壳聚糖—海藻酸钠固定化藻菌处理高浓度有机废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题采用海藻酸盐包埋法对蛋白核小球藻和好氧活性污泥进行混合固定化,在自制的流化床光生物反应器中,将藻菌共生、固定化、流态化等技术组合起来,以达到对高浓度有机废水高效处理的目的。
     通过采用氯化钡代替部分氯化钙作为固定液和壳聚糖覆膜两种方法,对传统藻酸盐固定化方法进行改进。研究发现采用壳聚糖覆膜的方法,能很好改善固定化小球的稳定性,且对COD、氨氮和磷酸盐的去除影响不大。之后考察了壳聚糖溶液的pH值、质量浓度和覆膜时间对去除率和小球稳定性的影响。结果表明污染物的去除率随着壳聚糖质量浓度和覆膜时间的增加而降低,随着pH值的增加而增大,小球的稳定性则具有相反的变化趋势。因此综合考虑固定化小球的稳定性和对污染物的处理效果,确定最佳的壳聚糖溶液的质量浓度、pH值和覆膜时间分别是:1%、5.5、15min。
     固定化小球的粒径影响其传质性能,比较了粒径分别约为3 mm、4 mm、6mm的固定化小球对污染物去除效果的影响,发现粒径约为4 mm的固定化小球,对COD、氨氮和磷酸盐的去除率最大,分别为74.8%、83.4%、71.7%。
     通过测定系统中DO和CO2的浓度发现, DO浓度的增加速度要快于CO2,说明系统中,藻的光合作用占一定的优势。一定时间后,藻菌共生之间可达到一种动态平衡,满足藻菌对二氧化碳和氧气的需求。
     固定化藻菌对污染物的去除受污水营养比的影响。研究发现,氮磷比为4.6:1时对氨氮的去除率最大,然后随着氮磷比的增加,即氨氮初始浓度的增加,氨氮去除率显著降低,但总去除量不断增加;藻菌共生系统对污染物的耐受性较高,当废水中氨氮浓度为154.3 mg/L时,固定化藻菌对污染物的去除量均达到最大值,藻菌生长良好。
     流化床床层中固定化小球的膨胀度与液体循环流量之间的关系可以描述床层的膨胀行为,是进行流化床光生物反应器设计的基础。通过测定不同循环流量(Q)下,固定化小球的膨胀度(X),得到二者之间的关系式为Q=62.127Ln(X)+149.68。流化床中固定化小球膨胀度过大或过小,都会降低污染物的去除率。同时考察了系统中无效容积对污染物降解速率的影响,结果表明应尽量减小系统中的无效容积,在提高污染物降解速度的同时,还能降低系统的造价。
In this study,Chlorella pyrenoidosa and aerobic activated sludge were immobilized by alginate. In self-made fluidized photobioreactor,the symbiosis of algae and bacteria,immobilization and fluidization technology were combined to achieve efficient treatment of high concentration organic wastewater.
     The improvement of traditional alginate immobilization method by use of barium chloride instead of part of calcium chloride as fixative,and the immobilized beads coated by chitosan were studied. It was found that the mechanical strength and stability of alginate immobilized beads was improved after coated with chitosan , while the removal efficiency of COD, nitrogen and phosphate was not influenced.Then, impacts of the concentration and pH value of chitosan solution ,and coated time on the removal efficiency of pollutants were studied. The result shows that the removal efficiency of pollutants decreased with the increase of the concentration of chitosan solution and coated time, increased with the increase of pH value of chitosan solution,while the stability of immobilized beads changed in the opposite direction.Considering the stability of immobilized beads and treatment effect of pollutants, the optimal concentration and pH value of chitosan solution ,and coated time are: 1%, 5.5, 15min.
     The diameter of immobilized beads can influence its mass transter efficiency. Impacts of three different particle size of immobilized beads on removal efficiency of pollutants was investigated. The result shows that the immobilized beads with the particle size about 4mm had the best removal efficiency of COD, nitrogen and phosphate ,The removal efficiency were 74.8%, 83.4%, 71.7% respectively.
     By testing the the concentration of DO and CO2,it was found that the concentration of DO increased faster than CO2 in immobilized bacterial and algal system, which indicated that algae's photosynthesis occupy the dominant position. After a certain time, the concentration of DO and CO2 can achieve a dynamic equilibrium ,which can meet the demand of bacteria and algae.
     The nutrient ratio of wastewater has some influence on removal efficiency of pollutants. In this study,it was found that the system achieved the best removal efficiency of nitrogen ,when the ratio of nitrogen and phosphorus was 4.6:1.Then the removal efficiency of nitrogen decreased evidently with the increase of the ratio of nitrogen and phosphorus,but the total removal increased.The immobilized bacterial and algal system has high tolerance of pollutants,the total removal of pollutants reached the maximum when the ammonia concentration was 154.3mg / L ,and the algae and bacteria grew well.
     The relationship between expansion degree of immobilized beads and the circular flow of liquid in photobioreactor can describe the expansion behavior of fluidized bed,which is the basis of the design of photobioreactor.By testing the expansion degree of immobilized beads in different flow of liquid ,the relationship can be expressed by Q=62.127Ln(x)+149.68.The removal rate will decrease when the expansion of immobilized beads is large or too small.The effect of invalid volume on removal efficiency of pollutants was also studied. It was found that the invalid volume of fluidized photobioreactor system should be minimized,which not only improves the degradation rate of pollutants ,but also can reduce the cost of the photobioreactor system.
引文
[1]Chinnasamy S., Bhatnagar A., Hunt R., et al. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications [J]. Bioresource technology, 2010, 101(5): 3097-3105.
    [2]Oswald W., Gotaas H., Golueke C., et al. Algae in Waste Treatment [J]. Sewage and Industrial Wastes, 1957, 437-457.
    [3]Tam N., Wong Y. Effect of immobilized microalgal bead concentrations on wastewater nutrient removal [J]. Environmental Pollution, 2000, 107(1): 145-151.
    [4]杨晓丽.高浓度有机废水的生化处理研究[J].化学工业与工程技术, 2008, 29(3): 35-37.
    [5]肖鸿,杨平,彭宏.多孔聚合物载体用于一体化生物流化床反应器中处理高浓度有机废水[J].环境工程, 2007, 25(5): 17-20.
    [6]王冰.林可霉素高浓度有机废水处理技术[J].水资源保护, 2008, 24(4): 53-57.
    [7]王向华,朱晓东,李鹏鹏,等. ABR/氧化沟工艺处理高浓度淀粉废水[J].中国给水排水, 2007, 23(6): 65-67.
    [8]康琼仙,康建雄,路璐,等. UASB-SBR工艺处理高浓度有机农药废水中试研究[J].环境科学与技术, 2007, 30(7): 82-84.
    [9]李国秀,李建文,王克全,等. UASB―SBR工艺处理高浓度有机废水[J].山东化工, 2008, 37(6): 11-12.
    [10]戴启洲,周明华,雷乐成,等.湿式电催化氧化处理高浓度有机废水[J].科学通报, 2007, 52(9): 1088-1090.
    [11]高远,吴昊,陈少纯.电解氧化处理高浓度有机废水的研究[J].工业水处理, 2008, 28(5): 69-71.
    [12]蒋莉,马飞,孔峰.微电解-催化氧化联合处理高浓度有机废水实验研究[J].山东农业大学学报:自然科学版, 2008, 39(1): 93-96.
    [13]王斌,富江,周志刚. UV-US-O3联用处理高浓度有机废水的研究[J].江苏环境科技, 2007, 20(2): 18-20.
    [14]张永梅,孙洁,吴茂.焚烧法处理高浓度有机农药生产废水[J].给水排水, 2008, 34(1): 59-61.
    [15]周春影.固定化小球藻对市政污水中N, P营养盐的深度净化[D];辽宁师范大学, 2001.
    [16]陈铭,周晓云.固定化细胞技术在有机废水处理中的应用与前景[J].水处理技术, 1997, 23(2): 98-104.
    [17]朱文芳,李伟光.微生物固定化技术处理含油废水的研究[J].工业水处理, 2007, 27(10): 44-47.
    [18]周珊,周汇,单胜道.竹炭固定化微生物去除水样中氨氮的研究[J].林业科学, 2009, 45(6): 133-138.
    [19]孙家寿,张蕾,陈伟亚,等.固定化生物累托石处理分散生活污水的研究(Ⅳ)―固定化生物累托石处理生活废水的反应动力学[J].武汉工程大学学报, 2009, 31(3): 49-51.
    [20]王蕾,曹德菊,张娟.聚氨酯材料固定化微生物处理含酚废水的研究[J].安徽农学通报, 2008, 14(9): 59-60.
    [21]王里奥,崔志强,钱宗琴,等.微生物固定化的发展及在废水处理中的应用[J].重庆大学学报:自然科学版, 2004, 27(3): 125-129.
    [22]肖湘竹.以壳聚糖为载体的固定化微生物处理TNT生产废水研究[D];四川大学, 2004.
    [23]聂荣,翟建平.藻酸盐固定化颗粒耐久性研究[J].农业环境科学学报, 2008, 27(1): 338-341.
    [24]崔建涛,李建新,王育红,等.细胞固定化技术的研究进展[J].农产品加工, 2007, (1):24-26.
    [25]吕晓猛,纪树兰.固定化细胞珠体的改性研究[J].北京工业大学学报, 1997, 23(1): 87-91.
    [26]颜婷婷.固定化微生物处理邻苯二甲酸酯类废水的研究[D];安徽农业大学, 2007.
    [27]薛嵘,黄国兰,郭艳.改进的硫酸盐-聚乙烯醇法包埋藻菌脱氮除磷研究[J].环境污染与防治, 2005, 27(7): 556-558.
    [28]戴昕.微生物固定化技术的研究及其在生物脱氮方面的应用[D];南京理工大学, 2007.
    [29]钱宗琴.固定化微生物技术在养猪废水处理中的应用研究[D];重庆大学, 2004.
    [30]刘桂萍,刘长风,张月澜.改性聚丙烯酰胺固定化苯酚降解菌的研究[J].环境工程学报, 2008, 2(6): 861-864.
    [31] Lin J., Wang H., Hickey R. Use of coimmobilized biological systems to degrade toxic organic compounds [J]. Biotechnology and bioengineering, 2004, 38(3): 273-279.
    [32]秦运铁,张小平,王秀.固定化微生物颗粒密度初探[J].环境工程, 2008, 26(4): 51-52.
    [33]陈敏,罗启芳.聚乙烯醇包埋活性炭与微生物的固定化技术及其对水胺硫磷降解的研究[J].环境科学, 1994, 15(3): 11-14.
    [34]赵兴利,兰淑澄.固定化硝化菌去除废水中氨氮工艺的研究[J].环境科学, 1999, 20(1): 39-42.
    [35]冯本秀.固定化微生物去除废水中氨氮及固定化载体的研究[D];广东工业大学, 2006.
    [36]杨慧.添加吸附剂对包埋固定化微生物凝胶小球性能的影响研究[D];兰州交通大学, 2007.
    [37]曹云华.沸石微生物联合固定化去除富营养化水体中氨氮的研究[D];吉林大学, 2008.
    [38]黄毅,薛晚侠,汪池金,等.聚乙烯醇包埋活性炭/纳米TiO2微球处理含铬废水的研究[J].工业用水与废水, 2008, 39(2): 46-48.
    [39]齐素芳.壳聚糖海藻酸钠固定化硝化细菌去除水体中氨氮的研究[D];广东工业大学, 2007.
    [40]马小剑,许琦,杨春生,等.海藻酸钠-壳聚糖-活性炭微胶囊固定化微生物处理对氯苯酚废水的研究[J].水处理技术, 2009, (5): 98-100.
    [41]王青,陈建中.污水生物脱氮除磷技术的研究进展[J].环境科学与管理, 2006, 31(8): 126-129.
    [42] De-Bashan L., Hernandez J., Bashan Y. Microalgae growth-promoting bacteria as“helpers”for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater,2004,(38):466-474
    [43] De-Bashan L., Moreno M., Hernandez J., et al. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense [J]. Water research, 2002, 36(12): 2941-2948.
    [44] De-Bashan L., Trejo A., Huss V., et al. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater [J]. Bioresource technology, 2008, 99(11): 4980-4989.
    [45] He S., Xue G. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP) [J]. Journal of Hazardous Materials,2002,(36):2941-2948
    [46]王晓波,曹爱国.活性污泥―藻类共生间歇法处理城市污水中的氮,磷[J].湘潭大学自然科学学报, 1996, 18(1): 74-78.
    [47]郑耀通,吴小平,高树芳.固定化菌藻系统去除氨氮影响[J].江西农业大学学报(自然科学版), 2003, 25(1): 99-103.
    [48]王佳.固定化藻菌的小球浓度对模拟生活污水脱氮除磷效果的影响[J].水资源保护, 2005, 21(1): 72-74.
    [49]王宝珍,熊振湖,潘辉,等.固定化藻菌小球在气升式内循环反应器内脱氮除磷的研究[J].天津城市建设学院学报, 2006, 12(2): 120-123.
    [50]薛嵘,黄国兰,毛宇翔.改进的PVA-硫酸盐法固定化蛋白核小球藻除磷研究[J].中国环境科学, 2002, 22(4): 351-354.
    [51]潘辉,熊振湖,金勇威.光照对固定化菌藻反应器脱氮除磷效率的影响[J].水资源保护, 2006, 22(5): 63-64.
    [52]田丽,姜超,贾丽丹.饥饿处理对固定化小球藻处理市政污水的影响研究[J].给水排水, 2009, 35(增刊): 179-183.
    [53] Hernandez J., de-Bashan L., Bashan Y. Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense [J]. Enzyme and Microbial Technology, 2006, 38(12): 190-198.
    [54] Megharaj M., Pearson H., Venkateswarlu K. Removal of nitrogen and phosphorus by immobilized cells of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil [J]. Enzyme and Microbial Technology, 1992, 14(8): 656-658.
    [55] Aslan S., Kapdan I. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae [J]. Ecological engineering, 2006, 28(1): 64-70.
    [56]薛嵘. PVA固定化微藻脱氮除磷研究[M].天津:南开大学出版社. 2002.
    [57] El-Sheekh M., Gharieb M., Abou-El-Souod G. Biodegradation of dyes by some green algae and cyanobacteria [J]. International Biodeterioration & Biodegradation, 2009, 63(6): 699-704.
    [58] Tarlan E., Dilek F., Yetis U. Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater [J]. Bioresource technology, 2002, 84(1): 1-5.
    [59] Aravindhan R., Rao J., Nair B. Application of a chemically modified green macro alga as a biosorbent for phenol removal [J]. Journal of environmental management, 2009, 90(5): 1877-1883.
    [60] Zhang L., Huang G., Yu Y. Immobilization of microalgae for biosorption and degradation of butyltin chlorides [J]. Artificial Cells, Blood Substitutes, and Biotechnology, 1998, 26(4): 399-410.
    [61]黄国兰,孙红文.固定化藻类的生理特征和对染料的脱色能力研究[J].环境科学学报, 2000, 20(4): 445-449.
    [62]侯兰玉.固定化微生物新工艺处理焦化废水研究[D];太原理工大学, 2008.
    [63]刘华丽.印染废水的生物处理技术[J].环境科学与技术, 1996, (1): 42-45.
    [64]李新征,王爱丽.藻菌混合固定化及其对亚甲基蓝的脱色研究[J].德州学院学报, 2008, 24(6): 55-58.
    [65]范唯.固定化藻菌系统处理焦化废水的模拟研究[D];武汉科技大学, 2008.
    [66]王翠红,徐建红.固定化藻菌系统处理含酚废水[J].水处理技术, 2000, 26(4): 236-239.
    [67] Bueno B., Torem M., Molina F., et al. Biosorption of lead (II), chromium (III) and copper (II) by R. opacus: Equilibrium and kinetic studies [J]. Minerals Engineering, 2008, 21(1): 65-75.
    [68]江用彬,季宏兵.藻类对重金属污染水体的生物修复[J].地理科学进展, 2007, 26(1): 56-67.
    [69] Lesmana S., Febriana N., Soetaredjo F., et al. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater [J]. Biochemical Engineering Journal, 2009, 44(1):19-41.
    [70] Jacinto M., David C., Perez T., et al. Comparative efficiency of algal biofilters in the removal of chromium and copper from wastewater [J]. Ecological engineering, 2009, 35(5): 856-860.
    [71]吴海锁,张洪玲,张爱茜,等.小球藻吸附重金属离子的试验研究[J].环境化学, 2004, 23(2): 173-177.
    [72] Herrero R., Lodeiro P., Rojo R., et al. The efficiency of the red alga Mastocarpus stellatus for remediation of cadmium pollution [J]. Bioresource technology, 2008, 99(10): 4138-4146.
    [73] Sari A., Tuzen M. Biosorption of Pb (II) and Cd (II) from aqueous solution using green alga (Ulva lactuca) biomass [J]. Journal of Hazardous Materials, 2008, 152(1): 302-308.
    [74]吴海锁,张鸿.活性污泥对重金属离子混合物的生物吸附[J].环境化学, 2002, 21(6): 528-532.
    [75]吴启堂,林毅.利用剩余活性污泥的生物吸附降低城市污水污泥重金属含量[J].环境科学学报, 2000, 20(5): 651-653.
    [76] W G. Accumulation of colbalt,zinc and manganese by the estuarine green microalgae Chloralla salina immobilized in alginate microbeads [J]. EnvironSci Technol, 1992, 26(5): 1764-1770.
    [77]廖敏,王锐.菌藻共生体去除废水中砷初探[J].环境污染与防治, 1997, 19(2): 11-12.
    [78]刘涛,邱廷省.废水生物流化床处理技术现状[J].能源环境保护, 2005, 19(1): 22-24.
    [79]韩力平,王建龙.固定化细胞流化床反应器处理难降解有机物喹啉的试验研究[J].环境科学, 2001, 22(1): 78-80.
    [80]李志东,董业斌,李娜,等.内循环三相生物流化床处理油脂废水[J].化学工程, 2008, 36(8): 57-61.
    [81]黄振国,曹玉红,刘献玲,等.生物流化床处理炼油废水同时硝化和反硝化的实验研究[J].炼油技术与工程, 2007, 37(1): 59-62.
    [82]华彬,陆永生,胡龙兴,等.外循环三相流化床处理染料废水[J].过程工程学报, 2002, 2(2): 107-111.
    [83]王秀.藻菌共生流化床光生物反应器处理高浓度有机废水[D];华南理工大学, 2009.
    [84] Gonzalez G., Herrera G., García M., et al. Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida [J]. Bioresource technology, 2001, 80(2): 137-142.
    [85] Cha D., Lee H., Rhee E., et al. Hydrogen sulfide removal utilizing immobilized Thiobacillus sp. IW with Ca-alginate bead [J]. Biochemical Engineering Journal, 2002, 11(2/3):523-531
    [86]杜旭东,王明华,邹玲.藻类光合生物反应器[J].烟台教育学院学报, 2003, 9(1): 69-71.
    [87]康雅娟.蓝藻在光生物反应器中的光自养培养[D];中国科学院化工冶金研究所, 1999.
    [88] Weissman J., Goebel R., Benemann J. Photobioreactor design: mixing, carbon utilization, and oxygen accumulation [J]. Biotechnology and bioengineering, 1988, 31(4): 336-344.
    [89] Hsieh C., Wu W. A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae [J]. Biochemical Engineering Journal, 2009,(46) :300-305
    [90] Pirt S J L. K., Walach M R. A tubular photobioreactor for photosynthetic production of biomass from CO2:design and performance [J]. Chem Tech Biotechnol, 1983, 33(7): 35-58.
    [91] Torzillo G., Carlozzi P., Pushparaj B., et al. A two-plane tubular photobioreactor for outdoor culture of Spirulina [J]. Biotechnology and bioengineering, 2004, 42(7): 891-898.
    [92] Wu L., Li Z., Song Y. Hydrodynamic conditions in designed spiral photobioreactors [J]. Bioresource technology, 2010,(40):97-103
    [93] Ramos de Ortega A., Roux J. Production of Chlorella biomass in different types of flat bioreactors in temperate zones* 1 [J]. Biomass, 1986, 10(2): 141-156.
    [94] Reyna-Velarde R., Cristiani-Urbina E., Hernández-Melchor D., et al. Hydrodynamic and mass transfer characterization of a flat-panel airlift photobioreactor with high light path [J]. Chemical Engineering and Processing: Process Intensification, 2009,
    [95]孙利芹,王长海,史磊. 2种光生物反应器在微藻培养中的性能比较[J].烟台大学学报:自然科学与工程版, 2010, 23(1): 32-37.
    [96]康瑞娟,施定基.用于微藻培养的气升式光生物反应器[J].化学反应工程与工艺, 2001, 17(1): 44-49.
    [97]张栩,周百成.气升式藻类光生物反应器的应用研究[J].海洋科学, 2000, 24(5): 14-17.
    [98]吴垠,孙建明,杨志平.气升式光生物反应器培养海洋微藻的中试研究[J].农业工程学报, 2004, 20(5): 237-240.
    [99]徐志标,裴鲁青,骆其君,等.气升式光生物反应器内外径比对球等鞭金藻生长的影响[J].宁波大学学报:理工版, 2004, 17(4): 406-409.
    [100]张小平,廖聪.高浓度有机废水的藻-菌共生流化床处理系统:中国, 200710029519.2 [P/OL]. 2008
    [101]刘娟妮,胡萍,姚领,等.微藻培养中光生物反应器的研究进展[J].食品科学, 2006, 27(12): 772-777.
    [102]张健,费修绠.藻类光生物反应器研究进展[J].水产科学, 1999, 18(2): 35-39.
    [103] Capelo S., Vilhena M., Simoes Goncalves M., et al. Effect of lead on the uptake of nutrients by unicellular algae [J]. Water research, 1993, 27(10): 1563-1568.
    [104] Huang G., Wang Y. Nitrate and phosphate removal by co-immobilized Chlorella pyrenoidosa and activated sludge at different pH values [J]. Water Quality Research Journal of Canada, 2003, 38(3): 541-551.
    [105]谭天恩,窦梅,周明华等.化工原理(第三版上册) [M].北京;化学工业出版社. 2006.
    [106] Pasparakis G., Bouropoulos, N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium-chitosan beads [J]. International Journal of Pharmaceutics, 2006, 32(3): 34-42.
    [107] Vijaya Y., Popuri S., Boddu V., et al. Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption [J]. Carbohydrate polymers, 2008, 72(2): 261-271.
    [108] Bajpai S., Sharma S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions [J]. Reactive and Functional Polymers, 2004, 59(2): 129-140.
    [109] Ivanova E., Chipeva V., Ivanova I., et al. Encapsulation of lactic acid bacteria in calcium alginate beads for bacteriocin production [J]. Journal of Culture Collections, 2002, 3(1): 53-58.
    [110]于炜婷,刘袖洞,李晓霞,等.壳聚糖溶液pH对载细胞海藻酸钠-壳聚糖微胶囊性能的影响[J].高等学校化学学报, 2006, 27(1): 182-186.
    [111]张宏亮.微生物细胞在壳聚糖/海藻酸盐微胶囊中的生长代谢特性研究[D];西北大学, 2008.
    [112]许春华,周琪.高效藻类塘的研究与应用[J].环境保护, 2001, 22(8): 41-43.
    [113]胡自伟,潘志彦.固定化生物技术在废水处理中的应用研究进展[J].环境污染治理技术与设备, 2002, 3(9): 19-23.
    [114]吴国平.不同氮磷和光照水平对小球藻(Cholorella vulgaris)和谷皮菱形藻(Nitzchia palea)生长的影响[D];西南大学, 2006.
    [115]邢丽贞.固定化藻类去除污水中氮磷及其机理的研究[D];西安建筑科技大学, 2005.
    [116]刘世名,孟海华.生物反应器高密度异培养小球藻[J].华南理工大学学报:自然科学版, 2000, 28(2): 81-86.
    [117]江立文.二相流化床光催化反应器的特性及降解偶氮染料4BS的研究[D];兰州铁道学院, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700