吩嗪-1-羧酸光照稳定性及缓释制剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型生物农药申嗪霉素,其有效成分为吩嗪-1-羧酸(phenazine-1-carboxylic acid, PCA),对甜椒疫病和西瓜枯萎病等有较好的防治效果。该农药具有广谱、低毒、低残留、与环境相容性好的特点,具有广阔的应用前景。但在生物防治过程中发现,PCA在大田中易被降解,影响其防治效果和推广使用。因此研究PCA的降解机理,并寻求延长防治效果的有效方式,是十分必要的。本论文主要研究PCA的光降解原理,并探究延长PCA防治效果的方式。
     本文首次研究了溶剂、光源种类、光照强度、溶液pH以及溶液中氧化剂对PCA光照稳定性的影响。并对PCA在可见光条件下的降解过程作了定量数学分析,发现PCA在水相中的降解符合一级动力学模型。在甲醇、丙酮、乙酸乙酯、pH 5.0缓冲液中的PCA经过可见光光照后,均发生降解,并且不同溶剂中的降解产物不同。以水作为溶剂时,紫外、太阳光和可见光光照后均能促使PCA发生降解,且降解产物的色谱保留时间一致。并且水溶液pH值越低,PCA越不稳定,PCA在pH 6.8溶液中的降解半衰期为37.6天,而当pH为5.0时,PCA的降解半衰期缩短至2.2天。在避光和可见光光照条件下,双氧水浓度越高,降解速率越快,且光照能明显加速PCA的降解速率。通过氮气除去溶液中的一定量的氧气后,PCA的光降解半衰期从原来的2.22天延长至4.30天。因此,为了提高PCA的稳定性,PCA更宜保存在避光、中性或碱性的环境中,且避免接触氧化性物质。
     HPLC检测发现PCA光降解后有两种新的降解产物出现,LC-MS和MSMS结果显示分子量分别为240和196。通过与纯品1-羟基吩嗪的HPLC和LC-MS的对照,确认物质B为1-羟基吩嗪,而物质A在1H和物质B结构的基础上,推测为6-羟基PCA或9-羟基PCA。因此,PCA降解反应的第一步为吩嗪环上的氧化,形成羟基PCA,并随后发生较彻底的裂解反应形成小分子。
     在应用方法的研究方面,借鉴了应用于医药的纳米材料,以改良农药剂型本身为切入点,从农药缓释剂型角度出发,运用AMS和HOM法合成纳米介孔二氧化硅,并通过硝酸氧化改性了纳米活性炭。通过对各种纳米材料进行载药和缓释实验,最后发现改性纳米活性炭的载药量目前可达0.3g/g (PCA/活性炭),并且具有较好的持续缓释效果,经过9次连续洗脱后,PCA的缓释效率达到55.67%。该PCA-改性纳米活性炭制剂具有一定的抑菌效果,具备开发前景。
     本论文首次对新型农药PCA的光照稳定性进行了系统分析,初步推测出PCA在可见光下的两个降解产物,为提高PCA的生物防治效果打下了理论基础。并首次对PCA-改性纳米活性炭农药新剂型进行了探索,研究提高生物农药在田间应用效力的方式,为新型农药PCA的应用奠定良好基础。
Shenqinmycin, which key component is pheazine-1-carboxylic acid (PCA), is a promising bio-pesticide. However, it was found that PCA would be degraded easily in field and its protection efficiency was reduced. So it’s essential to study the mechanism of PCA degradation, or find an effective way to prolonging its biological effects.
     No reports concern its photochemical properties. Here the photostability of PCA under different conditions of solutions, light sources, photon flux density, pH value and oxidants was investigated systematically and the degradation kinetic model was also established for the first time. Under irradiation of visible light, PCA can be degraded with different products in methanol, acetone, ethyl acetate and pH 5.0 PBS. In aqueous solution, PCA was degraded under the irradiation of UV, visible and sun light with same products, and the degradation exhibited light-dependent behavior. The degradation of PCA followed first-order reaction kinetic under visible light. The degradation rate constant (k) increased with the increased photo flux density and higher concentration of H~+. During pH 5.0-8.0 study, the half-life of PCA upon exposure to visible light was just 2.2 days at pH 5.0, But it jumped to 37.6 days at pH 6.8. The oxidants, H2O2 and dissolved O2, can also accelerate the photodegradation of PCA. When O2 was removed from its solution, the half-life of PCA increased to 4.30 days from 2.22 days. Moreover, two products (A and B) were detected and determined by HPLC, LC-MS, MSMS and NMR. Product B was 1-Hydroxyphenazine. Product A was deduced as 1-carboxylic acid-6-hydroxyphenazine or 1-carboxylic acid-9-hydroxyphenazine. So the first step of PCA degradation was deduced as the oxidation reaction, then product A was degraded into small molecules.
     For new applications, the‘slow-release formulation’was synthesized according to clinical research of drug and pesticide improvement. The nanophase material of silicon dioxide was synthesized by AMS and HOM methods, and the nano-active carbon was also modified by nitrate. The modified active carbon had good adsorption efficiency and release rate. The current loading-capacity was 0.3g/g (PCA/Active carbon), and release rate was 55.67%.
     This is the first report to study the PCA photo degradation and almost determined two new products. And this is also the first report to study the synthesis of slow release PCA- active carbon formulations.
引文
[1] Bollag J.M., Myers C.J., Minard R.D. Biological and chemical interactions of pesticides with soil organic matter. Sci Total Environ, 1992, 124:205-217.
    [2]牛军玲,贾素云,张正国.生物农药发展趋势的研究.山西化工, 2005, 25(1):5-7.
    [3]秦雪峰,孔凡彬.生物农药的应用现状及前景.安徽农业科学, 2006, 34(16): 4057.
    [4]张兴,马志卿,李广泽.生物农药评述[J].西北农林科技大学学报(自然科学版), 2002, 30(2):142-148.
    [5]邹芳慧,陈志强,任卫东.面向二十一世纪的生物农药[J].化学工程师, 2003, 99 (6):44~45.
    [6]姚海荣,刘秋祥,扬春梅.生物农药的应用现状及发展前景.农村实用科技信息, 2007, 9:40.
    [7]张兴,马志卿,李广泽.生物农药评述.西北农林科技大学学报(自然科学版), 2002, 30(2):142-148.
    [8]张锡贞,张红雨.生物农药的应用与研发现状.山东理工大学学报(自然科学版), 2004, 18(1):96-100.
    [9] Emilio Montesinos. Development registration and commercialization of microbial pesticides for plant protection. Int Microbiol., 2003, 6:245-252.
    [10] Mannion, A.M. Agriculture, environment and biotechnology. Agriculture, Ecosystems and Environments, 1995, 53:31-45.
    [11] McManus P.S., Stockwell V.O., Sundin G.W. Antibiotic use in plant agriculture. Annu Rev Phytopathol, 2002, 40:443-465.
    [12] Kotkar H.M., Mendki P.S., Sadan S.V., et al. Antimicrobial and pesticidal activity of partially purified flavonoids of Annona squamosa. Pest Manag Sci., 2002, 58(1):33-39.
    [13] Karl J. Insect Chitinases: Molecular Biology and Potential Use as Biopesticides. Insect Biochem. Molec.Biol, 1997, 27(11):887-900.
    [14]吴文君,高希武.生物农药及其应用.北京,化学工业出版社,2004.
    [15] Leonard G., Julius J.M. Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci, 2000, 56:651-676.
    [16]庾莉萍.生物农药推广应用现状及促进措施.农药研究与应用, 2007, 11(4):38-40.
    [17]张巨勇.化学农药的危害及我国应采取的对策.云南环境科学, 2004, 23(2):23-26.
    [18]屠豫钦.正确认识化学农药的问题.植物保护, 2003, 29(4):11-15.
    [19] Dalvi R.R., Howell C.D. Toxic effects of a fungicide, 5-ethoxy-3-(trichloromethy)-1, 2, 4-thiadiazole (terrazole), on the hepatic drug metabolizing enzyme system in mice. Bull Environ Contam Toxicol, 1977, 17:225-232.
    [20] SanzAsensio J., PlazaMedina M., MartinezSoria M.T. Kinetic study of the degradation of ethiofencarb in aqueous solutions. Pestic Sci, 1997, 50:187-194.
    [21] Bartha R., Lanzilotta R.P., Pramer D. Stability and effects of some pesticides in soil. Appl Microbiol, 1967, 15:67-75.
    [22] Penuela G.A., Barcelo D. Application of C18 disks followed by gas chromatography techniques to degradation kinetics, stability and monitoring of endosulfan in water. J Chromatogr A, 1998, 795: 93-104.
    [23] Burrows H.D., Canle M.L., Santaballa J.A., et al. Reaction pathways and mechanisms of photodegradation of pesticides. J Phototoch photobio, 2002, 67:71–108.
    [24] Lu J.H., Wu L.S., Julie N., et al. Degradation of pesticides in nursery recycling pond waters. J Agri Food Chem, 2006, 54:2658-2663.
    [25] Garcia N.A., Amat-Guerri F. Photodegradation of hydroxylated N-heteroaromatic derivatives in natural-like aquatic environments. A review of kinetic data of pesticide model compounds. Chemosphere, 2005, 59:1067-1082.
    [26] Trovo A.G., Nogueira R.F.P., Aguera, A., et al. Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment. Chemosphere, 2009, 77:1292-1298.
    [27] Stokes J.B.,Redfern R.E. Effect of sunlight on azadirachtin: antifeeding potency. J. Environ. Sci. Health, 1982, 17:57-65.
    [28] Satoshi H., Aiko S., Hisao H. Environmental remediation by an integrated microave/UV illumination method. Environ. Sci. Technol., 2003, 37:5813-5822.
    [29] Govindachari T.R.,Narasimhan N.S.,Suresh G. Structure-related insect antifeedant and growth regulating activities of some limonoids. J.Chem. Ecol., 1995, 21:1585-1600.
    [30] Dureja P. Photodegradation of azadirachtin-A: A neem based pesticide. Curr. Sci., 2000, 79:1700-1703.
    [31] Rosario L.C., Abel G.E., Marta I.L. Photodegradation of an azo dye of the textile industry. Chemosphere, 2002, 48:393-399.
    [32]胡继业,张文吉,李建中.2-烯丙基苯酚在液相中的光化学降解研究.环境科学学报, 2004, 24(5):815-821.
    [33]邓大鹏,岳永德,汤锋.表面活性剂对乙烯核利光解的影.安徽农业大学学报, 2006, 33(1):12-16.
    [34]李学德,花日茂,岳永德等.百菌清(chlorothalonil)在水中的光化学降解.应用生态学报, 2006, 17(6):1091-1094.
    [35] Petruta O., Tatiana O. The photocatalytic degradation of dichlorvos under solar irradiation. Journal of Photoch Photobio A, 2008, 199:8-13.
    [36] Jesus S.A., Maria P.M., Maria T.M. Kinetic study of the degradation of ethiofencarb in aqueous solutions. Pest Manag Sci, 1997, 50:187-194.
    [37] Van P.R., Schippers B. Lipopolysaccharides of plant-growth promoting Pseudomonas sp.strain WCS417r induce resistance in carnation to fusarium wilt. Netherlands. J Plant Pathol, 1992, 98:129-139.
    [38]杨成对,宋莉晖.多杀菌素及其光照降解产物分析.高等学校化学学报,2007, 11:2056-2059.
    [39] Ferrer D.B. Stability of pesticides stored on polymeric solid-phase extraction cartridges. J Chromatogr A, 1997, 778:161-170.
    [40]郑巍,宣日成,刘维屏.新农药吡虫啉水解动力学和机理研究.环境科学学报,1999, 19(1):101-104.
    [41]何华,徐存华,孙成等.三种丙烯菊酯系列产品的光解和水解稳定性.农村生态环境, 2003, 19(2):43-46.
    [42]褚明杰,岳永德,花日茂.苯噻草胺在不同水质中的光化学降解研究.环境科学学报,2005, 25(12):1647-1651.
    [43] Lartiges S.B., Garrigues P.P. Degradation kinetics of organophosphorus and organonitrogen pesticides in different waters under various environmental conditions. Enviro Sci Technol, 1995, 29:1246-54.
    [44] Sunny Y.S., Michael T.W. Hydrolysis of azadirachtin in buffered and natural waters. J Agric Food Chem, 1996, 44:1160-1163.
    [45] Sun J.S., Sun S.P., Fan M.H. A kinetic study on the degradation of p-nitroaniline by fenton oxidation process. J Hazard Mater, 2007, 148:172-177.
    [46] Bollen W.B. Interactions between pesticides and soil microorganisms. Ann. Rev. Microbiol, 1961, 15:69-92.
    [47] Dana B.B. Biomonitoring of exposure to pesticides. J Chem Health Safety, 2007, 15(6):20-29.
    [48] Jose A., Sanchez P., Menta B.M. A two-stage scheme for pesticide degradation: Integration of photocatalysis and biological oxidation. J Biotech, 2008, 1:674-675.
    [49] Alexander M. Biodegradation: problems of molecular recalcitrance and microbial fallibility. Advan. Appl. Microbiol, 1965, 7:35-80.
    [50]王秋芬,宋湛谦,闫新华.生物农药印楝素的热稳定性研究.河南农业科学,2004, 5:28-32.
    [51] Yang, Z.J., Wang, W., Jin, Y., et al. Isolation, identification, and degradation characteristics of phenazine-1-carboxylic acid-degrading strain Sphingomonas sp. DP58. Curr Microbiol, 2007, 55:284-287.
    [52] Sunny Y.S., Michael T.W. Hydrolysis of azadirachtin in buffered and natural waters. J Agric Food Chem, 1996, 44:1160-1163.
    [53] Gustavo A.P., Damia B. Application of C18 disks followed by gas chromatography techniques to degradation kinetics, stability and monitoring of endosulfan in water. J chromatography A, 1998, 795:93-104.
    [54] Ge Y.H., Pei D.G., Zhao Y.H., et al. Correlation between Antifungal Agent Phenazine-1-Carboxylic Acid and Pyoluteorin Biosynthesis in Pseudomonas sp. M18. Current Microbi, 2007, 54:277-281.
    [55] Koch B., Nielsen T.H., S?rensen D. Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudate via the Gac two-component regulatory system. Appl Environ Microbiol, 2002, 68:4509-4516.
    [56]凌世海.我国农药加工工业现状和发展建议[J].农药, 1999, 38(10): 19-24.
    [57]华乃震.草甘膦活性和助剂[J].农药,2002, 41(2):1-5.
    [58] IUPAC Manual of Symbols and Terminology.Pure Appl.Chem[S],1972, 31:578.
    [59] Vartuli J.C., Kresge C.T., Leonowicz M.E. Synthesis of mesoporous materials: liquid-crystal templating versus intercalation of layered silicates. Chem.Mater [J].1994, 6:2070-2077.
    [60] Firouzi A., Kumar D., Bull L.M. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science [J]. 1995, 267:1138-1143.
    [61] Chen C.Y., Burkett S.L., Li H.X. Studies on mesoporous materials.II.synthesis mechanism of MCM-41. Microporous Mater [J].1993, 2:27-34.
    [62] Holland B.T., Isbestr P.K., Blandford C.F., et al. Synthesis of ordered alumino- phosplate and Galloaluminophosphate mesoporous material with anion-exchange properties utilizing polyoxometalate cluster/surfactant salts as precursors [J]. J Am Chem Soc, 1997, 119:6796 -6803.
    [63] Huo Q., Margolese D.I. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chem. Mater, 1996, 8:1147-1160.
    [64] Huo Q.S., Margolese D.I., Ciesla U. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem.Mater [J].1994, 6:1176-1191.
    [65] Che S., Liu Z., Ohsuma T.,et al. Nature,2004, 429:281-284.
    [66] Tanev P.T., Pinnavaia T.J.Science 1995, 267:865-867.
    [67] El-Safty S.A., Evans J. Formation of highly ordered mesoporous silica materials adopting lyotropic liquid crystal mesophases. Journal of Materials Chemistry, 2002. 12 (1):117-123.
    [68] El-Safty S.A., Hanaoka T. Monolithic nanostructured silicate family templated by lyotropic liquid-crystalline nonionic surfactant mesophases. Chemistry of Materials, 2003, 15(15): 2892-2902.
    [69] V.Regi M., Doadrio J.C., Doadrio A.L., et al. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid States Ionics, 2004, 172:435-439.
    [70] Horcajada P.,Ramila A.,Ferey G., et al. Influence of superficial organic modification of MCM-41 on drug delivery rate. Solid State Sci [J], 2006, 8:1243-1249.
    [71] Anderson J., Rosenholm J., Areva S., et al. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro-and mesoporous silica matrices. Chem.Mater. 2004, 16:4160-4167.
    [72] Zhu Y., Shi J., Li Y., et al. Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Micoporous Mesoporous Mater [J]. 2005, 85:75-81
    [73] Zeng W., Qian X., Yin J., et al. The drug delivery system of MCM-41 materials via co-condensation synthesis. Mater.Chem.Phys [J]. 2006, 97:437-441.
    [74] Charnay C., Begu S., T-Peteilh C., et al. Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Euro.J.Pharm.Biopharm. 2004, 57:533-540.
    [75] Qu F., Zhu G., Lin H., et al. Drug self-templated synthesis of ibuprofen/mesoporous silica for sustained release. Eur.J.Inorg.Chem [J]. 2006, 19:3943-3947.
    [76] Xu B.B., Chen Z.L., Qi F., et al. Factors influencing the photodegradation of N-nitrosodimethylamine in drinking water, Front Environ Sci En, 2009, 3:91-97.
    [77] Xue J.M., Shi M. PLGA/Mesoporous Silica Hybrid Structure for Controlled Drug Release [J]. J. Controlled Release, 2004, 98(2): 209?217.
    [78] Hwang Y.J., Oh C., Oh S.G. Controlled Release of Retinol from Silica Particles Prepared in O/W/O Emulsion: The Effects of Surfactants and Polymers [J]. J. Controlled Release, 2005, 106(3): 339?349.
    [79] Takahash T., Hagiwara A., Shimotsuma M., et al. Prophylaxis and treatment of peritoneal carcinomatosis: intraperiton eal chemotherapy with mitomycin C bound to activated carbon particles [J]. World J Surg, 1995, 19(4): 565- 569.
    [80] Hagiwara A., Togawa T., Yamasaki J., et al. Extensive gastrectomy and carbonadsorbed mitomycin C for gastric cancer with peritoneal metastases. Case reports of survivors and their implications [J]. Hepatogastroenterology, 1999, 46(27): 1673-1677.
    [81] Fass J., Jansen M., Zengel K., et al. Results of intraperitoneal active charcoalmitomycin C therapy of stomach carcinoma with serosa invasion [J]. Langenbecks Arch Chir Suppl Kongressbd, 1998, 115: 1363-1366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700