙毛细吸附效应、表面空穴内液体产生的Laplace压力与液体本身静压差、表面空穴内液体之间的压力差为柔性疏水绝缘纤维织物集尘极表面水膜的形成提供动力。
     (2)以液滴扩散基础理论为指导,利用FASTCAM—10kC高速摄像系统,拍摄不同性质液滴在不同柔性集尘极材料表面的浸入扩散过程。运用数据无量纲化处理方法对拍摄内容统计分析,得到液体、织物参数对液滴在集尘极表面浸入扩散特性的影响规律。研究发现:液体性质、材料表面自由能决定二者之间的接触角数值,水液滴与840A、728的接触角分别为136.2°、52.5°,乙醇与840A、728的接触角分别为41.9°、46.5°;接触角越大,液滴浸入扩散速度越小,达到平衡时间越长;液滴浸入扩散过程可分为浸入扩散初期和浸入扩散后期两个阶段;在浸入扩散初期,液滴重力对扩散速度及体积浸入速度影响显著,在浸入扩散后期,液体粘度、惯性力、材料表面能起主导作用;水液滴在728表面及乙醇液滴在728、840A表面的扩散形状均为椭圆形,扩散过程分别符合ExpAssoc和Hill分布;水液滴在840A正、反面的浸入时间较长,扩散形状为圆形,直径略小于液滴最大直径;织物表面纹理结构、液滴体积和性质、织物厚度、材料表面自由能对液滴浸入扩散特性产生明显影响。
     (3)在S03形态转化实验中,采用03氧化S02法产生S03,利用激光相位多普勒测速系统对S03转化物进行粒度测量,得到典型湿法脱硫温度下S03转化物多分散性粒度分布特征,并为酸雾气溶胶深度净化试验颗粒物粒径选择提供依据。研究发现:在温度56°CS03与反应器内残存少量空气接触时,S03与水分子快速结合转化为H2SO4分子,而不是以S03分子形态存在;温度是影响硫酸蒸气核化凝结的关键因素;硫酸蒸气凝结成核形成的酸雾气溶胶颗粒物粒径的估计值在[0,40]、[41,70]这两个区间的概率为96%,两段区间内颗粒物平均粒径分别为18μm和48μm;SO3进入湿法脱硫塔后全部以酸雾气溶胶形态存在。
     (4)在S03酸雾气溶胶吸收特性实验台上,测量了室温下不同吸收剂对S03酸雾气溶胶的吸收率,对比分析了不同温度下,钙基湿法脱硫循环浆液对S03酸雾气溶胶吸收率的变化,并对S03酸雾气溶胶在吸收剂内的核化、吸收过程存在的竞争机制进行了机理分析和实验验证。实验测得不同吸收剂对S03酸雾气溶胶的吸收率为:CaCO3(30%):60.79%,脱硫循环浆液:64.21%, NaOH(0.25mol/L):67.02%,去离子水:67.21%;吸收剂中各类溶解性粒子的存在降低了SO3酸雾气溶胶的溶解度;温度在50~85℃变化时,脱硫循环浆液对SO3酸雾气溶胶的吸收率轻微波动;实际运行中燃煤产生的S03进入脱硫塔时全部转化为H2SO4并形成大量亚微米级凝结核,酸雾气溶胶的核化速度远远高于在吸收剂内的溶解速度,最终形成大量微细硫酸雾悬浮于气相中,而不能被脱硫浆液全部吸收;净烟气中的酸雾含有未脱尽的硫酸雾部分。
     (5)以机理研究成果为基础,建设了柔性集尘极应用于酸雾气溶胶深度净化小型试验台。重点在该试验台上考察了集尘极材料、比收尘面积、场强、颗粒粒径、气体温度、进口浓度、水膜蒸发率等参数对酸雾气溶胶脱除率的影响规律。利用FLUENT对静电场内导流板的设计进行优化,优化后电场内速度均方根降为0.139,有利于柔性集尘极的张紧和垂直;当绝缘集尘极给水率为0.03L/m2时,材料电阻率降为半导体材料范畴;给水率为0.147Lm~-1h~-1时,测得728、840A、玻璃钢(FRP)三种集尘极的电场特性相似,起晕电压均为22kV,30kV以后,电晕电流728>840A>FRP;试验工况下,840A对酸雾气溶胶的脱除效率为99.4%;比收尘面积、进口浓度与酸雾气溶胶脱除率成线性增加关系,场强与效率之间的关系符合Logistic模型,脱除率随温度的升高成指数衰减,表面水膜蒸发率对酸雾气溶胶脱除率无明显影响;通过各影响参数分析,对传统效率公式进行了修正,提出了柔性集尘极应用于燃煤脱硫烟气深度净化的理论分析模型。
     (6)在柔性集尘极应用于钙基湿法脱硫烟气深度净化中试试验台上,发现试验工况下728和840A集尘极对浆液滴、微细粉尘气溶胶的脱除率均在99%以上;锯齿芒刺线的工作性能优于星形放电极,二者在低流量条件下偏差为1%-4%,在高流量下二者偏差为7-10%;试验装置出口烟气酸雾含量<10mg/m~3、浆液滴气溶胶<15mg/m~3,微细粉尘气溶胶<5mg/m~3;低pH值静电脱除液体作为唯一水膜供给水源,柔性集尘极低温高湿环境运行7个月后,性能持续表现优异;728集尘极+芒刺线极配方式合理,两电极表面保持高度清洁;柔性集尘极应用于钙基湿法脱硫烟气深度净化的工业化应用中,推荐参数为:极配方式为728集尘极+芒刺线;气体与水膜接触方式为逆流接触;极间距为400mm;气体停留时间范围为2s-2.5s;运行电压在65-70kV时,比收尘面积推荐值为16-20m~2/(m~3/s);工业化装置的正常运行验证了研究成果的正确性。
     (7)建立柔性集尘极应用于湿式氨法脱硫烟气深度净化的中试试验台,明确了适用于湿式氨法脱硫烟气深度净化技术的特性参数。试验工况下,728集尘极对氨、铵盐类气溶胶的脱除率分别为89.24%和90.86%;预洗涤水量对装置进口烟气NH3和SO2含量均产生明显影响;预洗涤水量的大小对氨气溶胶的脱除率无明显影响,铵盐类气溶胶脱除率随预洗涤水量增加成线性增加;烟气流量越大,氨气溶胶和铵盐类气溶胶的脱除率均相应降低,预洗涤水量越大,烟气流量对污染物脱除率的影响越小;静电脱除液体及过饱和烟气冷凝液完全满足集尘极给水率要求;柔性集尘极应用于湿式氨法脱硫烟气深度净化的工业化应用中,当气体与水膜接触方式为顺流接触时,推荐参数为:预洗涤水量范围为0.09-0.18L/m3·h,气体停留时间<2s,运行电压在60kV时,比收尘面积推荐值为18-22m~2/(m~3/s)。
     柔性集尘极应用于燃煤脱硫烟气深度净化技术,高烟气流速下具有气溶胶脱除率高、烟羽能见度高、集尘极表面水膜均匀、清灰彻底、无间断在线操作、运行成本低等优点及现场应用优势,使其有望成为协同脱除WFGD、SCR系统运行副产物的主流控制技术之一。
Wet electrostatic precipitators (wet ESPs) have exhibited satisfied performance for fine particulates control in some applications such as sulfuric acid and Phosphorus production. Moreover, wet ESPs may provide much higher average corona power levels compared to dry ESPs, because they are constantly being cleaned by flowing water, and can prevent "back corona". However, unexpected corrosion and fouling of collector surfaces may limit the wide applicability of current ESPs, and the research on ESP technology has tried to find more improved methods to solve these imperfections. In most wet ESPs, the collector surface is continuous and rigid. Flushing water passing over the surface tends to "bead" due to both surface tension effects as well as initial geometric surface imperfections which is not beneficial to particle precipitation. Based on this background, the flexible collection electrode was put forward. This paper summarized the possibility, internal power and laws of evolution for water transferring in flexible hydrophobic collection electrodes. In fact, large amounts of SO3 and acid mists would be produced in coal-fired process which would cause serious corrosion of pipeline and air pollution. The characteristics of SO3 conversion, absorption and particle size distribution of aerosol had been investigated in this paper, too.The effects of several parameters on the removal of pollutants were studied in lab and pilot scales experimental system. A modified efficiency formula was put forward to instruct actual industrialization for wet ESP with single flexible collection electrode. Flexible collection electrode applied in advanced purification for coal-fired flue gas following wet flue gas desulfurization (WFGD) has been put into service in 2×220t/h utility boilers since 2010.
     (1) The imbibition of flexible hydrophobic and insulated collection electrode was studied at the laboratory bench by monitoring quality change. The different ways of imbibition were separated successfully by superficial treatment.The transfer rules of water under capillary penetration in polypropylene (840A) and terylene (728) were analyzed. The results show that all capillary process could be divided into four phases. The immersion and solid-liquid separation were related to the balance between wetting tension and buoyancy of water. The capillary absorption process fully revealed the dynamic interaction of transfer process for water in fabrics. The evaporation of water film emphasized the influence of environmental conditions on experimental data. The effects of several parameters on capillary penetration were obvious, such as assemblages into strands of fabrics, properties of liquids and surface free energy of materials. The capillary processes for water and ethanol absolute penetrating 840A and 728 were in accord with the law of ExpAssoc and Hill. It can be concluded that two different ways exist which occurred independently and simultaneously in the process of imbibition. One was volume rising inside the yarns, and the other was surface filling of alveoli. There were three ways providing power for water transferring in fabrics. The yarns between filaments of fabrics drove the liquid up, and the liquid rose to the top of fabrics. If the yarns were saturated and the surface was dried, the liquid transferred to surface retention. The inherent kinetics was pressure difference between yarns and alveoli. Because of different size of alveoli, there existed mass exchanges among alveoli.
     (2) An experimental system was designed to investigate internal dynamics of drop spreading for water and ethanol absolute on 840A and 728 using FASTCAM—10kC system. The results show that the contact angles for water on 728 and 840A were 52.5°and 136.2°,and the contact angles for ethanol absolute on 728 and 840A were 41.9°and 46.5°. It was observed that overall spreading process could be divided into two stages. The processes of drop spreading for water and ethanol absolute on 728 were in accord with the law of ExpAssoc and Hill, and the diffusion shapes were elliptical. The processes of drop spreading for ethanol absolute on 840A were in accord with the law of Hill. The shapes for ethanol absolute and water on 840A were elliptical and circular. The effects of several parameters on drop spreading were obvious, such as assemblages into strands of fabrics, property and size of droplet, thickness of fabric and surface free energy of material.
     (3) A multi-purpose experimental system was established in Chapter 4. SO3 was produced by means of oxidation of SO2 by O3, and the conversions of SO3 and particle size distributions were investigated. The results show that SO3 translated into acid mists under certain conditions at 56℃. The characteristics of particle size distribution of acid mists were measured by Particle Dynamic Analyzer. The decisive parameter for SO3 conversion was temperature under simulation conditions. The actual particle size distribution of SO3 formed three intervals such as [0,40], [41,70] and [71,100], and the confidence levels were 79%,17%,4% in sequence. The mean diameters of former two groups were 18um and 48μm. All SO3 would translate into acid mists as soon as entering into WFGD.
     (4) On the multi-purpose equipment, the different absorption rate of SO3 was investigated by different absorbents. The absorptivities of different absorbents from low to high were CaCO3(30%)< desulfurizer     (5) A patented device was designed, and a bench scale experimental system was set up to investigate the removal of sulfuric acid aerosol by flexible collection electrode designed for gas flow rates of 450—1500m3h-1. Single polypropylene and terylene fabrics served as collection electrodes were introduced into a new wet ESP. The specific resistance and V-I curves of different collection electrodes were illustrated. The effects of several important parameters on collection efficicency of sulfuric acid aerosol were analyzed. The results demonstrated that gas flow distribution became uniform, and the no-uniformity decreased obviously with three deflectors. The RMS without deflector was 0.209, but in contrast RMS with three deflectors was 0.135. The behaviors of flexible collection electrodes were consistent with typical FRP using a thimbleful of water penetrating them via capillary flow at 0.147L/m2. The collection efficiencies by 840A and 728 were higher than that by FRP under certain conditions. The collection efficiency had linear relationship with specific surface area (SCA) and mass concentration. The collection efficiency increased with increasing electric field strength, particles average diameter and with decreasing gas temperature. As long as there was any water on the collector surface, any particle would exhibit similar collection efficiencies, whether of high resistivity or not. Based on analysis of main factors, a modified efficiency formula was put forward for advanced purification with single flexible hydrophobic and insulated collection electrode.
     (6) A pilot-scale unit was built up to demonstrate potential advantages of flexible collection electrode for flue gas following Ca-based WFGD. It was a counter current structure, designed for gas flow rates of 9000—25000m3h-1. The removal of sulfuric acid aerosol, slurry droplet and fine particle aerosol were tested under actual flue gas following fabric filter system and WFGD. The collection efficiencies by 840A and 728 amounted to 99% under certain conditions. The collection efficiencies by barbed wires were higher than those by diamond-shaped wires in the device, the deviation between them was 7—10% at higher gas flow rate, in contrast was 1—4% at lower gas flow rate. The concentrations of sulfuric acid aerosol, slurry droplet and fine particle aerosol were lower than 10mg/m3,15mg/m3 and 5mg/m3 at outlet, respectively. The pH value of removal liquid was usually in the range of 1.55—1.97, had infiltrated flexible collection electrodes for seven months. When the device was taken apart, the surfaces of collection electrode and emitter electrode were verified to be very clean and smooth due to continuous flushing by removal liquid. Single terylene collection electrodes presented significant resistance to acid corrosion. As long as the collecor electrode could be kept wet, there would be little maintenance cost. The optimum combination of advanced purification with flexible collection electrode is 728 collection electrode combined with barbed wires for fuel gas following Ca-based WFGD, the distance between two parallel collection electrodes is 400mm, the optimum gas treatment time is 2—2.5s, the recommended value of SCA is 16—20m2/(m3/s) at 65—70kV. The normal operation of industrialization and the higher gas transparency verified the validity of these results.
     (7) Another pilot-scale unit was built up to demonstrate potential advantages of flexible collection electrode for flue gas following NH3-based WFGD. It was a downstream structure, and designed with pre-washing system. The results demonstrated that the collection efficiencies for ammonia aerosol and ammonium aerosol by 728 amounted to 89.24% and 90.86% under certain conditions. The concentrations of NH3 and SO2 were influenced obviously by pre-washing rate at inlet. The relationship between collection efficiency of ammonia and pre-washing rate was not obvious. In contrast, the relationship between ammonium collection efficiency and pre-washing rate appeared linear growth. The effect of gas flow rate on collection efficiency decreased when pre-washing rate was higher during the course of performance tests. The optimum combination of advanced purification for gases following NH3-based WFGD is 728 collection electrode combined with barbed wires, The recommended pre-washing rate is 0.09—0.18L/(m3·h), the optimum gas treatment time should be lower than 2s, the optimal SCA is 18—22m2/(m3/s) at 60kV.
     Flexible collection electrode applied in advanced purification is satisfied for controlling aerosol emissions at higher face velocity, thereby be of great benefit to large-scale industrial use, and to meet more rigorous air quality standards. Flexible collection electrode applied in advanced purification for coal-fired fuel gas following WFGD gains some advantages of higher efficiency, higher gas transparency, thorough dust cleaning, continuous operation, lower cost, easy to be accepted which may become dominating control technology of coal-fired pollutants.
引文
[1]黎在时.电除尘器的选型安装[M].北京:中国电力出版社,2005:34—35.
    [2]唐国山.工业电除尘器应用技术[M].北京:化学工业出版社,2006:39—-44.
    [3]Anatol Jaworek, Andrzej Krupa, Tadeusz Czech. Modern electrostatic devices and methods for exhaust gas cleaning:A brief review[J]. Journal of Electrostatis,2007, 65:133-155.
    [4]A. Jaworek, T. Czech, E. Rajch, M. Lackowski. Laboratory studies of back-disch arge in fly ash[J]. J. Electrostat.,2006,64(5):326-337.
    [5]祁君田.现代烟气除尘技术[M].北京:化学工业出版社,2008:98—99.
    [6]David J.Bayless, M.Khairul Alam, Roger Radcliff, John Caine. Membrane-based wet electrostatic precipitation[J]. Fuel Process. Technol.,2004,85:781-798.
    [7]W. Peukert, C. Wadenpohl, Industrial separation of fine particles with difficult dust properties[J], Powder Technol.118 (1-2) (2001)136-148.
    [8]范雪琳.湿式静电除尘器常见故障分析及对策[J].煤化工,2005,116(1):50一51.
    [9]周志祥,段建中,薛建明.火电厂湿法烟气脱硫技术手册[M].北京:中国电力出版社,2006:10—11.
    [10]郝吉明,王书肖.燃煤SO2控制技术手册[M].北京:化学工业出版社,2001:10—11.
    [11]赵惠富.污染气体NO_x的形成与控制[M].北京:科学出版社,1993:1—17.
    [12]陈鸿飞.除尘与分离技术[M].北京:冶金工业出版社,2007:6—316.
    [13]Daniel Fleig, Fredrik Normann. The fate of sulphur during oxy-fuel combustion of lignite[J]. Energy Procedia,2009,1:383-390.
    [14]M.T. Nielsen, H. Livbjerg. Formation and emission of fine particles from two coal-fired power plants[M]. Combust. Sci. Technol.,2002,,174(2):79-113.
    [15]BjOrn Timmer, Wouter Olthuis, Albert van den berg. Ammonia sensors and their applications—a review[J]. Sensors and Actuators B,2005,107:666-677.
    [16]李尉卿.大气气溶胶污染化学基础[M].郑州:黄河水利出版社,2010:71-96.
    [17]韩玉霞,王乃光,李鑫.有机酸添加剂强化石灰石湿法烟气脱硫过程的实验研究[J].动力工程,2007,27(2):278-281.
    [18]樊雄伟.用烟尘测试法测定除雾器出口烟气中浆液滴含量[J].广西电力,2009,4:53-55.
    [19]冯国,浦日军.浅析氨法脱硫工艺[J].内蒙古科技与经济,2009,181(3):257-258.
    [20]R.K. Srivastava, C.A. Miller, C. Erickson, R. Jambhekar. Emissions of Sulfur Trioxide from Coal-Fired Power Plants. Power-gen International[R], Orlando, Florida,2002.
    [21]Paul A. Baron, Klaus Willeke,气溶胶测量原理、技术及应用[M].白志鹏,张灿,等译.北京:化学工业出版社,2007:1—13.
    [22]张小曳.中国大气气溶胶及其气候效应的研究[J].地球科学进展,2007,22(1):12—15.
    [23]Richard A. Kerr. Climate Change:Pollutant Hazes Extend Their Climate-Changing Reach [J]. science,2007,315:1217.
    [24]曹国良,安心琴,周春红,任彦卿.中国区域反应性气体排放源清单[J].中国环境科学,2010,30(7):900—906.
    [25]路春美,王永征.煤燃烧理论与技术[M].北京:地震出版社,2001:179—196.
    [26]王智,贾莹光,祁宁.燃煤电站锅炉及SCR脱硝中S03的生成及危害[J].东北电力技术,2005,9:1—3.
    [27]吴宁,宋蔷,李水清,姚强.SCR烟气脱硝过程中SO2和S03的测量[J].煤炭转化,2006,29(2):85—87.
    [28]J.P. Dunn, H. G. Stenger, I. E. Wachs. Oxidation of SO2 over Supported Metal Oxide Catalysts [J]. Journal of Catalysis,1999,181(2):233-243.
    [29]朱崇兵,金保升,李锋,翟俊霞.SO2氧化对SCR法烟气脱硝的影响[J].锅炉技术,2008,39(3):68—71.
    [30]Motonobu Kobayashi, Mitsuharu Hagi. V2O5-WO3/TiO2-SiO2-SO42- catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2 [J]. Applied Catalysis B: Environmental,2006,181:104-113.
    [31]Carlo Orsenigo, Alessandra Beretta, et.al. Theoretical and experimental study of the interaction between NOx reduction and SO2 oxidation over DeNOx-SCR catalysts[J]. Catalysis Today,1996,27:15-21.
    [32]朱林,吴碧君,段玖祥,等.SCR烟气脱硝催化剂生产与应用现状[J].中国电力,2009,42(8):61—64.
    [33]F. H. Verhoff, J. T. Banchero. Predicting dew points of flue gases[J]. Chem. Eng. Prog,1974,70:71-72.
    [34]梁红亮,郭宾彬.SCR催化剂的研究应用状况和发展方向[J].科技情报开发与经济,2008,18(14):120—121.
    [35]徐灏龙,刘海兵,周树勋,等.燃煤锅炉烟气SCR脱硝工艺关键技术研究[J].选煤技术,2009,1:70—74.
    [36]强华松,刘清才.燃煤电厂SCR脱硝催化剂的失活和再生[J].材料导报,2008,22:285—287.
    [37]贺旭.沸腾炉烟气酸雾危害及控制[J].劳动保护科学技术,2000,20(3): 50—52.
    [38]蔺小力.电除尘器对高比电阻粉尘收集的研究[J].内蒙古环境科学,2009,21(2): 24—27.
    [39]尹连庆,王晶.粉尘比电阻对电除尘的影响及改进措施研究[J].电力环境保护,2009,25(5):34—37.
    [40]陈文瑞.SO3烟气调质系统在华润登封电厂的应用[J].电力环境保护,2009,25(6):56—57.
    [41]孙玉华.影响电除尘器运行的主要原因及对策[J].鸡西大学学报,2009,9(5):43—44.
    [42]王岩,邵飞.烟气性质对电除尘器运行的影响[J].科苑·实践,2009,12:96—97.
    [43]Mary Buckner Powers. Equipment added to clean emissions produces acid plume [J]. ENR:Engineering News-Record,2001,247(8):12.
    [44]K. S. Kumar, Adel Mansour. Wet ESP for controlling sulfuric acid plume following an SCR system. Presented at the ICAC Forum 2002[R]. Houston, Texas,2002.
    [45]Gary M. Blythe. Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control. DE-FC26-99FT40718[R]. Austin, Texas,2003.
    [46]叶江明.电厂锅炉原理及设备[M].北京:中国电力出版社,2006:203-227.
    [47]邓雅莉.中国燃煤电厂SCR技术的应用现状和发展[J].工业安全与环保,2008,34(2):14-15.
    [48]张强,张西涛.燃煤电站实施SCR脱硝技术的关键工艺选择[J].技术经济综 述,2007,4:1-4.
    [49]谢剑山.火电厂SCR脱硝系统运行分析[J].电站辅机,2008,106(3):11-16.
    [50]雷达,金保升.燃煤电站SCR内烟气流场及还原剂浓度场模拟与优化[J].煤炭学报,2009,34(3):394-399.
    [51]郭家骅,郭季璞.氨法烟气脱硫综述[J].科研探索与知识创新,2009,12:92-93.
    [52]杨学远.氨回收法烟气脱硫技术的分析[J].石油化工应用,2009,28(9):98-100.
    [53]王银安,方子明.氨—硫酸铵法烟气脱硫运行总结[J].小氮肥,2009,37(9):19-20.
    [54]周大明,王雪妮.氨法烟气脱硫可行性分析及工业运行[J].氮肥技术,2009,30(4):48-51.
    [55]郭新法.回收型氨法脱硫技术在75 t/h锅炉上的应用[J].中氮肥,2009,6:20-21.
    [56]汪家铭.氨法脱硫在硫磺制酸装置尾气处理中的应用[J].硫磷设计与粉体工程,2009,6:29-33.
    [57]高强.氨法烟气脱硫脱硝的技术特征[J].科技信息,2009,11:39-40.
    [58]陈梅倩,何伯述,陈广华,等.氨法脱硫反应特性的化学动力学分析[J].环境科学学报,2005,25(7):886-890.
    [59]丁玉辉.废氨水用于锅炉烟气脱硫[J].中氮肥,2009,4:12-14.
    [60]吴忠标,刘越,盛重义,等.氨法烟气脱硫工艺实验研究[J].环境科学与技术,2010,33(2):135-137.
    [61]鲍静静,印华斌,杨林军,等.湿式氨法烟气脱硫中气溶胶的形成特性研究[J].高校化学工程学报,2010,24(2):325-330.
    [62]田文平,齐国江,周彦.氨法脱硫工艺应用小结[J].中氮肥,2010,1:29-30.
    [63]中华人民共和国卫生部.GBZ 14-2002职业性急性氨中毒诊断标准[S],2004.
    [64]徐仁扣.我国降水中的NH4+及其在土壤酸化中的作用[J].农业环境保护,1996,15(3):139-140.
    [65]崔建祥,赵焰.氨法脱硫副产物亚硫酸铵的塔外氧化[J].电力环境保护,2009,25(3):21-22.
    [66]贾勇,钟秦,杜冬冬,等.氨法烟气脱硫模型的研究[J].动力工程,2009,29(10):960-965.
    [67]杨柳,王世和,王小明.脱硫除雾器除雾特性的研究[J].中国动力工程学报,2005,25(2):289-292.
    [68]石俊,温高,温东.火电厂湿法烟气脱硫系统除雾器研究[J].内蒙古石油化工,2008,5:20-22.
    [69]徐华春.660 MW机组脱硫吸收塔设计[J].发电设备,2010,3:219-223.
    [70]王霄,闵健,高正明,等.脱硫吸收塔除雾器性能的实验研究和数值模拟[J].环境工程学报,20008,2(11):1529-1534.
    [71]姚杰,仲兆平,周山明.湿法烟气脱硫带钩波纹板除雾器结构优化数值模拟[J].中国电机工程学报,2010,30(14):61-66.
    [72]李峻铃.脱硫系统除雾器冲洗控制及pH调节分析[J].电力与能源,2009,35:794-795.
    [73]吕新锋.宁海发电厂脱硫除雾器运行优化及防堵措施[J].电力科技与环保,2010,26(1):56-57.
    [74]禾志强,祁利明,马青树.石灰石-石膏法脱硫系统除雾器堵塞研究[J].锅炉技术,2010,41(1):77-80.
    [75]王小平.湿法烟气脱硫除雾器设计选型和维护[J].电力环境保护,2010,25(5):24-25.
    [76]孔文勇.脱硫装置除雾器及烟气加热器堵塞问题分析[J].行业交流,2009,7:50-51.
    [77]吕建燚,杨官平,李晶欣.燃煤过程可吸入颗粒物生成及控制措施的分析[J].锅炉技术,2010,41(3):34-38.
    [78]国家环境保护局.中华人民共和国国家标准环境空气质量标准[S],1996.
    [79]国家环境保护总局.火电厂大气污染物排放标准[S],2003.
    [80]原永涛,郭海燕,王天鹏.燃煤飞灰中微细颗粒控制技术介绍[J].粉煤灰,2008,5:6-8.
    [81]K.Darcovich, K.A.Jonasson, C.E.Capes. Developments in the control of fine particulate air emissions[J]. Advanced powder technol.,1997,8(3):179-215.
    [82]丘佳锐,王艳媛,苏可美.透镜式电袋复合除尘技术在水泥厂窑尾烟气净化中的应用[J].技术装备,2009,11:64-67.
    [83]Rodney Truce, John Wilkins, Robert Crynack, et.al. The Indigo Agglomerator —A Proven Technology for Reducing Visible Emission from Electrostatic Precipitators [J]. Energetyka, listopad 2005:751-757.
    [84]A. Laitinen, J. Hautanen, J. Keskinen, et.al. Bipolar charged aerosol agglomeration with alternating electric field in laminar gas flow [J]. Journal of Electrostatics, 1996:303-315.
    [85]黄三明.电除尘技术的发展与展望[J].工程与技术,2005,7:59-63.
    [86]何吕刚,吴玉华.锅炉电除尘器飞灰粒径分布特性试验研究[J].电力环境保护,1999,15(4):4-7.
    [87]中国机械工业联合会.电除尘器阳极板[S],2007.
    [88]李大中,田莉,张政委,等.锅炉电除尘器效率下降原因及改进对策[J].工业安全与环保,2005,31(4):32-34.
    [89]Jong-Ho Kim, Hwa-Su Lee, Hyun-Ha Kim. Electrospray with electrostatic precipitator enhances fine particles collection efficiency[J]. J. Electrostat.,2010, 68(4):305-310.
    [90]赵海波,郑楚光.静电增强湿式除尘器的优化运行[J].动力工程,2007,27(6):954——959.
    [91]Maria Jedrusik, Arkadiusz Swierczok, Ryszard Teisseyre. Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design[J]. Powder Technology,2003,135-136:295-301.
    [92]Jeong Hoon Byeon, Jae Hong Park, Yoon Shin Jo, et.al. Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor [J]. Journal of Hazardous Materials,2010,175:417-422.
    [93]Jonathan Seville, Teong Guan Chuah, Vusumuzisibanda, et.al. Gas cleaning at high temperatures using rigid ceramic filters[J]. Advanced Powder Technol. 2003,14(6):657-672.
    [94]Bayless, D.J., Shi, L., Kremer, G., et.al. Membrane-Based Wet Electrostatic Precipitation [J]. Journal of the Air and Waste Management Association,,2005, 55:784-791.
    [95]Chai M., Lu M., Keener T., Khang S. Using an improved electrostatic precipitator for poultry dust removal [J]. Journal of Electrostatics,2009,67:870-875.
    [96]Jae Hark Goo, Jin Won Lee. Stochastic simulation of particle charging and collection characteristics for a wire-plate electrostatic precipitator of short length [J]. J. Aerosol Sci.,1997,28(5):875-893.
    [97]陆军,王凤红,阚晓静,等.玻璃钢湿式除尘器在煤泥干燥系统中的应用[J].洁净煤技术,2009,16(2):36-37.
    [98]Y. Kuroda, Y. Kawada, T. Takahashi. Effect of electrode shape on discharge current and performance with barrier discharge type electrostatic precipitator[J]. J. Electrostat,2003,57:407-415.
    [99]K. Smolders, J. Baeyens. Cleaning of hot calciner exhaust gas by low-density ceramic filters [J]. Powder Technol.,2000,111:240-244.
    [100]Markus Sillanpaa, Michael D. Geller. High collection efficiency electrostatic precipitator for in vitro cell exposure to concentrated ambient particulate matter (PM)[J]. J. Aerosol Sci.,2008,39:335-347.
    [101]A. Gil, C. Cortes, Gas-particle flow inside cyclone diplegs with pneumatic extraction [J]. Powder Technol.,2002,128:78-91.
    [102]罗慧珍,张佐光,李敏.纤维堆积体厚度方向浸渗特性[J].复合材料学报,2005,22(5):83-88.
    [103]Pezron, I., Bourgain, G., Qiiere, D. Imbibition of a fabric [J]. Journal of Colloid and Interface Science,1995,173:319-327.
    [104]张才前.织物各向异性导湿性能研究[M].西安:西安工程科技学院,2005:12-25.
    [105]刘丽英,刘敏.液态水在织物中传递机理探讨[J].青岛大学学报,2001,16(1):36-38.
    [106]刘建林.表面浸润的内在机制:最小作用量原理[J].力学与实践,2009,31(5):85-88.
    [107]张培林,张佐光,李敏,等.液体在单向织物面内毛细浸润特性实验研究[J].复合材料学报,2006,23(4):9-14.
    [108]杜美娜,罗运军,李国平.Washburn薄层毛细渗透法测定ε晶型CL-20的表面能及其分量[J].含能材料,2007,15(3):269-272.
    [109]L. Labajos-Broncano, M.L.Gonzalez-Martin, J.M. Bruque. On the evaluation of the surface free energy of porous and powdered solids from imbibition experiments:equivalence between height-time and weight-time techniques[J]. Journal of Colloid and Interface Science,2003,26:171-178.
    [110]鹿子娟,张佐光,李敏,等.用VOF方法模拟环氧树脂在毛细管中的浸润过程[J].宇航材料工艺,2006,3:36-40.
    [111]王进喜,王存增,刘文琪.造纸用化学纤维的表面亲水化处理[J].中国造纸,2008,27(6):64-67.
    [112]王晖,顾帼华,邱冠周.接触角法测量高分子材料的表面能[J].中南大学学报(自然科学版),2006,37(5):942—946.
    [113]何慧,沈家瑞.用接触角法测量聚合物共混体系的表面性能[J].合成材料老化与应用,2002,1:1—2,6.
    [114]余钢,王志贤.用接触角法估算复合材料的表(界)面特性[J].分析与测试,2000,21(5):28—32.
    [115]曾欣.滤料表面性质的研究—润湿接触角的测定[J].西北民族大学学报(自然科学版,2006,27(3):25—27.
    [116]赵振国.接触角及其在表面化学研究中的应用[J].化学研究与应用,2000,12(4):370—374.
    [117]H. Tavana, F.Simon, K. Grundke, et.al. Interpretation of contact angle measurements on two different fluoropolymers for the determination of solid surface tension[J]. Journal of Colloid and Interface Science,2005,291:497-506.
    [118]丁晓峰,陈沛智,管蓉.接触角测量技术的应用[J].分析试验室,2008,27:72—75.
    [119]钱良存,洪炜宁,刘家菊,等.表面张力系数和接触角测定的设计[J].甘肃 科技,2008,14(19):158—160.
    [120]肖红波,王钧,杨小利,蔡浩鹏.树脂的粘度及表面张力对浸润速率影响研究[J].武汉理工大学学报,2006,28(7):15—17.
    [121]Esperanza Alvarez, Jesus Blanco, Carlos Knapp, et.al. Pilot plant performance of a SO2 to SO3 oxidation catalyst for flue-gas conditioning [J]. Catalysis Today, 2000,59:417-422.
    [122]U.S. Environmental Protection Agency. Air quality criteria for particulate matter volume III of III[S]. EPA-600/P-95/001 cF, National Center for Environmental Assessment, April 1996.
    [123]Office of Air Quality Planning and Standards. Study of hazardous air pollutant emissions from electric utility steam generating units—final report, Volume 1, Volume 2[R]. Appendices U.S. Environmental Protection Agency:EPA-453/R-98-004b, February 1998.
    [124]Bock, J. Personal communication with J. Bock of Siemens G[R]. Redwitz, Germany:June 18,2002.
    [125]Pollution Control Department Ministry of the Environment. Code of Practice on Pollution Control (2000 Edition) [S]. Singapore:February 2004.
    [126]程显峰,吴丽梅.大气污染物—酸雾的控制技术研究[J].应用能源技术,2006,6:19~21.
    [127]王杭州.SCR对脱硝效率及SO2转化影响分析[J].电力科学与工程,2008,24(5):17~21.
    [128]兰新生,苏长华,周易谦.石灰石/石膏湿法脱硫系统净烟气中SO3(硫酸雾)来源的讨论[J].电力环境保护,2006,22(6):34~36.
    [129]赵德山,王明星.燃烟型城市污染大气气溶胶[M].北京:中国环境科学出版社,1991:285-291.
    [130]陈文强.燃煤电厂湿法烟气脱硫系统中GGH设置与否的比较分析[J].电力建设,2009,217(7): 158-160.
    [131]袁利.湿法脱硫的应用与常见问题分析[J].电力技术,2009,82(12):66-69.
    [132]李宝顺,赵丽丽,周驰,等.湿法烟气脱硫装置的腐蚀与防护[J].化工机械, 2009:36(6):640-643.
    [133]赵毅,沈艳梅.湿式石灰石/石膏法烟气脱硫系统的防腐蚀措施[J].腐蚀与防护,2009,30(7):495-498.
    [134]李艳,李义祥.石灰石-石膏湿法脱硫吸收塔漏泄原因分析及修复[J].吉林电力,2010,38(1):47-49.
    [135]苏秦,毛晔,虞向峰,等.湿法脱硫工艺吸收塔防腐现状[J].安徽化工,2009,35(6):52-54.
    [136]赵礼金.电厂烟气脱硫吸收塔内防腐方式分析[J].中国电力,2009,42(8):80-82.
    [137]杨杰.湿法脱硫系统GGH结垢原因分析及对策[J].电力环境保护,2009,25(1): 13-15.
    [138]沈建军,武丽英,祁利明,等.石灰石-石膏湿法烟气脱硫GGH结垢问题探讨[J].工业安全与环保,2010,36(1):4-5.
    [139]陶爱平,张立民,杨中彪,等.脱硫GGH换热元件板型与堵塞关系分析[J].华电技术,2009,31(9):75-78.
    [140]梁昌龙.湿法烟气脱硫GGH换热元件结垢问题探讨[J].电力建设,2009,30(8): 113-116.
    [141]尚朝杰,田周宪.脱硫后烟囱内壁防腐蚀材料选择和施工方法[J].全面腐蚀控制,2009,23(12):28-31.
    [142]罗峻峰,祝红山.脱硫烟囱防腐技术及方案比选[J].能源技术与管理,2009,4: 125-126.
    [143]徐洪海,李道林,钱峰,等.非平衡状态下SO2转化为S03技术的试验研究[J].动力工程,2005,25(3):433-436.
    [144]陈学梅.我国二氧化硫氧化制硫酸的钒催化剂现状和展望[J].硫磷设计与粉体工程,2004,4: 12-16.
    [145]国家环境保护局.固定污染源排气中二氧化硫的测定—碘量法[S],2000.
    [146]段建中,范玉明.湿式石灰石法脱硫效率与吸收剂浆液pH值关系的试验研究[J].热力发电,2009,38(6):38-40.
    [147]陈亚非,陈新超,熊建国.湿法烟气脱硫系统中S03脱除效率等问题的讨论 [J].工程建设与设计,2004,9:41-42.
    [148]化学工业部化肥司.硫酸生产分析规程[M].北京:化学工业出版社,1993.
    [149]Environmental Protection Agency. Method 8—Determination of sulfuric acid and sulfur dioxide emissions from stationary sources[S],1999.
    [150]王方群,郭荣,隋建才,等.火电厂烟气中S03的检测技术及应用[J].环境工程,2008,26(5):240-244.
    [151]赵纯,郑溪民.智能型液相S03浓度分析仪[J].化工自动化及仪表,1997,24(3):53-57.
    [152]周丽,金晓明.磷酸萃取过程S03含量软测量仪表的开发与应用[J].数字石油和化工,2007,9:65-68.
    [153]中华人民共和国轻工业部.制盐工业通用试验方法硫酸根离子的测定[S],1991.
    [154]中华人民共和国水利电力部.锅炉用水和冷却水分析方法硫酸盐的测定—电位滴定法[S],1987.
    [155]中华人民共和国卫生部.车间空气中硫酸及三氧化硫的氯化钡比浊测定法[S],1995.
    [156]郭虹,雷凯,王凯,等空气中硫酸雾的离子色谱测定法[J].环境与健康,2007,24(12):992-994.
    [157]李坤.荧光分析测定S03的制样方法探讨[J].水泥,2008,11:53-54.
    [158]何剑,徐国胜.电除尘器气流分布试验标准现状与分析[J].环境污染与防治(网络版),2009,1:1-6.
    [159]中国机械工业联合会.电除尘器气流分布模拟实验方法[S],2007.
    [160]中国电力企业联合会.电除尘器[S],2005.
    [161]张友纯.模拟电子线路[M].武汉:华中科技大学出版社,2009.
    [162]中国机械工业联合会.燃煤烟气脱硫设备性能测试方法[S],2008.
    [163]化工部天津化工研究院.工业循环冷却水中钙、镁离子的测定—EDTA滴定法[S],2009.
    [164]李森,周屈兰,徐通模,等.镁离子法测定除雾器出口烟气携带液滴量方法[J].热能动力工程,2005,20(4):381-383.
    [165]国家环境保护局科技标准司.固定污染源排气中颗粒物测定与气态污染物采样方法[S],1996.
    [166]中国机械工业联合会.电除尘器性能测试方法[S],2002.
    [167]中国机械工业联合会.电除尘器阴极线[S],1997.
    [168]环境保护部科技标准司.空气质量氨的测定—次氯酸钠水杨酸分光光度法[S],1993.
    [169]崔波,曲良,董远达.将ChemCAD用于氨的溶解度计算[J].辽宁化工,2010,39(8):849-850.
    [170]殷萍,卫宏远.pH值对硫酸铵溶解度及结晶介稳区的影响[J].化学工业与工程,2009,26(2):137-140.
    [171]肖保正.氨法脱硫装置经验点滴[J].硫酸工业,2008,1:43-45.
    [172]孙欣林,高进.大型高效电除尘器振打清灰部分的研究[J].水泥,2008,7:47-50.
    [173]陈阳.ESP二种振打清灰技术在柳钢烧结厂的应用比较[J].工业安全与环保,2008,34(12):9-10.
    [174]叶青,林柏泉,唐敏康.电除尘器收尘极板上粉尘的沉降规律[J].金属矿山,2006,357(3):74-76.
    [175]唐敏康,何锦龙,蔡丽蓉.静电除尘器收尘极板上粉尘沉积与电流分布特性[J].江西理工大学学报,2009,30(5):1-4.
    [176]张永亮,唐敏康,撒占友,王冬梅.静电除尘器收尘极板涂层对粉尘和极板之间粘结力的影响[J].矿业研究与开发,2007,27(2):46-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700