尾矿重金属淋溶污染及其抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广东大宝山尾矿造成的重金属污染严重影响了矿区周围的生态环境,目前对矿区的重金属污染还未采取有效地控制方法。本文以大宝山尾矿为研究对象,对其进行分析,并在模拟酸雨条件下进行淋溶实验,研究了尾矿释放重金属的规律及动力学。此外,本文以三乙烯四胺、蒙脱石及二者制备成的复合体作为抑制剂,研究其对尾矿重金属释放的抑制作用。通过对抑制剂及抑制剂-重金属复合体的表征研究抑制剂的作用机理。论文的主要结论如下:
     1.大宝山尾矿主要元素是Fe、Si、Al,S含量很少;主要矿物是石英、铅矾、铁矾和三水铝石;尾矿重金属含量很高;重金属主要以残渣态及硫化物态存在;尾矿的pH值很低。
     2.模拟酸雨淋溶尾矿的淋滤液pH值维持在2.35~2.58范围,电导率很高且逐渐减小;Cu、Zn、Cd及Mn的释放过程均可分为快速释放及慢速释放两个阶段,Pb在释放过程中释放速率变化不大。重金属累计释放量大小为Mn>Cu>Zn> Cd> Pb。随着酸雨pH值的降低,淋滤液pH值降低,电导率升高,重金属释放量增大。5种重金属的释放量受酸雨pH值影响的程度为Pb>Mn> Zn> Cd >Cu,重金属的淋溶强度为Mn>Cu > Cd > Zn >Pb。Cu、Zn、Cd及Mn的释放可用准二级动力学方程及Elovich方程很好的拟合,准二级动力学方程更优;Pb的释放可用双常数方程和零级动力学方程很好的拟合。
     3.三乙烯四胺/蒙脱石复合体的表征显示,三乙烯四胺插层到了蒙脱石的层间。抑制剂对5种重金属释放的抑制效果相比较,三乙烯四胺/蒙脱石复合体的效果均最好。在pH 3.0或40℃条件下,复合体也可保持较高的抑制率。随抑制剂用量的增加,重金属的抑制率升高。三乙烯四胺/蒙脱石复合体及蒙脱石对重金属的吸附很迅速,除了Mn在复合体上的吸附。复合体上重金属的解吸率普遍低于蒙脱石上的解吸率,除了Cu。
     4.三乙烯四胺/蒙脱石复合体对5种重金属的吸附均可用Langmuir方程很好的拟合,蒙脱石对Cu和Pb的吸附,用Langmuir方程拟合较好,而对Zn、Cd及Mn的吸附,用Freundlich方程拟合较好。三乙烯四胺/蒙脱石复合体及蒙脱石对5种重金属的吸附均可用准一级动力学方程及准二级动力学方程很好的拟合,而准二级动力学方程拟合效果最好。抑制剂-重金属复合体的表征显示抑制剂与重金属发生了吸附作用,而复合体与重金属除了吸附作用,还发生了配位作用。三乙烯四胺/蒙脱石复合体作为抑制剂,汲取了三乙烯四胺及蒙脱石的优点,达到了最好的抑制效果。
Ecosystem has been badly contaminated by heavy metals from tailings near Dabaoshan mine, Guang dong province. There has been no effective control method for heavy metal pollution in the mining area currently. In this paper, the tailings collected from Da Baoshan Mine are as research objects. Analysis of their composition and leaching expriments were conducted to study the release properties and kinetics of heavy metals. And in this paper, Triethylenetetramine, Montmorillonite and Triethylenetetramine-montmorillonite complexes are as inhibitors to inactivate heavy metals in the tailings. The impact of inhibitors on heavy metals was studied. The inhibitors and inhibitor-heavy metal complexes were tested by X-ray diffraction, infrared spectrum, thermo gravimetry, specific surface area analyzer and scaning electron microscope. And the reaction mechanism of the inhibitors was also researched in this paper. The conclusions are as follows:
     1. The tailings mainly have the elements of Fe, Si and Al. The content of S is very low. The main minerals in the tailings are quartz, lead alum, iron alum and gibbsite. The content of heavy metals in the tailings is high,which exist mainly in residue and sulfide. The tailings have a very low pH level.
     2. The pH of the leachates by leaching tailings with simulated acid rain ranged from 2.35~2.58, the conductivities of the leachates were high in the initial leaching stage and decreased gradually. Cu, Zn, Cd and Mn were similar in release progress, which could be divided into two stages, namely a fast leaching stage and a slow leaching stage. The release rate of Pb in the whole progress was relatively stable. The accumulative amount of heavy metals in the decreasing order was of Mn>Cu>Zn> Cd> Pb. With the pH of simulated acid rain decreasing, the pH of the leachates decreased, the conductivities of the leachates and the accumulative amount of heavy metals increased. The effect of the pH of simulated acid rain on the release of heavy metals in the decreasing order was of Pb>Mn> Zn> Cd >Cu. The leaching intensity of heavy metals in the decreasing order was of Mn >Cu > Cd > Zn > Pb . The kinetics of Cu, Zn, Cd and Mn could be properly described by Pseudo-second-order kinetic equation and Elovich equation, but the former was better. The kinetics of Pb could be properly described both by Two-constant equation and Pseudo-zero-order kinetic equation.
     3. Several tests of Triethylenetetramine-montmorillonite complexes indicated that Triethylenetetramine had inserted into the interlayer of montmorillonite. The suppression of Triethylenetetramine-montmorillonite complexes on the release of heavy metals was the best of three inhibitors. Triethylenetetramine-montmorillonite complexes could keep the ?suppression ratio of heavy metals high even if at pH3.0 or at the temperature of 40℃. The suppression ratio of heavy metals increased with the dosage of treatments increasing. The sorption of heavy metals on Triethylenetetramine-montmorillonite complexes and montmorillonite was rapid except the adsorption of Mn on Triethylenetetramine-montmorillonite complexes. The desorption amount of heavy metals on Triethylenetetramine-montmorillonite complexes was mostly lower than the desorption amount of heavy metals on montmorillonite except Cu.
     4. The adsorption of heavy metals on Triethylenetetramine-montmorillonite complexes fits Langmuir adsorption isotherm. The adsorption of Cu and Pb on montmorillonite fits Langmuir adsorption isotherm, but the adsorption of Zn, Cd and Mn fits Freundlich adsorption isotherm. The kinetics of the adsorption of heavy metals on Triethylenetetramine-montmorillonite complexes and montmorillonite can be properly described by Pseudo-first-order kinetic equation and Pseudo-second-order kinetic equation, but the latter is better. The tests of treatment-metal complexes indicated that adsorption happened between heavy metals and inhibitors.Besides adsorption, coordination reaction was produced by Hydroxyl or amino on the Triethylenetetramine-montmorillonite complexes and heavy metals.Triethylenetetramine-montmorillonite complexes have merits of both Triethylenetetramine and montmorillonite. Its suppression achieves the best results.
引文
[1]倪师军,张成江,腾彦国,等.矿业环境影响的地球化学研究[J].矿物岩石,2001, 21(3):190-193
    [2]毛麒瑞.矿山尾矿的综合回收与利用[J].中国资源综合利用,2000,(5):36-37
    [3]张传政.直面矿山环境[N].中国国土资源报,2001-6-5
    [4]蔡锦辉,吴明光,汪雄武,等.广东大宝山多金属矿山环境污染问题及启示[J].华南地质与矿产,2005,(4):50-55
    [5]Yoshida F, Hata A,Tonegawa H.Itai-Itai disease and the countermeasures against cadmium pollution by the Kamioka mine[J].Environmental Economics and Policy Studies,1999,2: 215-229
    [6]陈清敏,张晓军,胡明安.大宝山铜铁矿区水体重金属污染评价[J].环境科学与技术,2006,29(6):64-65
    [7]Hochella J.M.F, White A.F.Mineral-water interface geochemistry: An overview [J].Reviews in Mineralogy,1990,23:1-16
    [8]Rimstidt J.D,Newcomb W.D.Measurement and analysis of rate data: The rate of reaction of ferric iorn with Pyrite[J].?Geochimica et Cosmochimica Acta,1993,57:1919-1934
    [9]张淑会,薛向欣,刘然,等.尾矿的综合利用现状用其展望[J].矿冶工程,2005,(6):44-47
    [10]? Zhang H,Ma S.D,Hu X.Arsenic pollution ingroundwater from Hetao Area,China[J]. Environmental Geology,2002,41:638-643
    [11]付善明,周永章,张澄博,等.河流沿岸环境对粤北大宝山矿废水锰污染的环境响应[J].中山大学学报(自然科学版),2007,46(2):92-96
    [12]Nordstrom D.K.Aqueous pyrite oxidation and the consequent formation of secondary minerals[A].Madison. Acid Sulfate Weathering[M]. Soil Sci. Soc. Am, 1982:37-56
    [13]Nicholson R.V, Scharer J.M.Laboratory studies of pyrrhotite oxidation kinetics [A]. Alpers C N, Blowes D W.Environmental Geo-chemistry of Sulfide Oxidation[M]. Washington D.C.: American Chemical Society, 1994:14-30
    [14]Jennings S.R, Dollhopf D.J, Inskeep W.P.Acid production from sulfide minerals using hydrogen peroxide weathering[J].?Applied Geochemistry,2000, 15: 235-243
    [15]Mckibben M.A, Barnes H.L.Oxidation of pyrite in low temperature acidic solutions: rate laws and surface texture[J].?Geochimica et Cosmochimica Acta,1986,50:1509-1520
    [16]Hartley A.C.Weathering studies of Bougaiville mine tailings in lyslmeters[J].Aust.J.Soil Res.,1979,17:355-360.
    [17]Nichplson R.V, Gillham R.W, Reardon E.J.Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings [J]. Geochimica et Cosmochimica Acta,1990, 54:395-402
    [18]Karthe S, Szargan R, Suoninen E.Oxidation of pyrite surfaces: a photoelectron spetroscopic study [J]. Applied Surface Science,1993, 72:157-170
    [19]Blowes D.W., Reardon E.J, Jambor J.L, et al.The formation and potential importance of cemented layers in inactive sulfide mine tailings[J]. Geochimica et Cosmochimica Acta,1991,55: 965-978
    [20]Jambor J.L.Mineralogy of sulfide-rich tailings and their oxidation products [A].Environmental Gochemistry of Sulfide Mine-Wastes[M]. 1994:59~102
    [21]马少健,胡治流,陈建华,等.硫化矿尾矿重金属离子溶出实验研究[J],广西大学学报(自然科学版),2002,27(4):273-275,250
    [22]蓝崇钰,束文圣,张志权.酸性淋溶对铅锌尾矿金属行为的影响及植物毒性[J].中国环境科学,1996,16(6):461-466
    [23]Rimstidt J.D, Newcomb W.D.Measurement and analysis of rate data:The rate of reaction of ferric iorn with Pyrite[J]. Geochimica et Cosmochimica Acta,1993,57:1919-1934
    [24]Homlsortm H.,Ljunhgerg J.,Ohinader B.Role of carbonates in mitigation metal release from mining waste:Evidence from humidity cells tests[J]. Enviornmental Geology,1999,37:267-280
    [25]Hart M.G.R.Sulphur oxidation in mangrove soil of Sierra Leone[J].Plant and Soil,1959,11:215-236
    [26]Bloomfield C,Coulter J.K.Genesis and management of acid sulphate soil[J].Advances in Agronomy,1973,25:265-326
    [27]Costigan P. A,Bradshaw A.D, Gemmell R.P.The reclamation of acidic colliery spoil.I. Acid Production Potential[J]. Journal of Applied Eeology,1981,18:865-878
    [28]Dugan P.R.Baeterial ecology of strip mine areas and its relationship to the production of acidic mine drainage[J].Ohio Journal of Seienee,1975,75:266-279
    [29]阳正熙.矿区酸性废水的成因及其防治[J].世界采矿快报,1999,15(10):42-45
    [30]Gavin M.M., Srijib C.J.K.Evaluation of engineering properties for the use of leached brown coal ash in soil covers[J].Journal of Hazardous Materials, 2007,139: 409–412
    [31]Doye I, Duchesne J.Neutralisation of acid mine drainage with alkaline industrial residues: laboratory investigation using batch-leaching tests. Applied Geochemistry, 2003,18 :1197–1213
    [32]Dunean D.W.,Landesman J., Walden C.C.Role of Thiobacillus ferrooxdians in theoxidation of sulfide mineral[J].Canadian Journal of Mierobiology,1967,13:397-403
    [33]Connie G, Romano K, Mayer U, et al.Effectiveness of various cover scenarios on the rate of sulfide oxidation of mine tailings[J]. Journal of Hydrology, 2003,271:171–187
    [34]Pranav K.C., Chandra S.S., Virendra M.Selectivity sequences and sorption capacities of phosphatic clay and humusrich soil towards the heavy metals present in zinc mine tailing [J]. Journal of Hazardous Materials, 2007,147:698–705
    [35]Huang X, Evangelou V.P.Suppression of pyrite oxidation by phosphate material for control of acid production in mine overburden [J].J.Environ.Q.,1992,21:627-634
    [36]Huang X , Evangelou V.P.Iron phosphate coating:A novel approaeh to controlling pyrite oxidation[J].Pedosphere,1997 (2):103-110
    [37]Steger H.F.Oxidation of sulphide minerals-I determination of ferrous and ferric iron in samples of pyrrhotite, pyrite and chalcopyrite[J]. Talanta, 1977,24: 251-254
    [38]Lan Y, Huang X, Deng B.Supression of pyrite oxidation by Iron 8-Hydroxyquinoline[J].Environmetal Contamination and Toxicology,2002,43: 168-174.
    [39]蔡美芳,党志,Belzile N,等.三乙烯四胺(TETA)抑制磁黄铁矿氧化的机理研究[J].环境化学, 2005,24(5):528-532
    [40]Belzile N, Maki S, Chen Y, et al.Inhibition of pyrite oxidation by surface treatment [J]. The Science of the Total Environment, 1997,196: 177-186
    [41]Lalvani S.B, DeNeve B.A, Weston A.Passivation of pyrite due to surface treatment[J]. Fuel, 1990,69:1567-1569
    [42]吴平霄.环境污染物在蒙脱石层间域中的环境化学行为[J].地学前缘,2001, 8(1):106
    [43]徐玉芬.粘土矿物对废水中CuP2+P、CdP2+P、CrP3+P的吸附实验研究[J].矿产综合利用,2008, 3:28~32
    [44]Naseem R., Tahir. S.S.Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent[J]. Water Research, 2001,35(16): 3982–3986
    [45]Mellah A., chegrouche S.The Removal of zinc from aqueous solutions by natural bentonite[J]. Water Research, 1997,31(3): 621-629
    [46]段星春,王文锦,党志,等.大宝山矿区水体中重金属的行为研究[J].地球与环境,2007, 35(3):255-261
    [47]曹永忠.有色金属矿山废渣综合利用的进展及其发展趋势探讨[J].矿产综合利用,1994(2):25-28
    [48]周建民,党志,司徒粤,等.大宝山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报,2004,23(6):1172~1176
    [49]陈强.大宝山铜选厂技改实践[J].南方金属,2004,(1):31-33
    [50]陈炳辉,韦慧晓,周永章.粤北大宝山多金属矿山的生态环境污染原因及治理途径[J].中国矿业,2006,15(6):40-42
    [51]林初夏,黄少伟,童晓立.大宝山矿水外排的环境影响:Ⅲ[J].综合治理对策生态环境,2005,14(2):173-177
    [52]Dold B.Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste[J].Journal of Geochemical Exploration,2003,80:55-68
    [53]栾和林,陈彩霞,田野,等.复合污染与尾矿区重金属释放和迁移[J].有色金属,2006,58(4):124-127
    [54]黄向峰. EANET中的质量控制在酸雨监测中的运用[J].广东化工,2008,35(7): 134-136
    [55]秦鹏,杜尧东,刘锦銮,等.广东省酸雨分布特征及其影响因素[J].热带气象学报, 2006,22 (32): 297-300
    [56]?Cai M F, Dang Z, Wen Z, et al.Risk assessment of heavy metals contamination of soils around mining area [J]. Ecology and Environment, 2004,13 (1):6-8
    [57]李永涛,张池,刘科学,等.粤北大宝山高含硫多金属矿污染的水稻土壤污染元素的多元分析[J].华南农业大学学报,2005,26(2):22-26
    [58]章钢娅,张效年,于天仁.可变电荷土壤对SOB4BP2-P的吸附[J].土壤学报,1987,24 (1): 14-16
    [59]王芳,蒋新,王代长,等.模拟酸雨作用下红壤中CuP2+P的释放动力学[J].环境化学, 2003, 22 (4): 340-344
    [60]张丽华,朱志良,郑承松,等.模拟酸雨对三明地区受重金属污染土壤的淋滤过程研究[J].农业环境科学学报, 2008, 27 (1): 151-155
    [61]成杰民,潘根兴.模拟酸雨对太湖地区水稻土铜吸附-解吸的影响[J].土壤学报, 2001, 38 (3): 333-339
    [62]许中坚,刘广深.酸雨作用下红壤铅的释放特征与规律研究[J].农业环境科学学报, 2005,24(6):1109-1113
    [63]殷宗慧,刘虹,陈燕丰.铅在灰钙土土壤—植物系统与环境中的迁移和环境容量[J].H地理研究H, 1993, 12 (3): 100-106
    [64] Wang L, Reddy K J, Munn L C.Geochemical modeling for predicting potential solid phases controlling the dissolved molybdenum in coal overburden, Powder River Basin , WY, USA [J]. Applied Geochemistry, 1994, 9:37-43
    [65]Lagaly G.Characterization of clays by organic compounds[J].Clay Minerals,1981,16:1-21
    [66]宋广森.三乙烯四胺光度法测定矿石中铜.冶金分析,1991,11(1):53-54
    [67]吴平霄.1.黏土矿物材料与环境修复[M].北京:化学工业出版社,2004:268-271
    [68]北川浩.吸附的基础与设计[M].北京:化学工业出出版社,1982?
    [69]吴平霄,张惠芬,郭九皋,等.柱撑蒙脱石的微结构变化研究[J].无机材料学报, 1999, 14(1): 95-100
    [70]?何宏平,郭九皋,谢先德,等.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报,1999,19(2):231-235
    [71]Aksu Z.Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling[J]. Biochemical Engineering Journal, 2001, 7(1):79-84
    [72]Ho Y.S, McKay G.Pseudo-second order model for sorption processes[J].Process Biochem, 1999, 34:451-465
    [73]魏俊峰,吴大清,彭金莲,等.铅在高岭石表面的解吸动力学[J].矿物岩石, 2002, 22(2): 5-8
    [74]袁鹏,杨丹,陶奇,等.铁盐水解法制备铁层柱蒙脱及其结构特征研究[J].矿物岩石地球化学通报,2007,26(2):111-117
    [75]刘廷志,田胜艳,商平,等.蒙脱石吸附CrP3+P、CdP2+P、CuP2+P、PbP2+P、ZnP2+P的研究:pH值和有机酸的影响[J].生态环境,2005,14(3):353-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700