磁控溅射制备MoS_2基复合薄膜的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高MoS_2薄膜在室温潮湿大气条件下的摩擦磨损性能,本文采用磁控溅射方法制备了MoS_2-Ti-WS_2、MoS_2-Ti-C和MoS_2-TiN复合薄膜,作为比较在相同实验条件下制备了纯MoS_2和MoS_2-Ti薄膜。采用能谱仪(EDS)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)等对薄膜的成分、结构和形貌进行表征,采用纳米压痕仪、UMT-2多功能微摩擦磨损试验机等测试薄膜与基体的结合力、纳米压痕硬度以及摩擦系数,并观察薄膜的磨损形貌,评价薄膜在室温潮湿大气条件下的摩擦磨损性能。
     在溅射气压0.3 Pa条件下,采用磁控共溅射方法制备了MoS_2-Ti-WS_2复合薄膜,对薄膜的结构进行表征并测试其性能。研究结果表明:MoS2-Ti薄膜和MoS2-Ti-WS2复合薄膜均未出现(100)晶面衍射峰,结构致密,表面没有空洞,呈现纳米晶粒聚集的岛状结构,未观察到纯MoS_2薄膜的蠕虫状疏松结构。与纯MoS_2和MoS_2-Ti薄膜相比,MoS_2-Ti-WS_2复合薄膜具有更高的纳米压痕硬度,更长的稳态摩擦时间,更低的摩擦系数,且摩擦系数波动范围更小。对薄膜的表面磨损形貌进行测试,发现MoS_2-Ti-WS_2复合薄膜的磨痕深度和宽度小,磨损率更低,复合薄膜的耐磨性能明显改善。
     在溅射气压1 Pa条件下,采用反应磁控溅射方法分别制备了MoS_2-Ti-C和MoS_2-TiN复合薄膜,对薄膜结构进行表征并测试其性能。研究结果表明:纯MoS_2薄膜(100)晶面择优取向,为典型的第一类疏松多孔柱状晶结构薄膜;MoS_2-Ti薄膜具有(002)、(100)混合晶面取向,薄膜中存在疏松结构;而MoS_2-Ti-C和MoS_2-TiN复合薄膜(002)晶面择优取向,属于第二类薄膜,薄膜结构致密,未发现疏松结构,与基体的结合力及纳米压痕硬度明显提高。在摩擦过程中,纯MoS_2、MoS_2-Ti薄膜的摩擦系数波动大,摩擦系数较高,分别约为0.35和0.22;而MoS_2-Ti-C和MoS_2-TiN复合薄膜的摩擦系数稳定,约为0.1。与纯MoS_2和MoS_2-Ti薄膜相比,MoS_2-Ti-C和MoS_2-TiN复合薄膜的磨损率更低,说明薄膜具有更优异的减摩和耐磨性能。
In order to improve friction and wear properties of MoS_2 films in humid air at room temperature, MoS_2-Ti-WS_2, MoS_2-Ti-C and MoS_2-TiN composite films were prepared by magnetron sputtering. For comparison, pure MoS_2 and MoS_2-Ti films were deposited under the same conditions. The composition, microstructure and morphology of the films were analysed by X-ray diffraction, energy dispersive X-ray spectroscopy and scanning electron microscope. The adhesion to substrate, nanoindentation hardness and friction coefficient of the films were tested by nanoindenter and UMT-2 multi-functional tribometer tester, respectively. In addition, worn surfaces of films were characterized. The friction and wear properties were investigated in humid air at room temperature.
     The microstructure and properties of MoS_2-Ti-WS_2 composite films, which were prepared by magnetron co-sputtering at a working pressure of 0.3 Pa, were investigated. It has been observed that, no (100) diffraction peaks appear for both MoS_2-Ti and MoS_2-Ti-WS_2 films, which exhibit granular structure, agglomerated nanosized grains and are more compact than pure MoS_2 film; while pure MoS_2 film has typical porous and worm-like surface structure. Compared with pure MoS_2 and MoS_2-Ti films, the MoS_2-Ti-WS_2 composite films have higher nanoindentation hardness, longer steady-state friction time, lower friction coefficient and smaller fluctuation range. The worn surfaces show MoS_2-Ti-WS_2 composite film has smaller depth and width. The wear rate value for MoS_2-Ti-WS_2 composite film is much lower, which means it has much better wear resistance.
     MoS_2-Ti-C and MoS_2-TiN composite films were deposited by reactive magnetron sputtering at a working pressure of 1 Pa. The study of microstructure and properties shows that, pure MoS_2 film has preferred orientation of (100) plane and columnar plate morphology with inherent porosity, called type I film. MoS_2-Ti film has mixture of (002) and (100) crystal orientation with loose construction. MoS_2-Ti-C and MoS_2-TiN composite films have strong basal orientation of (002) crystal plane and compact microstructure, called type II films. The adhesion to substrate and nanoindentation hardness were improved significantly for the composite films. Pure MoS_2 and MoS_2-Ti films are shown to have larger fluctuation and higher friction coefficient, that is, about 0.35 and 0.22, respectively; while it is steady, about 0.1 for the MoS_2-Ti-C and MoS_2-TiN films. The wear rate values for MoS_2-Ti-C and MoS_2-TiN composite films are much lower than those of pure MoS_2 and MoS_2-Ti films, which shows that MoS_2-Ti-C and MoS_2-TiN composite films have much superior friction reducing and anti-wear properties.
引文
[1]温诗铸,摩擦学原理,清华大学出版社, 1990.
    [2]谢友柏,张嗣伟,摩擦学科学及工程应用现状与发展战略研究,高等教育出版社, 2009.
    [3]谢凤,朱江,固体润滑剂概述,合成润滑材料, 2007, 34(1): 31-33.
    [4]林福严,我国摩擦学的发展及其在国民经济中的作用,密封与润滑, 2008, 33(9): 91-107.
    [5]赵运才,蔡伟松,李伟,摩擦学的研究与发展,江西理工大学学报, 2007, 28(3): 29-31.
    [6]王毓民,王恒,润滑材料与润滑技术,化学工业出版社, 2004.
    [7]张剑锋,周志芳,摩擦磨损与抗磨技术,天津科技翻译出版公司, 1993.
    [8]石淼森,固体润滑材料,化学工业出版社, 2000.
    [9]石淼森,固体润滑技术,中国石化出版社, 1998.
    [10] S. R. Cohen, L. Rapoport, E. A. Ponomarev, H. Cohen, T. Tsirlina, R.Tenne, C. L. Clement, The tribological behavior of type II textured MX2 (M=Mo, W; X=S, Se) films, Thin solid films, 1998, 324: 190-197.
    [11] S. V. Prasad, N. T. McDevitt, J. S. Zabinski, Tribology of tungsten disulfide films in humid environments: The role of a tailored metal-matrix composite substrate, Wear, 1999, 230: 24-34.
    [12]西村允,固体润滑概论(3),固体润滑, 1987, 7(1): 47-54.
    [13]郭青,二硫化钼固体润滑性能及其应用,精密制造与自动化, 2007, 3: 26-29.
    [14] M. Chhowalla, G. A. J. Amaratunga, Thin films of fullerence-like MoS2 nanoparticles with ultra-low friction and wear, Nature, 2000, 407: 164-167.
    [15] B. ?u?tari?, L. Kosec, M. Jenko, V. Leskov?ek, Vacuum sintering of water-atomised HSS powders with MoS2 additions, Vacuum, 2001, 61: 471-477.
    [16] L. Cizaire, B. Vacher, T. Le Mogne, J. M. Martin, L. Rapoport, A. Margolin, R. Tenne, Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles, Surf. Coat. Technol., 2002, 160: 282-287.
    [17] A. Savan, E. Pfluger, R. Goller, W. Gissler, Use of nanoscaled multilayer and compound films to realize a soft lubrication phase within a hard, wear-resistant matrix, Surf. Coat. Technol., 2000, 126: 159-165.
    [18]涂江平,含无机类富勒烯(IF)过渡族金属硫化物纳米复合涂层的环境摩擦磨损特性,机械工程学报, 2007, 43(1): 47-82.
    [19] D. G. Teer, New solid lubricant coatings, Wear, 2001, 251: 1068-1074.
    [20] L. S. Byskov, J. K. Norskov, B. S. Clausen, H. Topsoe, DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts, J. Catal., 1999, 187: 109-122.
    [21] K. E. Dungey, M. D. Curtis, E. P. Hahn James, Behavior of MoS2 intercalation compounds in HDS catalysis, J. Catal., 1998, 175: 129-134.
    [22] M. M. Mdleni, T. Hyeon, K. S. Suslick, Sonochemical synthesis of nanostructured molybdenum sulfide, J. Am. Chem. Soc. 1998, 120: 6189-6190.
    [23] K. S. Lemon, G. Jakovidis, A. Singh, E. H. Taheri, Production of large scale polycrystalline MoS2 films, Phys. Stat. Sol.(a), 2000, 179: 329-335.
    [24] M. Homyonfer, B. Alperson, Y. Rosenberg, L. Sapir, S. R. Cohen, G. Hodes, R. Tenne, Intercalation of inorganic fullerene-like structures yields photosensitive films and new tips for scanning probe microscopy, J. Am. Chem. Soc., 1997, 119: 2693-2698.
    [25] W. M. Liu, C. X. Huang, L. Gao, J. M. Wang, H. X. Dang, Study of the friction and wear properties of MoS2-filled Nylon 6, Wear, 1991, 151: 111-118.
    [26]张文钮,发掘中的MoS2新用途,中国铝业, 1997, 21: 130-132.
    [27] J. X. Wang, M. Y. Gu, S. H. Bai, S. R. Ge, Investigation of the influence of MoS2 filler on the tribological properties of carbon fiber reinforced nylon 1010 composites, Wear, 2003, 255: 774-779.
    [28] T. Spalvins, Deposition of MoS2 films by physical sputtering and their lubrication properties in vacuum, ASLE Trans., 1969, 12: 36-43.
    [29] T. Spalvins, Tribological properties of sputtered MoS2 films in relation to film morphology, Thin Solid Films, 1980, 73: 291-297.
    [30] P. D. Fleischauer, Effects of crystallite orientation on environmental stability and lubrication properties of sputtered MoS2 thin films, ASLE Trans., 1983, 27: 82-88.
    [31] V. Buck, Preparation and properties of different types of sputtered MoS2 films, Wear, 1987, 114: 263-274.
    [32] P. A. Bertrand, Orientation of rf-sputter-deposited MoS2 films, J. Mater. Res., 1989, 4: 180-184.
    [33] E. W. Roberts, Ultra-low friction films of MoS2 for space application, Thin Solid Films, 1989, 181: 461-473.
    [34] M. R. Hilton, R. Bauer, P. D. Fleischauer, Tribological Performance and deformation of sputter-deposited MoS2 solid lubricant films during sliding wear and indentation contact, Thin Solid Films, 1990, 188: 219-236.
    [35] J. Moser, F. Levy, Crystal reorientation and wear mechanisms in MoS2 lubricating thin films investigated by TEM, J. Mater. Res., 1993, 8: 206-213.
    [36] J. Moser, F. Levy, MoS2-x lubricating films: structure and wear mechanisms investigated by cross-sectional transmission electron microscopy, Thin Solid Films, 1993, 225: 257-260.
    [37] A. Aubert, J. Ph. Nabot, Preparation and properties of MoSx films grown by d.c. magnetron sputtered, Surf. Coat. Technol., 1990, 41: 127-134.
    [38] P. D. Fleischauer, J. R. Lince, A comparison of oxidation and oxygen substitution in MoS2-x solid film lubricants, Tribol. Int., 1999, 32: 627-636.
    [39] T. R. Jervis, M. Nastasi, Laser surface processing of molybdenum disulfide thin films, Thin solid films, 1989, 181: 475-483.
    [40] S. D. Walck, J. S. Zabinski, Evolution of surface of topography in pulsed-laser-deposited thin films of MoS2, Surf. Coat. Technol., 1993, 62: 412-16.
    [41] L. E. Seitzman, R. N. Bolster, I. L. Singer, Effects of temperature and ion-to-atom ratio on the orientation of IBED MoS2 coating, Surf. Coat. Technol., 1995, 260:143-147.
    [42] L. E. Seitzman, R. N. Bolster, I. L. Singer, IBED MoS2 lubrication of lubrication of titanium alloys, Surf. Coat. Technol., 1996, 78: 10-13.
    [43] H. Dimigen, H. Hubsch, K. Reichelt, Stoichiometry and friction properties of sputtered MoSx layers, Thin Solid Films, 1985, 129: 79-91.
    [44] W. Lauwerens, J. Wang, J. Navratil, E. Wie?rs, J. D'haen, L. M. Stals, J. P. Celis, Y. Bruynseraede, Humidity resistant MoSx films prepared by pulsed magnetron sputtering, Surf. Coat. Technol., 2000, 131: 216-221.
    [45] J. Rechberger, P. Brunner, High performance cutting tools with a solid lubricant Physically vapour-deposited coating, Surf. Coat. Technol., 1993, 62: 393-398.
    [46] T. Spalvins, Frictional and morphological properties of Au-MoS2 films sputtered from a compact target, Thin Solid Films, 1984, 118: 375-384.
    [47] M. C. Simmonds, A. Savan, E. Pflu?ger, H. Van Swygenhoven, Mechanical and tribological performance of MoS2 co-sputtered composites, Surf. Coat. Technol., 2000, 126: 15-24.
    [48] E. Gourmelon, J. C. Bernède, J. Pouzet, S. Marsillac, Textured MoS2 thin films obtained on tungsten: Electrical properties of the W/MoS2 contact, J. Appl. Phys., 2000, 87: 1182-1186.
    [49] B. C. Stupp, Synergistic effects of metals co-sputtered with MoS2, Thin Solid Films, 1981, 84: 257-266.
    [50] S. K. Kim, Y. H. Ahn, K. H. Kim, MoS2-Ti composite coatings on tool steel by d.c. magnetron sputtering, Surf. Coat. Tech., 2003, 169-170: 428-432.
    [51] N. M. Renevier, V. C. Fox, D. G. Teer, J. Hampshire, Coating characteristics and tribological properties of sputter-deposited MoS2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating, Surf. Coat. Technol., 2000, 127: 24-37.
    [52] J. D. Holbery, E. Pflueger, A. Savan, Alloying MoS2 with Al and Au,: structure and tribological performance, Surf. Coat. Technol., 2003, 169-170: 716-720.
    [53] P. Voumard, A. Savan, Advances in solid lubrication with MoS2 multilayered coatings, Lubrication Science, 2001, 13: 135-145.
    [54]陈焘,郭等柱,万志华,白芝芳,磁控溅射防锈MoS2薄膜沉积工艺研究,真空与低温, 2002, 8: 241-245.
    [55] S. Mikhailov, E. Pfluger, L. Knoblauch, Morphology and tribological properties of metal (oxide) MoS2 nanostructured multilayer coatings, surf. Coat. Technol., 1998, 105: 75-183.
    [56] D. Y. Yu, J. A. Wang, J. L. OuYang, Variations of properties of the MoS2-LaF3 cosputtered and MoS2-sputtered films after storage in moist air, Thin Solid Films, 1997, 293: 1-5.
    [57] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R Rep., 2002, 37(4-6): 129-281.
    [58] S. Aisenberg, R. Chabot, Ion-beam deposition of thin films of diamondlike carbon, J. Appl. Phys., 1971, 42: 2953-2958.
    [59] Y. Liu, A. Erdemir, E. I. Meletis, A study of the wear mechanism of diamond-like carbon films, Surf. Coat. Technol., 1996, 82: 48-56.
    [60] A. Grill,Tribology properties of diamond-like carbon and related materials: an updated review, Surf. Coat. Technol., 1997, 94-95: 507-513.
    [61] C. Donnet, A. Erdemir, Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol., 2004, 180-181: 76-84.
    [62] J. Bulí?, M. Novotny, M. Jelínek, T. Kocourek, V. Studni?ka, Plasma study and deposition of DLC/TiC/Ti multilayer structures using technique combining pulsed laser deposition and magnetron sputtering, Surf. Coat. Technol., 2005, 200: 708-711.
    [63] V. J. Trava-Airoldi, L. F. Bonetti, G. Capote, L. V. Santos, E. J. Corat, A comparison of DLC film properties obtained by r.f. PACVD, IBAD, and enhanced pulsed-DC PACVD, Surf. Coat. Technol., 2007, 202: 549-554.
    [64] A. Erdemir, C. Bindal, G. R. Fenske, Characterization of transfer layers forming on surfaces sliding against diamond-like carbon, Surf. Coat. Technol., 1996, 86-87: 692-697.
    [65]李刘合,夏立芳,张海泉,张彦华,周志敏,类金刚石碳膜的摩擦学特性及其研究进展,摩擦学学报, 2001, 21(1): 76-80.
    [66]宋贵宏,杜昊,贺春林,硬质与超硬涂层,化学工业出版社, 2007.
    [67]季鑫,宓一鸣,周细应, TiN薄膜制备方法、性能及其应用的研究进展,热加工工艺, 2009, 38(4): 81-84.
    [68]田永生,陈传忠,王德云,雷廷权,气相沉积技术制备TiN类硬质膜,材料科学与工艺, 2007, 15(3): 438-444.
    [69] J. H. Hsieh, Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings using unbalanced magnetron sputtering, Surf. Coat. Technol., 1998, 108-109: 132-137.
    [70]关世瑛, TiN薄膜厚度对耐磨性影响的研究,哈尔滨理工大学学报, 2003, l 8(3): 114-116.
    [71]王钧石, PIII方法制备的TiN膜的性能,机械工程材料, 2004, 28(11): 19-21.
    [72] T. Hirai, S. Hayashi, Preparation and some properties of chemically vapour-deposited Si3N4-TiN composite, J. Mater. Sci., 1982, 17: 1320-1328.
    [73] T. K. Rie, J. W?hle, Plasma-CVD of TiCN and ZrCN films on light metals, Surf. Coat. Technol., 1999, 112: 226-229.
    [74] A. J. Silvestre, O. Conde, TiN films deposited by laser CVD: a growth kinetics study, Surf. Coat. Technol., 1998, 100-101: 153-159.
    [75]徐滨士,朱绍华,刘世参,材料表面工程,哈尔滨工业大学出版社, 2005.
    [76]张以忱,真空镀膜技术,冶金工业出版社, 2009.
    [77]郑伟涛,薄膜材料与薄膜技术,化学工业出版社, 2007.
    [78] T. Spalvins, A review of recent advances in solid film lubrication, J. Vac. Sci. Technol A, 1987, 5: 212-219.
    [79]王均安,于德洋,欧阳锦林,二硫化钼溅射膜在潮湿空气中贮存后润滑性能的退化与失效机理,摩擦学学报, 1994, 14(1): 25-32.
    [80] D. Y. Wang, C. L. Chang, Z. Y. Chen, W. Y. Ho, Microstructural and tribological characterization of MoS2-Ti composite solid lubricating films, Surf. Coat Technol, 1999: 120-121, 629-635.
    [81] H. Zhou, Q. P. Wen, H. Hao, L. Tan, C. S. Wang, D. S. Xue. Structure and tribological properties of MoS2-Ti composite film made by unbalanced magnetron sputterin, Tribol. 2006, 26(2): 183-187.
    [82] G. L. Yin, P. H. Huang, Z. Yu, D. N. He, J. P. Tu, Microstructure, chemical and tribological investigations of MoxW1-xSy co-sputtered composite films, Tribol. Lett. 2006, 22(1): 37-43.
    [83]杜广煜,巴德纯,王晓光, Ti/Ni过渡层对WS2薄膜摩擦学性能的影响,摩擦学学报, 2009, 29(2): 146-151.
    [84] T. W. Scharf, A. Rajendran, R. Banerjee, F. Sequeda, Growth, structure and friction behavior of titanium doped tungsten disulphide (Ti-WS2) nanocomposite thin films, Thin Solid Films, 2009, 517(19): 5666-5675.
    [85] J. R. Lince, P. D. Fleischauer, Crystallinity of rf-sputtered MoS2 films, J. Mater. Sci., 1987, 2: 827-838.
    [86] P. D. Fleischauer, Fundamental aspects of the electronic structure, materials properties and lubrication performance of sputtered MoS2 films, Thin Solid Films, 1987, 154: 309-322.
    [87] T. Polcar, M. Evaristo, A. Cavaleiro, The tribological behavior of W-S-C films in pin-on-disk testing at elevated temperature,. Vacuum, 2007, 81: 1439-1442.
    [88] T. Takeno, S. Abe, K. Adachi, H. Miki, T. Takagi, Deposition and structural analyses of molybdenum-disulfide (MoS2) -amorphous hydrogenated carbon (a-C:H) composite coatings, Diamond Relat. Mater., 2010, 19: 548-552.
    [89]黄佳木,徐成俊,张兴元,王亚平,室温直流磁控溅射氮化钛薄膜研究,真空科学与技术学报, 2005, 25(4): 297-300.
    [90]王吉会,杨静,磁控溅射MoS2薄膜的生长特性研究,润滑与密封, 2005, (6): 12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700