Burkholderia thailandensis E264生产抗癌药物Thailandepsin A的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀有的伯克氏菌E264(Burkholderia thailandensis E264)是从泰国稻田中分离得到的,能够合成具有双环缩肽结构的物质Thailandepsin A。Thailandepins A是一类组蛋白去乙酰化酶抑制剂(HDACI),是抗癌药物FK228的结构类似物,对多种耐药性肿瘤具显著作用。目前,野生型菌株合成Thailandepsin A产量很低(10mg/L),不适合进行大规模商业化应用,本论文试图通过培养基优化和大孔树脂原位富集的方法来提高Thailandepins A的产量。
     首先,通过单因子实验对伯克氏菌E264的发酵条件和培养基成分进行初筛,确定了碳源、氮源、无机盐的种类,以及温度、pH值、摇床转速等因素的最佳条件。在温度28°C,250ml的摇瓶,装液量为65 ml,接种量为1%,培养基pH值7.0的条件下,对培养基配方进行优化。其次,通过在伯克氏菌E264发酵培养基中添加大孔树脂HP-20对产物进行原位富集,可使大部分Thailadepsin A在培养的同时就被树脂吸附,从而降低了产物抑制,并简化了后续提取分离步骤,产物的总收率比对照(不添加树脂)提高了80%左右。大孔树脂的添加量为4 %,添加时间为发酵开始后12小时。以氯仿作为树脂的解析液时,产物的回收效果较好。
     同时,运用部分因子设计确定主要因素的效应以及因素之间的相互作用,通过基于响应面法的中心组合设计构建模型,预测出最优的培养基配方(g/L):葡萄糖17.89,胰蛋白胨34.98,K2HPO4 20.44,KH2PO4 4.4,柠檬酸钠0.01。产量的实测值为236.7mg/L,与模型的预测值251.9mg/L相符合,证明了模型的正确性以及该优化后的培养基的效用。响应面法优化后的产量236.7mg/L比单因子优化后产量提高了2倍多。另外,对Thailandepsin A分批发酵动力学模型进行了研究,以Logistic和Luedeking-Piret方程为基础,建立了动力学模型,较好的描述了生物量(X),产物浓度(P)与底物浓度(S)的变化规律。该模型适用于初始糖浓度为15g/L左右时的分批发酵过程。
     最后,在有效体积为3L的发酵罐中进行了伯克氏菌E264扩大培养初步探索。通过在发酵过程中添加HP-20大孔树脂,产量较空白对照提高了29%,为后续研究打下基础。
Rare Burkholderia thailandensis E264 was isolated from the rice field of Thailand. It can produce Thailandepsin A which contains a bicyclic peptide structure. Thailandepins A is a class of histone deacetylase inhibitors (HDACI) and a structural analogue of anti-cancer drugs FK228 with significant role in T-cell lymphoma and skin cancer therapy. Currently,Thailandepsin A yield produced by wild-type strain is very low (10mg / L) and is not suitable for large scale commercial applications. This paper attempts to employ fermentaition medium optimization and macroporous resin HP-20 situ extraction methods to improve Thailandepins A production.
     In this study,We primarily screened out the proper age of seed, liquid volume (ml), inoculum (%), temperature, pH and rotary speed using one-factor-at-a-time screening. The medium components, including glucose, tryptone, phosphate and sodium citrate had significant effects on Thailandespin A production.
     It is effective to change Thailandepsin A distribution in the fermentation broth by adding HP-20 resin in broth.The in situ extraction effect of macroporous resins on Thailandespin A decreased the negative feedback inhibition and provided a simpler separation step . The results showed that through addition of maeroporous resin HP-20 , the yield of Thailandepsin A was significantly increased by 80%.It gave a preferable yield when additive amount of resin is 4%(w/v),addtime is 12h and extract liquor is chloroform.
     Statistics based experimental designs were applied to optimize the culture medium components for enhancing Thailandepsin A production by Burkholderia thailandensis E264. Based on a 24-1 fractional factorial design and a central composite design, an optimum concentration of glucose 17.89 g/L, typtone 34.98 g/L, K2HPO4 20.44 g/L, KH2PO4 4.4g/L and sodium citrate 0.01 g/L was obtained by response surface analysis. The predicted maximum Thailandepsin A yield was as high as 251.9 mg/L, and was further verified by validation experiments. 236.7mg/L Thailandespin A, was almost 2 fold compared to 104mg/L Thailandepsin A from one factor at a time optimization.
     Thailandespin A fermentation kinetics was also investigated. Kinetic models based on the modified Logistic and Luedeking-Piret equations were developed, providing a good description of temporal variations of biomass(X), product (P) and substrate(S) in Thailandepsin A fermentation.These models were applicable in batch fermentations with initial glucose concentration at about 15g/L.
     In a laboratory scale stirred tank bioreactor with a working volume of 3 L, the Thailandepsin A fermentation was studied to investigate the effect of macroporous resin in fermentor.In fermentation process, production of Thailandepsin A in the bioreactor added HP-20 resin was increased over 29% than the blank control.
引文
[1]Jones, P. A., Baylin, S. B. The epigenomics of cancer. Cell 128,683-692(2007).
    [2]Yoo, C. B., Jones, P. A. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov 5,37-50(2006).
    [3]Ma, W. W., Adjei, A. A. Novel agents on the horizon for cancer therapy. CA: a cancer journal for clinicians 59,111-137(2009).
    [4]Piekarz, R. L., Bates, S. E. Epigenetic modifiers: basic understanding and clinical development. Clin. Cancer Res 15,3918-3926(2009).
    [5]Bolden, J. E., Peart, M. J., Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov 5,769-784(2006).
    [6]Bots, M., Johnstone, R. W. Rational combinations using HDAC inhibitors. Clin. Cancer Res 15, 3970-3977(2009).
    [7]Lane, A. A., Chabner, B. A. Histone deacetylase inhibitors in cancer therapy. J. Clin.Oncol 27, 5459-5468(2009).
    [8]Schrump, D. S. Cytotoxicity mediated by histone deacetylase inhibitors in cancer cells: mechanisms and potential clinical implications. Clin. Cancer Res 15,3947-3957(2009).
    [9]StatBite: FDA oncology drug product approvals in 2009. J. Natl. Cancer Inst 102,219(2010).
    [10]Mann, B. S., Johnson, J. R., Cohen, M. H., et al. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. The Oncologist 12,1247-1252(2007).
    [11]Wang, H., Dymock, B. W. New patented histone deacetylase inhibitors. Exp. Opin. Therapeutic Patents 19,1727-1757(2009).
    [12]Ma, X., Ezzeldin, H. H., Diasio, R. B. Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs 69,1911-1934(2009).
    [13]Cheng, W., Yi-Qiang, C. Thailandepsins: novel bacterial atural products with potent histone deacetylase inhibition activities and promising anticancer activities.To be published.
    [14]Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev.Cancer 6, 813-823(2006).
    [15]Monga, M., Sausville, E. A. Developmental therapeutics program at the NCI: molecular target and drug discovery process. Leukemia 16,520-526(2002).
    [16]Eot-Houllier, G., Fulcrand, G., Magnaghi-Jaulin, L. Histone deacetylase inhibitors and genomic instability. Cancer Lett 74,169-176(2009).
    [17]Carew, J.S., Giles, F.J., Nawrocki, S.T. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy . Cancer Lett 269,7-17(2008).
    [18]Mai, A., Rotili, D., Tarantino, D. Identification of 4-hydroxyquinolines inhibitors of p300/CBP histoneacetyltransferases. Bioorg Med Chem Lett 19,1132-1135(2009).
    [19]Hidehiko, K., Tatsuo, N. GCN5 and BCR signaling collaborate to induce pre-mature B cell apoptosis through depletion of ICAD and IAP2 and activation of caspase activities. Gene 419, 48-55(2008).
    [20]MacDonald, J.L., Roskams, A.J. Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. P Neurobiol 88,170-183(2008).
    [21]Gregoretti, I.V., Lee, Y.M., Goodson, H.V., et al. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338,17-31(2004).
    [22]Botrugno, O.A., Santoro, F., Minucci, S., et al. Histone deacetylase inhibitors as a new weapon in the arsenal of differentiation therapies of cancer . Cancer Lett 280,134-144(2004).
    [23]Sandor, V., Bakke, S., Robey, R.W., et al. PhaseⅠtrial of the histone deacetylase inhibitor, depsipeptide (FR901228,NSC630176), in patients with refra ctory neoplasms. Clin Cancer Res 8, 718-728(2002).
    [24]Komatsu, Y., Tomizaki, K.Y., Tsukamoto , M., et al. Cyclic hydroxamic-acid-containing peptide 31, a potent synthetic histone deacetylase inhibitor with antitumor activity. CancerRes 61, 4459-4466(2002).
    [25]Noh, E.J., Lim, D.S., Jeong, G., et al. An HDAC inhibitor, trichostatin A, induces a delay at G2/Mtransition, slippage of spindle checkpoint, and cell death in a transcription-dependent manner. Biochem Biophys Res Commun 378,326-331(2009).
    [26]Gu,W.X., Nusinzon, I., Smith, R.D., et al. Carbonyl and sulfurcontaining analogs of suberoylanilide hydroxamic acid: potent inhibition of histone deacetlases. Bioorg Med Chem 14, 3320-3329(2006).
    [27]Chen, J.S., Faller, D.V., Spanjaard, R.A., et al. Short chain fatty acid inhibitors of histone deacetylases: promising anticancer therapeutics. Curr Cancer Drug Targets 3, 219-236(2003).
    [28]Entin-Meer, M., Rephaeli, A., Yang, X.D., et al. Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomas. Mol Cancer Ther 4,1952-1961(2005).
    [29]Blackwell, L., Norris, J., Suto, C.M., et al. The use of diversity profiling to characterize chemical modulators of the histone deacetylases . Life Sci 82,1050-1058(2008).
    [30]Charrier, C., Roche, J., Gesson, J.P., et al. Antiproliferative activities of a library of hybrids between indanones and HDAC inhibitor SAHA and MS-275 analogues. Bioorg Med Chem Lett 17,6142-6146(2007).
    [31]Kell, J., Serradell, N. MGCD-0103: histone deacetylase inhibitor apoptosis inducer oncolytic. Drugs Future 33,323-327(2008).
    [32]Ideo, A., Sasaki, M., Nakamura, C. Cytotoxic activity of selected trifluoromethyl ketones against oral tumor cells. Anticancer Res 26,4335-4342(2006).
    [33]Hirashima, Y., Kato, T., Nishino, N., et al. Design and synthesis of histone deacetylase inhibitors containing trifluoromethylketone moiety as the functional group. Pept Sci 42,141-144(2006).
    [34]Dehmel, F., Weinbrenner, S., Julius, H., et al. Trithiocarbonates as a novel class of HDAC inhibitors: SAR studies, isoenzyme selectivity, and pharmacological profiles. J Med Chem 51, 3985-4001(2008).
    [35]Brett, P. J., DeShazer, D., Woods, D.E., et al. Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol 48, 317-320(1998).
    [36]Wuthiekanun, V., Smith, M.D., Dance, D.A., et al. Biochemical characteristics of clinical and environmental isolates of Burkholderia pseudomallei. J Med Microbiol 45,408-12(1996).
    [37]Smith, M.D., Angus, B.J., Wuthiekanun, V., et al. Arabinose assimilation defines a nonvirulent biotype of Burkholderia pseudomallei. Infect Immun 65 ,4319-21(1997).
    [38]Glass, M.B., Gee, J. E., Steigerwalt, A.G., et al. Pneumonia and septicemia caused by Burkholderia thailandensis in the United States. J Clin Microbiol 44,4601-04(2006).
    [39]Burkholderia pseudomallei infection in humans: case report. Clin Infect Dis 28, 927-28(2004).
    [40]Okuhara, M. FR901228 substance and preparation thereof. US Patent No. 4,977,138(1990).
    [41]Ueda, H. Nakajima, H., Hori, Y., et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physicochemical and biological properties, and antitumor activity. J. Antibiot 47,301-310(1994).
    [42]Shigematsu, N., Ueda.H., Takase.s., et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. II. Structure determination. J. Antibiot 47,311-314 (1994).
    [43]Ueda, H., Manda, T., Matsumoto, S., et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice. J. Antibiot 47,315-323(1994).
    [44]Masakuni. O., Toshio,G., Takashi,F., et al. FR901375 substance and production thereof. JP3141296 (A)(1991).
    [45]Masuoka,Y., Nagai,A., Shin-ya,K., et al. Spiruchostatins A and B, novel gene expression-enhancing substances produced by Pseudomonas sp. Tetrahedron Lett 42,41-44(2001).
    [46]Cheng, Y.-Q., Wang, C. Histone deacetylase inhibitors and uses thereof. PCT Provisional Patent Application Serial No. WO61/235,253 (2009); Pending US Utility Patent Application(2010).
    [47]Furumai,R., Matsuyama,A., Kobashi,N., et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 62,4916-4921(2002).
    [48]Konstantinopoulos,P. A., Vandoros,G. P., Papavassiliou, A. G., et al. FK228 (depsipeptide): aHDAC inhibitor with pleiotropic antitumor activities. Cancer Chemother. Pharmacol 58, 5(2006).
    [49]Cheng, Y. Q., Yang, M., Matter, A. M., et al. Characterization of a gene cluster responsible for the biosynthesis of anticancer agent FK228 in Chromobacterium violaceum No. 968. Appl. Environ. Microbiol 73,3460-3469(2007).
    [50]Potharla, V. Y., Wesener, S. R., Cheng, Y.-Q.et al. New insights into the genetic organization of FK228 biosynthetic gene cluster in Chromobacterium violaceum No. 968. Appl. Environ. Microbiol (accepted).
    [51]Wesener, S. R., Potharla, W. Y. ,Cheng, Y.-Q., et al. Reconstitution of FK228 biosynthetic pathway revealing cross-talk between modular polyketide synthases and fatty acid synthase.Appl. Environ. Microbiol(accepted).
    [52]Fischbach, M. A., Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev 106,3468-3496(2006).
    [53]Finking, R., Marahiel, M. A. Biosynthesis of nonribosomal peptides1. Annu. Rev.Microbiol 58, 453-488(2004).
    [54]Walsh, C. T., Fischbach, M. A. Natural products version 2.0: connecting genes to molecules. J. Am. Chem. Soc 132,2469-2493(2010).
    [55]Wang, C., Wesener, S. R., Zhang, H., et al. An FAD-dependent pyridine nucleotide-disulfide oxidoreductase is involved in disulfide bond formation in FK228 anticancer depsipeptide. Chem. Biol 16,585-593(2009).
    [56]Avila, C. L., Rapisarda, V. A., Farias, R. N., et al. Linear array of conserved sequence motifs to discriminate protein subfamilies: study on pyridine nucleotide-disulfide reductases. Bmc Bioinformatics 8,(2007).
    [57]delCardayre, S. B., Davies, J. E. Staphylococcus aureus coenzyme A disulfide reductase, a new subfamily of pyridine nucleotide-disulfide oxidoreductase - Sequence, expression, and analysis of cdr. Journal of Biological Chemistry 273,5752-5757(1998).
    [58]Williams, C. H., Prongay, A. J., Lennon, B. W., et al. Pyridine Nucleotide-DisulfideOxidoreductases - Overview of the Family and Some Properties of Thioredoxin Reductase Altered by Site Directed Mutagenesis - C135s and C138s. Flavins and Flavoproteins 1990.945, 497-504(1991)
    [59]Cheng, Y.-Q. and C. WangHistone deacetylase inhibitors and uses thereof. Pending patent application (2009).
    [60]Caboche, S., Leclere, V., Pupin, M., et al. Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity. J. Bacteriol 192,5143-5150(2010).
    [61]CHENG, Yi-qiang, Sequences for FK228 biosynthesis and methods of synthesizing FK228 and FK228 analogs. 60/888, 851 08. 02. 2007 US
    [62]Newman, D. J., Cragg, G. M. Natural products as sources of new drugs over the last 25years. J. Nat. Prod 70,461-477(2007).
    [63]Cragg, G. M., Grothaus, P. G., Newman, D. J. Impact of natural products on developing new anti-cancer agents. Chem. Rev 109,3012-3043(2009).
    [64]周德庆.微生物学教程(第二版).北京:高等教育出版社(2002).
    [65]Sarica, S., Erdogan, S., Koc, A., et al. Addition of avilamycin, mannanoligosaccharide and organic acids mixture to corn-soybean meal based broiler diets. Indian Journal of Animal Sciences 75, 961-964(2005).
    [66]Inoue, H., Yajima, Y., Kawano, G.,et al. Isolation of indole-3-aldehyde as a growth inhibitor of Legionella pneumophila from Dialon HP-20 resins used to culture the bacteria. Biocontrol Science 9,39-41(2004).
    [67]Lee, J.C., Min, J.W., Park, D.J.,et al. Large-scale fermentation for the production of teicoplanin from a mutant of Actinoplanes teichomyceticus. Journal of Microbiology and Biotechnology 15,787-791(2005).
    [68]Uchida, R., Iwatsuki, M. Nosokomycins. New antibiotics discovered in an in vivo-mimic infection model using silkworm larvae. I: Fermentation, isolation and biological properties. Journal of Antibiotics 63,151-155(2010).
    [69]He, X., Liu, R. H. Phytochemicals of apple peels: Isolation, structure elucidation, and theirantiproliferative and antioxidant activities. Journal of Agricultural and Food Chemistry 56,9905-9910(2008).
    [70]Awa, Y., Iwai, N., Ueda, T., et al. Isolation of a new antibiotic, alaremycin, structurally related to 5-aminolevulinic acid from Streptomyces sp. A012304. Bioscience, Biotechnology and Biochemistry 69,1721-1725(2005).
    [71]Ames, A., Mattucci, N., Hawkins, D. Empirical optimization of imaging processes by use of designed experiments and quality loss functions. Journal of Imaging Science and Technology 43,166-169(1999).
    [72]Montgomery, D. C. Experimental design for product and process design and development. Journal of the Royal Statistical Society Series D: The Statistician 48,159-173(1999).
    [73]George, E. P., Norman, R.D. Empirical Model-Building and Response Surfaces. New York: John Wiley & Sons, Inc(1986).
    [74]Kennedy, M., Krouse, D., Strategies for improving fermentation medium performance: A review. Journal of Industrial Microbiology and Biotechnology 23,456-475(1999).
    [75]Parekh, S., Vinci, V. A., Strobel, R. J. Improvement of microbial strains and fermentation processes. Applied Microbiology and Biotechnology 54,287-301(2000).
    [76]Montgomery, D. C. Experimental design for product and process design and development. Journal of the Royal Statistical Society Series D: The Statistician 48,159-173(1999).
    [77]Gheshlaghi, R., Scharer, J.M., Moo-Young, M., et al. Medium optimization for hen egg white lysozyme production by recombinant Aspergillus niger using statistical methods. Biotechnol Bioeng 90,754-60(2005).
    [78]Kennedy, M., Krouse, D. Strategies for improving fermentation medium performance: A review. Journal of Industrial Microbiology and Biotechnology 23,456-475(1999).
    [79]Sen, R.K. Response surface optimization of the critical media components for the production of surfactin, J. Chem. Technol. Biotechnol 68, 263-270(1997).
    [80] Khuri,A.I., Cornell, J.A. Response Surfaces: Design and Analyses.NewYork: Dekker(1987).
    [81]黄文芳,张松.微生物实验指导.武汉:华南师范大学出版社(2000).
    [82]胡永松.微生物与发酵工程.成都:四川大学出版社(2002).
    [83]姚汝华,周世水.微生物工程工艺原理.武汉:华南理工大学出版社(2008).
    [84]余小林.食品工艺理论基础.武汉:华南农业大学出版社(2008).
    [85]Goel, A.,Jinwoon, L.,Domach, M. M.,et al. Metabolic fluxes,pool and enzyme measurements suggest a tighter coupling of energetics and biosynthetic reactionsassociated with reduced pyruvate kinase flux.Biotechnol Bioeng 64,129-134(1999).
    [86]Akshay, G., Jinwoon, L., Michale, M., et al. Metabolic fluxes, pool andenzyme measurements suggest a tighter coupling of energetics and biosynthetic reactions associated with reduced pyruvate kinase flux.Biotechnol and Bioeng 64 ,129 -1341(1999).
    [87]Postma, E., Scheffers, W.A., van Dijken, J. P. Adaptation of the kinetics of glucose transport to envirmental conditions in the yeast Candida utilis CBS 621 continuous-culture study. J Gen Microbiol 134 ,1109 -11161(1988).
    [88]陈宁,刘辉.柠檬酸钠对L-亮氨酸发酵代谢流分布的影响.高校化学工程学报22(3),478-483(2008).
    [89]戴好富,梅文莉.天然产物现代分离技术.北京:中国农业大学出版社(2006).
    [90] W, Li., D,Xie.,J. W. Frost. Benzene-Free Synthesis of Catechol: Interfacing Microbial and Chemical Catalysis. J. AM. CHEM. SOC 127,2874-2882(2005).
    [91]Gao, H., Liu, M.,et al. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour Technol 100, 4012-6(2009).
    [92]陈坚,李寅.发酵过程优化原理与实践.北京:化学工业出版社(2002).
    [93]Miller, G. L. Use of dinitrosalicylic acid reagent for the determination of reducing sugars.AnalChem 31,426-428(1959).
    [94]Monod J. The Grow th of Bacterial Culture. Ann. Rev. M icrobiol 3,371-372(1949).
    [95]戚以政,汪叔雄.生化反应动力学与反应器.北京:化学工业出版社(1999).
    [96]储炬,李友荣.现代工业发酵调控学.北京:化学工业出版社(2002).
    [97]Luedeking, R., Piret, E. L. A kinetic study of the lactic acid fermentation:batch process at controlled pH. J Biochem Microbiol Technol Eng 1,393-431(1959).
    [98]李艳.发酵工业概论.北京:高等教育出版社(2000).
    [99]Moat, A. G., Foster, J. W. Microbiol physiology, New York:Willey-Lissa John&Sons,Inc (1995).
    [100]张克旭,陈宁,张蓓.代谢控制发酵.北京:中国轻工业出版社(1998).
    [101]伦世仪.生化工程.北京:中国轻工业出版社(1993).
    [102]Clark, T.A., Hesketh, T.,Seddon, T. Automatic control of dissolved oxygen tension via fermenter agitation speed.Biotechnol Bioeng 27,1507-1511(1985).
    [103]Williams, D., Yousefpour, P., Wellington, E.M. Online adaptive control of a fed batch fermentation of Saccharomyces cerevisiae.Biotechnol Bioeng 28,631-645(1986).
    [104] Lam, K.S., Veitch, J.A., et al. Effect of neutral resins on the production of dynemicins by Micromonospora chersina. J Industrial Microbiol 15,453-456(1995).
    [105]Maya, P. S., Margaret, M. L., et al. Fermentative production of self-toxic fungal secondary metabolites. J Ind Microbiol Biotechnol 37,335-340(2010).
    [106]Lee, J.C., Park, H.R., et al. Improved production of teicoplanin using adsorbent resin in fermentations. Letters in Applied Microbiology 37,196-200(2003).
    [107]Jae-Chan Lee, Hae-Ryong Park. Production of teicoplanin by a mutant of Actinoplanes teicomyceticus. Biotechnology Letters 25,537-540( 2003).
    [108]Marshall. V.P. McWethy.S.J. The effect of neutral resins on the fermentation production of rubradirin .Journal of Industrial Microbiology 5,283-288(1990).
    [109]JoséGeraldo da Cruz Pradella a , Marilda Keico Taciro. High-cell-density poly(3-hydroxybutyrate) production from sucrose using Burkholderia sacchari culture in airlift bioreactor Bioresource Technology 101,8355-8360(2010).
    [110]Rathi, P. , Goswami, V. K. , Sahai, V. , et al. Statistical medium optimization and productionof a hyperthermostable lipase from Burkholderia cepacia in a bioreactor. Journal of Applied Microbiology 93,930-936(2002).
    [111]Gupta, N., Sahai, V., Gupta, R. Alkaline lipase from a novel strain Burkholderia multivorans: Statisticalmedium optimization and production in a bioreactor. Process Biochemistry 42,518-526 (2007).
    [112]Xiao, Z. J., Liu, P. H., Qin, J. Y., et al. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Applied Microbiology and Biotechnology 74, 61-68(2007).
    [113]Pinelli, D., GonzalezVara, A. , Matteuzzi, D. Assessment of Kinetic Models for the Production of L-and D-LacticAcid Isomers by Lactobacillus casei DMS 20011 and Lactobacillus coryniforrnis DMS 20004 in Continuous Fermentation. Journal of fermentation and bioengineering 83,201-212(1997).
    [114]Barba, D. , Beolchini, F. , Del Re, G. , et al. Kinetic analysis of Kluyveromyces lactis fermentation on whey:batch and fed-batch operations. Process Biochemistry 36,531-536(2001).
    [115]Shinto, H., Tashiro, Y., Kobayashi, G., et al. Kinetic study of substrate dependency for higher butanol production in acetone-butanol-ethanol fermentation. Process Biochemistry 43,1452-1461 (2008).
    [116]Serp,D., Von Stockar., Marison, I. W. Marison.Enhancement of 2-Phenylethanol Productivity by Saccharomyces cerevisiae in Two-Phase Fed-Batch Fermentations Using Solvent Immobilization. Biotechnology and bioengineering 82,103-110(2003).
    [117]Leonard, J., James, E. A continuous alcohol oxidase bioreactor for regenerative life support. Enzyme and Microbial Technology 18,229-235(1996).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700