炼油过程系统优化方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了克服线性规划和单个处理单元非线性优化的内在缺点,本文研究了炼油过程系统操作优化的建模策略和优化算法,并应用于炼油厂全流程优化问题,主要研究内容与结论有:
     1.在分析比较现有过程系统优化建模策略的基础上,借鉴大系统优化分解协调的思想,提出了一种新的过程系统优化建模与求解策略——两级分解协调法。该方法把模型分成两个层次,系统层和过程层,系统层决定各单元的物流和连接关系,过程层对每个处理单元进行优化。使用该方法,过程层每个过程单元的模型都可以根据实际需要更换,整个模型具有很好的柔性。
     2.针对炼油过程系统优化自由度较小的特点,研究了自由度较小的非线性规划问题的求解算法,实现了一种基于简约空间序列二次规划和自动微分的优化算法。实验数值结果表明,该算法整体效率较高,适合求解大规模过程优化问题。
     3.参考宣(Xuan)的原油蒸馏单元模型,建立了某燃料型炼油厂原油蒸馏单元的稳态模型,模型中包括常压塔和减压塔的详细模型,以及再蒸馏单元、渣油溶剂抽提单元、脱丁烷塔和石脑油分离器等原油辅助过程单元的简化模型。把该模型与严格机理模型的预测结果相比较,验证了该模型能够准确预测常压塔、减压塔侧线产品以及减压渣油的体积和性质。
     4.参考埃利斯(Ellis)的催化裂化单元模型和塔斯卡(Taskar)的催化重整单元模型,针对具体的燃料型炼油厂进行修改,研究了催化裂化单元和催化重整单元的进料表征,并用炼油厂的工业数据对模型进行校准,使其更符合实际情况。总结了集总动力学模型建立的普遍方法与原则。
     5.建立了气体处理单元、烷基化单元和柴油加氢处理单元的简化模型。研究了辛烷值调合模型、雷特蒸气压调合模型和馏出温度调合模型,并在此基础上建立了汽油调合单元模型。
     6.研究并给出了炼油厂全流程优化问题的目标函数、决策变量和约束条件,并用实现的新算法进行求解,找到了最佳操作条件。与炼油厂现有操作条件相比,利润提高4.1%;与单处理单元优化相比,利润提高1.6%。对新算法和序列二次规划求解器rSQP的性能作了比较,计算结果表明,新算法可以高效求解炼油过程系统优化问题。
In order to overcome the inherent disadvantages of line programming and single-unit nonlinear optimization, the modeling approach and optimization algorithm of refining system and their applications in refinery-wide optimization are studied in this dissertation. The main contents are as follows:
    1. Using the decomposition-coordination theory of large-scale system for reference, a novel decomposition strategy for process system optimization, namely two level decomposition-coordination approach, is presented based on the comparison and analysis of current modeling approaches. This approach decomposes the overall model into two levels, namely a system level and a process level. The system level determines common issues among processes; the process level optimizes individual processes. In this way, this approach provides the flexibility of replacing existing process models without affecting the optimization infrastructure.
    2. For refining process optimization has the characteristics of few degrees of freedom, an efficient optimization algorithm based on reduced sequential quadratic programming and automatic differentiation is presented in this paper. The experiment results show that the new algorithm calculate efficiently and is especially suitable for large-scale process optimization.
    3. Using Xuan's model of crude distillation unit for reference, a first-principle, nonlinear, crude unit model was developed. The model, which is a steady-state model based on material balance and energy balance, include detailed model of Atmospheric Tower and Vacuum Tower and simplified model of some auxiliary process, such as Rerun unit, Residue Oil Solvent Extraction Unit, Debutanizer, and Naphtha Splitter. The comparison of the developed model and rigorous model shows that this model calculates the yields and properties of the products accurately based on the feed information.
    4. According to the specific fuel-oriented refinery, Ellis' model of fluidized catalytic cracking (FCC) unit and Taskar's model of catalytic reformer (CR) unit were used in this work after modification. The feed characterization of FCC and CR unit are studied. Each single-unit model was benchmarked against the industrial data obtained from the refinery. Common approaches and principles of lumping kinetic model research are also discussed.
    5. Simplified models were developed for gas plant, alkylation unit and diesel hydrotreater. Gasoline blending model was developed based on the studies on octane blending model, vapor pressure blending model and percent distilled model, which calculates the gasoline specifications of three grades of gasoline from the information of gasoline blending stocks.
    6. The objective, decision variables and constraints of refinery-wide optimization are given
引文
[1] 中国将逐步取代日本成世界第二大石油消费国[EB/OL].http://finance.sina.com.cn/g/20040312/1527668695.shtml
    [2] 曹湘洪.中国石化工业现状和未来发展展望[J].当代石油石化,2004,12(6):1-4,15.
    [3] Xuan LI. refinery-wide optimization[D]. Texas Tech University, 2000, 5: 156-202.
    [4] Ellis R. C., X. Li, J. B. Riggs. Modeling and Optimization of a Model Ⅳ Fluidized Catalytic Cracking Unit[J]. AIChE Journal, 1998, 44(9): 2068-2079.
    [5] In-Su Han, C. B. Chung, J. B. Riggs. Modeling of a fluidized catalytic cracking process[J]. Computers and Chemical Engineering, 2000, 24: 1681-1687.
    [6] Taskar U., J. B. Riggs. Modeling and Optimization of a Catalytic Naphtha Reformer[J]. AIChE Journal, 1997, 43(3): 740-753.
    [7] Vasantharajan S., Biegler L. T. Large-scale decomposition for successive quadratic programming[J]. Computers & Chemical Engineering. 1988, 12(11): 1087-1101.
    [8] Lucia A., Xu J. Chemical process optimization using Newton-like methods[J]. Computers & Chemical Engineering. 1990, 14(2): 119-138.
    [9] Walter Murray. Sequential Quadratic Programming Methods for Large-scale Problems[J]. Computational Optimization and Applications, 1997, 7: 127-142.
    [10] P. E. Gill, L. O. Jay, M. W. Leonard, L. R. Petzold. Vivek Sharma. An SQP method for the optimal control of large-scale dynamical systems[J]. Journal of Computational and Applied Mathematics, 2000, 120: 197-213.
    [11] Daniel B, Leineweber, Irene Bauer, Hans Georg Bock, Johannes P. Schloder. An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects[J]. Computers and Chemical Engineering, 2003, 27: 157-166.
    [12] Daniel B, Leineweber, Andreas Schafer, Hans Georg Bock, Johannes P. Schloder. An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part Ⅱ: Software aspects and applications.[J]. Computers and Chemical Engineering, 2003, 27: 167-174.
    [13] M. A. Rodriguez-Toral, W. Morton, D. R. Mitchell. The use of new SQP methods for the optimization of utility systems[J]. Computers and Chemical Engineering, 2001, 25: 287-300.
    [14] Han S. P. Superlinear convergent variable metric algorithm for general nonlinear programming problem[J]. Mathematical Programming, 1976, 11: 263-283.
    [15] Han S. P. A global convergent method for nonlinear programming[J]. Journal of Optimization Theory and Application, 1977, 17: 297-309[16] Boggs P. T., Tolle J. W. Sequential Quadratic Programming[J]. Acta Numerica, 1995, 1: 52.
    [17] 赵凤治,尉继英.约束最优化计算方法[M].北京:科学出版社,1991.
    [18] 赵凤治.数值优化中的二次逼近法[M].北京:科学出版社,1994.
    [19] 袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997.
    [20] 赵瑞安,吴方.非线性最优化理论和方法[M].杭州:浙江科学技术出版社,1992.
    [21] 张健,陈丙珍,胡山鹰,徐强.复杂流程工业系统的优化操作[J].计算机与应用化学,2000,17(6):481-488.
    [22] 仲卫涛,邵之江,张余岳,张帆,钱积新.大规模过程系统优化的稀疏SQP算法[J].石油加工(石油学报),2000,16(4):55-59.
    [23] 仲卫涛,邵之江,张帆,张余岳,钱积新.一种化工过程优化的稀疏SQP算法[J].化工学报,2001,52(4):322-326.
    [24] 王世怀,徐亦方,沈复.综合简约Hessian SQP算法及在多元精馏优化中的应用[J].石油学报(石油加工),1996,15(3):23-28.
    [25] 王世怀,徐亦方,沈复.序列二次规划法在石油化工过程优化中的应用及其改进[J].石油学报(石油加工),1998,14(4):57-62.
    [26] 邵之江,钱积新.精馏塔联立优化的简约空间SQP算法[J].化工学报,1998,49(4):511-514.
    [27] Berna T. J., Locke M. H., Westerberg A. W. A new approach to optimization of chemical processes[J]. AIChE Journal, 1980, 26(1): 37-43.
    [28] 邓正龙.化工中的优化方法[M].北京:化学工业出版社,1992.
    [29] 魏寿彭.过程系统优化技术[M].北京:中国石化出版社,1995.
    [30] Cutler C. R., Perry R. T. Real time optimization with multivariable control is required to maximize profits[J]. Computers & Chemical Engineering, 1983, 7(5): 663-667.
    [31] vanWijk R. A., Pope M. R. Advanced process control and on-line optimization in shell refineries[J]. Computers & Chemical Engineering, 1992, 16: S69-S80.
    [32] Alkaya D., Vasantharajan S., Biegler L. T. Successive Quadratic Programming: Applications in the process industry, Encylopedia of Optimization[M]. Kluwer Publication, 1999.
    [33] Boston J. F., Britt H. I., Tayyabkhan M. T. Software: Tackling Tougher Tasks[J]. Chemical Engineering Progress, 1993, 89(13): 38-49.
    [34] Locke M. H., Westerberg A. W., Edahl R. H., Improved successive quadratic programming optimization algorithm for engineering design problems[J]. AIChE Journal, 1983, 29(5): 871-874.
    [35] Nocedal J., Overton M. L., Projected Hessian updating algorithms for nonlinearly constrained optimization, SIAM Journal of Numerical Analysis, 1985, 22: 821-850.
    [36] Vasantharajan S., Biegler L. T. Large-scale decomposition for successive quadratic??programming [J]. Computers & Chemical Engineering,1988,12(11):1087-1101.
    [37] Biegler L. T. On the simultaneous solution and optimization of large scale engineering systems [J].Computers & Chemical Engineering,1988,12(5):357-369.
    [38] Vansantharajan S., Viswanathan J., Biegler L. T. Reduced successive quadratic programming implementation for large-scale optimization problems with smaller degrees of freedom [J]. Computers & Chemical Engineering,1990,14(8):907-915.
    [39] Tjoa I. B., Biegler L. T. Reduced successive quadratic programming strategy for errors-in-variables estimation [J]. Computers & Chemical Engineering, 1992, 16(6):523-533.
    [40] Schmid C., Biegler L. T. Acceleration of reduced Hessian methods for large-scale nonlinear programming [J]. Computers & Chemical Engineering, 1993,17(5-6):451-463.
    [41] Schmid C., Biegler L. T. Quadratic programming methods for reduced Hessian SQP [J]. Computers & Chemical Engineering,1994,18(9):817-832.
    [42] Biegler L. T., Nocedal J., Schmid C., A reduced Hessian method for large-scale constrained optimization [J]. SIAM Journal of Optimization, 1995, 5(2): 314-347.
    [43] Ternet D. J., Biegler L. T., Recent improvements to a multiplier-free reduced Hessian successive quadratic programming algorithm [J]. Computers & Chemical Engineering, 1998, 22(7-8): 963-978.
    [44] Nickel R. H., Tolle J. W. A sparse sequential quadratic programming algorithm [J]. Journal of Optimization Theory and Application, 1989, 60(3): 453-473.
    [45] Betts J. T., Frank P. D. A sparse sequential quadratic programming algorithm [J]. Journal of Optimization Theory and Application, 1994, 82(3): 519-541.
    [46] Lucia A., Xu J., Layn K. M., Nonconvex process optimization [M]. Computers & Chemical Engineering, 1996, 20(12): 1375-1398.
    [47] Cervantes A. M., Wachter A., Tuluncu R. H., Biegler L. T. A reduced space interior point strategy for optimization of differential algebraic systems [J]. Computers & Chemical Engineering, 2000, 24(1): 39-51.
    [48] Hans D. Mittelmann, Helmut Maurer. Solving elliptic control problems with interior point and SQP methods: control and state constraints [J]. Journal of Computational and Applied Mathematics, 2000, 120: 175-195.
    [49] David J. Ternet, Lorenz T. Biegler. Interior-point methods for reduced Hessian successive quadratic programming [J]. Computers and Chemical Engineering, 1999, 23: 859-873.
    [50] Joao Albuquerque, Vipin Gopal, George Staus, Lorenz T. Biegler, B. Erik Ydstie. Interior point SQP strategies for large-scale, structured process optimization problems [J]. Computers and Chemical Engineering, 1999, 23: 543-554.
    [51] Joao Albuquerque, Vipin Gopal, George Staus, Lorenz T. Biegler, B. Erik Ydstie. Interiorpoint SQP strategies for structured process optimization problems[J]. Computers and Chemical Engineering, 1997, 21: S853-S859.
    [52] D. J. Kyriakopoulou, B. Kalitventzeff. Validation of Measurement Data Using an Interior Point SQP[J]. Computers and Chemical Engineering, 1996, 20: S563-S568.
    [53] Rao C. V., Rawlings J. B., Wright S. Application of interior point methods to model predictive control[J]. Journal of Optimization Theory and Applications. 1998, 99(3): 723-757.
    [54] A. Waehter, L. T. Biegler. Global and Local Convergence of Line Search Filter Methods for Nonlinear Programming[R]. CAPD Technical Report B-01-09, 2001, 8.
    [55] 袁亚湘.非线性规划数值方法[M].上海:上海科技出版社,1993.
    [56] Speelpenning B. Compiling fast partial derivatives of function given by algorithms[D]. Urbana: University of Illinois at Urbana-Champaign, 1980.
    [57] Bischof C. H., Carle A., Khademi P. M., Pusch G Automatic differentiation: obtaining fast and reliable derivatives[C]. Proceedings of the SIAM Symposium on Control Problems in Industry, San Diego, 1994.
    [58] Verma A. Structured automatic differentiation[D]. Cornell University, 1998.
    [59] Bischof C. H., Bucker H. M., Lang B., Rasch A., Risch J. W. Extending the functionality of the SEPRAN package by automatic differentiation[R]. Preprint of the Institute for Scientific Computing RWTH-CS-SC-01-16, Aachen University of Technology, Aachen, 2001.
    [60] Tolsma J. E., Clabaygh J. A., Barton P. I. Symbolic incorporation of external procedures into process modeling environments[EB/OL]. http://yoric.mit.edu/abacuss2/TCBIEC.pdf
    [61] Wolbert D., Joulia X., Koehret B., Biegler L. T. Flowsheet optimization and optimal sensitivity analysis using analytical derivatives[J]. Computers & Chemical Engineering, 1994, 18: 1083-1095.
    [62] Tolsma J. E., Barton P. I. Hidden discontinuities and parametric sensitivity calculations[J]. SIAM Journal on Scientific Computing, 2002, 23: 1861-1874.
    [63] 李翔,仲卫涛,钱积新.化工过程优化中的自动微分法[J].石油学报(石油加工),2001,17(6):79-83.
    [64] 李翔,邵之江,仲卫涛,钱积新.基于混合自动微分算法的缩聚反应过程优化[J].2002,53(11):1111-1116.
    [65] 李翔.基于自动微分算法的过程系统优化[D].杭州:浙江大学,2003.
    [66] Xiang Li, Zhijiang Shao, Jixin Qian. Module-oriented automatic differentiation in chemical process systems optimization[J]. Computers and Chemical Engineering, 2004, 28: 1551-1561.
    [67] 邵之江,郑小青.基于自动微分的精馏塔优化计算灵敏度分析[J].化工学报,2004,??55(8):1296-1300.
    [68] 江爱朋,邵之江,钱积新.基于简约SQP和混合自动微分的反应参数优化[J].浙江大学学报(工学版),2004,38(12):1606-1614.
    [69] 张海斌,钟萍,张春华.应用自动微分的Newton-PCG算法[J].运筹学学报,2003,7(1):28-38
    [70] 张海斌.应用自动微分技术的CF-PCG方法及其效率分析[J].中国农业大学学报,2001,6(2):24-28.
    [71] 程彬杰,王莉萍,邵志标,唐天同.数据拟合中自动微分技术的应用[J].西安交通大学学报,1999,33(7):19-22,61.
    [72] A. Griewank, D. Juedes, H. Mitev, J. Utke, O. Vogel, A. Walther, ADOL-C: A Package for the Automatic Differentiation of Algorithms Written in C/C++[J], ACM TOMS, 1996, 22(2): 131-167.
    [73] Edmister W. C. Improved Integral Technique for Petroleum Distillation Calculations[J]. Industrial and Engineering Chemistry. 1955, 47(9): 1685-1690.
    [74] Hess F. H., C. D. Holland, R. McDaniel, N. J. Tetlow. Solve More Distillation Problems: 7 Absorber-Type Pipestills[J]. Hydroc. Proc. 1977, 241-249.
    [75] Holland C. D., Liapis A. I. Computer Methods for solving Dynamic Separation Problems[M]. New York City: McGraw-Hill Book Company. 1983.
    [76] Chung C., J. B. Riggs. Dynamic Simulation and Nonlinear-Model-Based Product Quality Control of a Crude Tower[J]. AIChE Journal. 1995, 41(1): 122-133.
    [77] Mizoguchi A., T. E. Marlin, A. N. Hrymak. Operations Optimization and Control Design for a Petroleum Distillation Process[J]. The Canadian Journal of Chemical Engineering. 1995, 73(6): 896-907.
    [78] Watkins R. N. Petroleum Refinery Distillation[M]. Houston, TX: Gulf Publishing Company, Book Division. 1979.
    [79] 李量杰,常减压蒸馏装置过程模拟及应用[D].北京:北京化工大学,1999:20-21.
    [80] 濮芸辉,刘艳生,沈复,王丙申.全馏程实沸点蒸馏曲线数学模型[J].炼油设计,1999,29(6):53-55.
    [81] 仇汝臣,袁希钢,孔锐睿,孙道兴.原油常压蒸馏产品恩氏蒸馏数据的预测模型[J].石油炼制与化工,2004,35(5):63-67.
    [82] 仇汝臣,张连生,沈复,袁希刚.油品分馏塔产品分离精确度的预测数学模型[J].石油炼制与化工,2003,34(11):49-52.
    [83] 孙垂丽,徐博文.基于动态模型的常压塔侧线质量控制仿真研究[J].计算机仿真 2002,19(3):74-77.
    [84] 谭东伟.徐用懋.常压塔产品质量的MIMO软测量模型的研究[J].化工自动化及仪表,2003,30(2):44-47.[85] 王文新,潘立登,李荣,徐永新,闻光辉.常减压蒸馏装置双模型结构RBF神经网络建模及其应用[J].北京化工大学学报,2004,31(4):91-94.
    [86] 张亚乐,徐博文,方崇智,康飚.基于稳态模型的常压蒸馏塔在线优化控制[J].石油炼制与化工,1997,28(10):48-52.
    [87] 郑陵,杜英生,佘国琮.燃料型减压塔模拟计算的研究Ⅰ高沸点石油馏分物性计算的真组分法[J].石油学报(石油加工),1994,10(4):64-71.
    [88] 郑陵,杜英生,佘国琮.燃料型减压塔模拟计算的研究Ⅱ模型求解的吸收型算法[J].石油学报(石油加工),1995,11(1):79-86.
    [89] 郑陵,杜英生.燃料型减压塔模拟计算的研究Ⅲ采用二次闪蒸工艺提高拔出率[J].石油学报(石油加工),1995,11(4):78-83.
    [90] 周文,胡山鹰,李有润,沈静珠.燃料型减压塔模拟,在线修正和优化系统的开发Ⅰ燃料型减压塔的模拟[J].石化技术,1999,6(3):157-161.
    [91] 周文,胡山鹰,李有润,沈静珠.燃料型减压塔模拟,在线修正和优化系统的开发Ⅱ燃料型减压塔的在线修正和优化[J].石化技术,1999,6(4):229-232.
    [92] 孔玲,周传光,张青瑞,赵文,夏茂森,李国富.减压蒸馏塔模拟与系统设计实现[J].山东理工大学学报(自然科学版),2003,17(4):49-53.
    [93] 陈焕章,李永丹,赵地顺,王春芳.提高FCC汽油辛烷值的技术进展[J].化工科技市场.2005,1:25-29.
    [94] Ellis R. Supervisory Optimization of a Fluidized Catalytic Cracking Unit[D]. Lubbock, TX: Texas Tech University. 1996.
    [95] McFarlane R. C., R. C. Reinemann, J. F. Bartere, C. Georgakis. Dynamic Simulator for a Model Ⅳ Fluid Catalytic Cracking Unit[J]. Computers & Chemical Engineering. 1993, 17: 275-299.
    [96] Jacob S. M., B. Gross, S. E. Voltz, V. W. Weekman Jr. A Lumping and Reaction Scheme for Catalytic Cracking[J]. AIChE Journal. 1976, 22(4): 701-713.
    [97] 翁惠新,欧阳福生,马军.重油催化裂化反应集总动力学模型(Ⅰ)模型的建立[J].化工学报.1995,46(6):662-668.
    [98] 翁惠新,马军,欧阳福生.重油催化裂化反应集总动力学模型(Ⅱ)模型的工业验证[J].化工学报.1995,46(6):669-674.
    [99] 江洪波,欧阳福生,翁惠新.重油催化裂化反应集总动力学模型(Ⅲ)工业装置的模拟计算『J].化工学报.2001,52(7):606-611.
    [100] 江洪波,欧阳福生,翁惠新.重油催化裂化工业装置模拟计算软件的开发[J].华东理工大学学报,2002,28(2):131-135.
    [101] 解新安,华贲,陈清林,梁仁.催化裂化结焦催化剂烧焦再生模型的研究(Ⅰ)烧焦再生物理模型的建立[J].炼油设计.2001,31(4):40-43.
    [102] 解新安,华贲,陈清林,梁仁.催化裂化结焦催化剂烧焦再生模型的研究(Ⅱ)烧焦再生??数学模型的研究[J].炼油设计.2001,31(5):37-41.
    [103] 解新安,华贲,陈清林,梁仁.催化裂化结焦催化剂烧焦再生模型的研究(Ⅲ)模型求解与验证[J].炼油设计.2001,31(6):11-14.
    [104] 任杰.催化裂化气体烃生成反应动力学模型的研究[J].燃料化学学报.1997,25(5):454-459.
    [105] 任杰,沈健,袁兴东,金英杰.催化裂化气体烃收率关联模型[J].石油化工.1997,26(10):667-671.
    [106] 王克庭,骆晨钟,邵惠鹤.催化裂化装置反应再生系统动态过程模型的建立与仿真[J].炼油设计.1998,28(2):63-67.
    [107] 常贺英,韩金玉,王华,何秀云.渣油催化裂化反应再生系统过程优化[J].化学工业与工程,2004,21(5):379-382.
    [108] 谭清,朱建军,林西平.重油催化裂化反再单元仿真建模[J].江苏石油化工学院学报,1998,10(4):27-30.
    [109] 高金森,徐春明,杨光华.催化裂化提升管反应器模型的建立[J].高等化学工程学报.1998,12(3):259-264.
    [110] 陈新国,徐春明,郭印诚.催化裂化提升管反应器流动反应模型的建立[J].石油大学学报(自然科学版).2000,24(3):1-11.
    [111] 罗雄麟,袁璞,林世雄.催化裂化装置动态机理模型Ⅰ.反应器部分[J].石油学报(石油加工).1998,14(1):34-40.
    [112] 罗雄麟,袁璞,林世雄.催化裂化装置动态机理模型Ⅱ.再生器部分[J].石油学报(石油加工).1998,14(2):61-65.
    [113] 罗雄麟,袁璞,林世雄.催化裂化装置动态机理模型Ⅲ.催化剂流动和压力系统[J].石油学报(石油加工).1998,14(3):33-37.
    [114] 罗雄麟,袁璞,林世雄.催化裂化装置动态机理模型Ⅳ.模型求解与仿真软件平台[J].石油学报(石油加工).1998,14(4):50-56.
    [115] 冯明琴,孙政顺.催化裂化过程建模与稳态优化控制[J].兵工自动化.2002,21(4):1-5.
    [116] 冯明琴,张靖,孙政顺.催化裂化过程稳态优化控制研究[J].自动化学报.2003,29(6):1015-1022.
    [117] 尹清华,陈清林,朱涛,李勃.催化裂化装置的能量系统优化[J].石油炼制与化工.2001,32(2):39-43.
    [118] 段爱军,山红红,孙昱东,张建芳.催化裂化操作条件优化基础研究[J].石油大学学报(自然科学版).2000,24(6):7-17.
    [119] 孙铁栋,武雪峰,张兰新,景振华.催化裂化催化剂流化再生过程模型[J].石油炼制与化工.2003,34(5):53-56.
    [120] Taskar U. Modeling and Optimization of a Catalytic Naphtha Reformer[D]. Lubbock, TX: Texas Tech University. 1996.[121] 孙绍庄,翁惠新,毛信军,刘馥英.催化重整集总反应动力学模型研究[J].石油学报(石油加工).1993,9(3):27-34.
    [122] 孙绍庄,翁惠新,毛信军,刘馥英.催化重整集总反应动力学模型研究(Ⅰ)六碳反应网络的动力学模型[J].化学反应工程与工艺,1992,8(1):10-17.
    [123] 孙绍庄,翁惠新,毛信军,刘馥英.催化重整集总反应动力学模型研究(Ⅱ)七碳反应网络的动力学模型[J].化学反应工程与工艺,1992,8(1):18-23.
    [124] 孙绍庄,翁惠新,毛信军,刘馥英.催化重整集总反应动力学模型研究(Ⅲ)八碳反应网络动力学模型研究[J].化学反应工程与工艺,1992,9(3):254-259.
    [125] 翁惠新,孙绍庄,江洪波.催化重整集总动力学模型(Ⅰ)模型的建立[J].化工学报,1994,45(4):407-412.
    [126] 翁惠新,江洪波,陈志.催化重整集总动力学模型(Ⅱ)实验设计和动力学参数估计[J].化工学报,1994,45(5):531-537.
    [127] 江洪波,欧阳福生,翁惠新.催化重整集总动力学模型(Ⅱ)工业应用软件的编制和验证[J].化工学报,1994,45(5):538-544.
    [128] 欧阳福生,翁惠新,孙绍庄,庄志忠,刘怀伟,马燮琦.催化重整集总动力学模型(Ⅳ)模型的工业验证[J].化学反应工程与工艺,1994,10(2):139-145.
    [129] 江洪波,翁惠新.催化重整生焦动力学模型的研究Ⅰ生焦动力学模型的建立[J].华东理工大学学报,1998,24(1):42-45.
    [130] 江洪波,翁惠新.催化重整生焦动力学模型的研究Ⅱ各类相关因素的影响[J].华东理工大学学报,1998,24(1):46-53.
    [131] 解新安,彭世浩,刘太极.催化重整反应动力学模型的建立及其工业应用(1)物理模型的建立[J].炼油设计,1995,25(6):49-51.
    [132] 解新安,彭世浩,刘太极.催化重整反应动力学模型的建立及其工业应用(2)催化重整反应动力学模型的建立及其工业应用[J].炼油设计,1995,26(1):44-48.
    [133] 解新安,彭世浩,刘太极.催化重整反应动力学模型的建立及其工业应用(3)重整催化剂结焦失活于烧焦再生[J].炼油设计,1995,26(2):44-48.
    [134] 解新安,彭世浩,刘太极.催化重整反应动力学模型的建立及其工业应用(4)重整催化剂再生过程中的氯化和氧化复活[J].炼油设计,1996,26(5):27-29.
    [135] 解新安,彭世浩,刘太极.催化重整反应动力学模型的建立及其工业应用(5)重整反应模拟软件的开发与应用[J].炼油设计,1996,26(6):42-45.
    [136] 丁福臣,周志军,杨桂忠,靳广洲,郑灌生,盖增旗.十七集总催化重整反应动力学模型研究(Ⅰ)模型的建立[J].石油化工高等学校学报,2002,15(1):15-17.
    [137] 丁福臣,周志军,杨桂忠,高强,靳广洲,郑灌生,盖增旗.十七集总催化重整反应动力学模型研究(Ⅱ)工业装置模拟[J].石油化工高等学校学报,2002,15(2):22-25.
    [138] 张红梅,吴慧雄,张树增,王健红.十七集总催化重整反应器的稳态模拟[J].北京化工大学学报,2003,30(5):35-39.[139] 丁福臣,周志军,高强,唐瑞昆.十三集总催化重整反应动力学模型研究[J].炼油设计,2001,31(8):14-16.
    [140] 田学民,黄德先,郑灌生,张锡庆,李学刚.催化重整装置的动态模型和仿真[J].石油炼制与化工,1996,27(8):52-56.
    [141] 王文杰,丁福臣,唐瑞昆.催化重整反应器的动力学模拟[J].北京石油化工学院学报,1998,6(2):68-74.
    [142] 刘怀伟.十六集总催化重整动力学模型的建立与程序设计[J].催化重整通讯,1996,4:35-37.
    [143] 郑小平,胡山鹰,李有润,沈静珠.催化重整过程的数学关联模型[J].计算机与应用化学,2001,18(3):203-208.
    [144] 解新安,陈清林,华贲,梁仁.催化重整反应条件的优化炼油设计[J].2000,30(9):41-44.
    [145] 解新安,陈清林,华贲.催化重整反应条件的优化[J].炼油设计,2000,30(9):41-44.
    [146] Gary J. H., G. E. Handwerk. Petroleum Refining: Technology and Economics[M]. New York City, NY: Marcel Dekker Inc. 1984.
    [147] Unzelman G. H. Gasoline Volatility-Environmental Interactions With Blending and Processing[J]. Fuel Technology & Management. 1996, 5/6: 39-44.
    [148] Zahed A. H., S. A. Mullah, M. D. Bashir. Predict Octane Number for Gasoline Blends[J]. Hydroc. Proc. 1993, 72(5): 85-87.
    [149] Schoen W. F., A. V. Mrstik. Calculating gasoline blend octane ratings[J]. Industrial and Engineering Chemistry. 1955, 47(9): 1740-1742.
    [150] Stewart W. E. Predict Octane for Gasoline Blends[J]. Petroleum Refiner. 1959, 38(12): 135-139.
    [151] Morris W. E. Optimum Blending Gives Best Pool Octane[J]. Oil & Gas Journal. 1986, 1: 63-66.
    [152] Morals W. E. W. E. Smith, D. D. Snee. Interaction blending equations enhance reformulated gasoline profitability[J]. Oil & Gas Journal. 1994, 92(3): 54-58.
    [153] Twu, C.H., Coon J. E. Predict Octane Numbers Using A Generalized Interaction Method[J]. Hydrocarbon Processing. 1996, 75(2): 51-56.
    [154] Morris W. E. Gasoline Compositions in no-lead era[J]. Oil & Gas Journal. 1985, 3: 99-106.
    [155] Twu, C.H., Coon J. E. Estimate Octane Numbers Using an Enhanced Method[J]. Hydrocarbon Processing. 1997, 76(3): 65-68.
    [156] Stewart W. E. Predict RVP of Blends Accurately[J]. Petroleum Refinery. 1959, 38(6): 231-234.
    [157] 廖良才.成品油调合调度优化模型及其应用研究[D].长沙:国防科学技术大学,2003.[158] Symonds G. H., Linear Programming Solves Gasoline Refining and Blending Problems[J]. Industrial and Engineering Chemistry. 1956, 48(3): 394-401.
    [159] Xuan LI. refinery-wide optimization[D]. Texas Tech University. 2000, 5: 154-155.
    [160] 居林锋.线性规划技术在上海石化炼油生产优化中的应用研究[D].上海:华东理工大学,2002.7.
    [161] 胡明.新一代动态模拟软件gPROMS及应用实例[J].化学世界.1998,5:275.
    [162] 魏忠,杨宇辉.利用PRO/Ⅱ软件对常减压蒸馏流程的模拟[J].沈阳化工.2000,29(3):171-174.
    [163] 赵琛琛.工业系统流程模拟利器——ASPEN PLUS[J].电站系统工程.2003,19(2):56-58.
    [164] 谢安俊,刘世华,张华岩,陈斌.模拟软件——ASPEN PLUS[J].石油与天然气化工.1995,24(4):247-251.
    [165] 贾蓉,罗金生,张立杰,米红宇.应用ChemCAD软件模拟反应精馏过程[J].化工生产与技术.2003,10(5):44-46.
    [166] 唐宏青.国外工程设计软件简介[J].化工设计.2000,10(2):45-47.
    [167] 钱伯章.FCCU的最新仿真设计[J].催化裂化.1996,15(1):53-55.
    [168] Biegler L. T., Grossmann I. E. Retrospective on Optimization[J]. Computers and Chemical Engineering. 2004, 28(8): 1169-1192.
    [169] Grossmann I. E., Biegler L. T. Part Ⅱ. Future perspective on optimization[J]. Computers and Chemical Engineering. 2004, 28(8): 1193-1218.
    [170] 沈静珠.过程系统优化[M].北京:清华大学出版社,1994.
    [171] 陈宗海.过程系统建模与仿真[M].合肥:中国科学技术大学出版社,1997
    [172] 杨友麒.过程流程模拟[J].计算机与应用化学.1995,12(1):1-6.
    [173] Piela P., Westerberg A. W. Equational-based process modeling[EB/OL]. http://www.cs.cmu. edu/%7EascendFTP/pdffiles/ProcessModeling.pdf
    [174] Paul I. Barton. THE EQUATION ORIENTED STRATEGY FOR PROCESS FLOWSHEETING[EB/OL]. http://yoric.mit.edu/abacuss2/Lecture1.pdf
    [175] Perkins J. D. Equation-oriented flowsheeting[C]. Second Conference on Foundations of Computer Aided Process Design, Snowmass, Colorado, 1983.
    [176] Pantelides C. C. SpeedUp-Recent Advances in Process Simulation[J]. Computers & Chemical Engineering, 1988, 12: 745-755.
    [177] Perkins, J. D. and R. W. H. Sargent. SPEEDUP-a computer program for steady-state and dynamic simulation and design of chemical processes[C]. AIChE Symposium Series 78, 1982: 1-11.
    [178] H. S. Chen, M. A. Stadtherr. A Simultaneous-Modular Approach to Process Flowsheeting and Optimization: Performance on Simulation Problem[J]. AIChE Journal. 1985, 31(11):??1857.
    [179] 邵之江.连续工业过程的在线优化[D].杭州:浙江大学,1997.
    [180] 朱道立.大系统优化理论和应用[M].上海:上海交通大学出版社,1987.
    [181] 张瑞生,王弘轼,宋宏宇.过程系统工程概论[M].北京:科学出版社,2001.
    [182] N. Zhang, X. X. Zhu. A novel modeling and decomposition strategy for overall refinery optimization. Computers and Chemical Engineering[J]. 2000, 24: 1543-1548.
    [183] Frederick S.Hillie.运筹学导论(英文版)(第6版)[M].北京:机械工业出版社.1999.
    [184] Ryoo H. S., Sahinidis N. V. Global optimization of nonconvex NLPs and MINLPs with applications in process design[J]. Computer & Chemical Engineering, 1995, 19(5): 551-566.
    [185] Fateh H., Automatic differentiation for large-scale nonlinear programming problems[D]. George Mason University, 1995.
    [186] Roscoe A. Bartlett, rSQP++ An Object-Oriented Framework for Reduced Space Successive Quadratic Programming[EB/OL]. http://dynopt.cheme.cmu.edu/roscoe/SQPppOview/rSQPppOview.ps
    [187] Tolsma, J. E., Barton, P. I. On computational differentiation[J]. Computers and Chemical Engineering, 1998, 22: 475-490.
    [188] R. E. Wengert. A Simple Automatic Derivative Evaluation Program[J]. Comm. ACM, 1964(7): 463-464.
    [189] G. M. Ostroskii, J. M. Wolin, W. W. Borisov. Uber die Berechning Von Ableitungen. Wissenschafiliche Zeitschrift der Technischen Hochschule fur Chemie[J], Leuna-Merseburg, 1971(13): 382-384.
    [190] 仲卫涛.过程系统的大规模优化问题研究[D].杭州:浙江大学,2001.
    [191] 林世雄,石油炼制工程(第三版)[M].北京:石油工业出版社,2000.
    [192] Daubert T. E. Petroleum Fraction Distillation Interconversion[M]. Hydroc. Proc. 1994, 73(9): 75-78.
    [193] Riazi M. R., T. E. Danbert. Simplify Property Predictions[J]. Hydroc. Proc., 1980, 59(3): 115-116.
    [194] Maxwell J. B. Data Book on Hydrocarbons[M]. Princeton: D. Van Norstrand Company, 1950.
    [195] Riggs J. B. An Introduction to Numerical Methods for Chemical Engineers(Second Edition)[M]. Lubbock: Texas Tech University, 1994.
    [196] Arbel A., Huang Z., Rinard I. H., Shinnar R. Dynamic and Control of Fluidized Catalytic Cracker. I. Modeling of the Current Generation of FCC's[J]. Ind. Eng. Chem. Res., 1995, 34(4): 1228-1243.
    [197] P. D. Khandalekar, J. B. Riggs. Nonliear process model based control and optimization of a??Model IV FCC unit [J]. Computers and Chemical Engineering, 1995, 19(11): 1153-1168.
    [198]Cutler C. Real-time Optimization and Control of Fluidized Catalytic Cracking Units [M]. Houston: DMC Corp., 1990.
    [199]Lee E., E R. Groves, Jr. Mathematical Model of the Fluidized Bed-Catalytic Cracking Plant [J]. Trans. Soc. Comput. Simulat., 1985, 2: 219.
    [200]Dhulesia H. New Correlations Predict FCC Feed Characterization Parameters [J]. Oil & Gas Journal, 1986, 13(1): 51-54.
    [201]Marin G B., G F. Froment. Reforming of C6 Hydrocarbons on a Pt-Al203 Catalyst [J]. Chem. Eng. Sci., 1982, 37(5): 759.
    [202]Marin G B., G F., J. J. Lerou, W. De Backer. Simulation of a Catalytic Naphtha Reforming Unit [M]. Paris: EFCE Publ. Ser. 1983.
    [203]V. Trimpont, P. A., G B. Marin, G F. Forment. Reforming of C6 Hydrocarbons on a Sulfided Commercial Pt/AlO Catalyst [J]. Ind. Eng. Chem. Res., 1988, 27(1).
    [204]Markus Ammann, Ulrich Poschl, Yinon Rudich. Effects of reversible adsorption and Langmuir-Hinshelwood surface reactions on gas uptake by atmospheric particles [J]. Phys. Chem. Chem. Phys., 2003, 5:351-356.
    [205]De Pauw R. P., G F. Froment. Deactivation of a Platinum Reforming Catalyst in a Tubular Reactor [J]. Chem. Eng. Sci., 1974, 30: 789.
    [206]Ramage M. P. Development of Mobil's kinetic reforming model [J]. Chem. Eng. Sci. 1980, 35(1): 41-48.
    [207]Weekman Jr., V. W. Nace. Kinetics of catalytic cracking selectivity in fixed, moving, and fluid bed reactions [J]. AIChE Journal, 1970, 16(3): 397-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700