硫碘开路循环制氢系统流程模拟及本生反应两相分离试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能具有清洁高效、安全可储存、可再生和来源丰富等优点,是一种理想的可再生能源载体。规模化高效低成本制氢是发展氢能经济的基础。在众多候选制氢方式中,热化学水分解硫碘制氢具有热效率高,流程简单,可实现工业化和规模化等优势,是较理想的热化学循环制氢方式。
     本生反应是硫碘循环的起始步骤,本生反应产物HI和H2SO4的有效分离关系到整个系统的可运行性和经济性,是目前急需解决的科学难题之一。本文首先利用过量碘法对本生反应产物的两相分离特性进行了系统研究。在较感兴趣的工况范围内试验研究了两相分离的出现及过量碘的析出,过量碘量对两相密度、杂质含量、硫酸相组分以及碘化氢相中HI浓度的影响,温度对两相密度和杂质含量的影响以及过量水量对分层效果的影响,并综合分析得到了最佳的本生反应推荐工况。实验结果显示:温度的增加和水量的减少有利于碘在HI/H2O溶液中的溶解;过量碘量上、下限间的两相区范围随温度的升高逐步扩大,这有利于提高硫碘系统实际运行时的稳定性;在较宽实验工况范围内,模拟液完成两相分离的时间受工况变化影响较小,且能够在2min内进行的比较充分;过量碘量的加入能显著改善两相分离的效果;综合分析得到的本生反应两相分离优化工况范围是:压力P=1atm,物料比n(H2SO4)/n (HI)/n (H20)= 1/2/12,温度T=345~358K,过量碘量n(I2)=2.4-4。其中,T=351K, n (H2SO4)/n(HI)/n(H20)/n(I2)=1/2/12/2.5时,分层后的碘化氢相中HI浓度超共沸浓度,达到27.35%,且各相中的杂质含量均处于较低水平,为最佳两相分离工况。
     其次,利用化工流程模拟软件Aspen Plus对硫碘开路循环制氢系统进行了设计和热力学模拟,计算了氢气产率lmol/s的硫碘开路循环系统的质量平衡、能量平衡及热效率,并研究了主要设计参数对系统效率的影响。结果显示:硫碘开路循环系统的最高计算热效率达到66.79%;碘化氢相循环量和精馏塔回流比是影响系统效率的主要因素。实际运行中,优化本生反应操作条件,提高碘化氢相中HI浓度是降低HI浓缩、精馏段热负荷和电负荷,提高系统整体热效率的重要手段。
Hydrogen energy, which is considered as an ideal regenerative energy carrier has many advantages such as clean, high efficiency, safety, advantageous storage, regeneration and various source. Large-scale and low-cost hydrogen production is the foundation of hydrogen economy. Compared with other candidate hydrogen production processes, the sulfur-iodine (SI) thermochemical cycle has a number of attractive features including high thermal efficiency, few flowsheet steps and available industrialization. It is the most promising thermochemical cycle for mass hydrogen production.
     The Bunsen reaction is the first step of SI cycle. The efficient separation of HI and H2SO4 which are the product of Bunsen reaction is a technical challenge needs to be solved. In this paper, the Iodine Excess Addition method is used to investigate the two-phase separation characteristics of Bunsen reaction products. The phenomenon of two-phase separation and excess iodine solidification is first studied in wide temperature range. Then, characteristics of two phase density, impurity in each phase, and component of sulfuric acid phase as well as HI concentration in HI phase influenced by excess iodine are discussed. The influences of temperature and excess water on two phase purification are also investigated. Finally, an optimal operating condition for the Bunsen reaction of SI thermochemical cycle is recommended. The results have indicated that:The solubility of iodine in HI/H2O solvents is increased by temperature while decreased by H2O molar ratio; The two-phase region of the product of Bunsen reaction is widened while the temperature increasing; The two-phase separation time is less than 2 minutes which is slightly effected by solution components; The two-phase separation characteristics are significantly improved by the excess iodine; Based on the results, the allowable window ranges 2.4-4 mol for the excess iodine and 345-358K for the temperature when the pressure is 1 atm and the molar ratio of H2SO4, HI and H2O is 1:2:12. The optimal operating point is represented by 2.5 mol of excess iodine and 12 mol of excess water at temperature of 351K. At this optimal operating point, the HI concentration in HI phase is over-azeotropic which reaches 27.35% while the impurities in two phases keep in low level.
     A flowsheet of open-loop sulfur-iodine thermochemical cycle for the production of hydrogen and sulfuric acid is designed and simulated by Aspen Plus. The production rate of H2 is fixed at 1 mol/s. The heat and mass balance as well as thermal efficiency of this process are calculated. Effects of several operating conditions on the thermal efficiency are also evaluated. The results have indicated that:The thermal efficiency of the total process is 66.79%; The molar flow rate of HI phase and the reflux ratio at HI distillation column are the main factors which influence the thermal efficiency; The optimization of Bunsen reaction process can increase the HI concentration in HI phase, decrease the heat and electric energy demand in HI concentration and distillation process which increase the total process thermal efficiency.
引文
[1]王益鸿.遥望氢时代[J].科学通报,2004,10:7-13.
    [2]毛宗强.氢能-21世界的绿色能源[M].北京:化学工业出版社,2005.
    [3]World Energy Outlook 2010. http://www.docin.com/p-96336826.html
    [4]中国首次宣布温室气体减排清晰量化目标. 新华网http://news.xinhuanet.com/politics/2009-11/26/content_12545939.htm
    [5]U.S. Department of Energy. Hydrogen Posture Plan-An integrated research, development and demonstration plan[R]. Washington D.C.,2004.
    [6]毛宗强.世界各国加快氢能源市场化步伐[J].中外能源,2010,15(7):29-34.
    [7]ARMOR J N. The multip le roles for catalysis in the production of H2[J]. Appl Catal A:Gen, 1999,176:159-176.
    [8]胡亚范,马予芳,张永贵.绿色能源-氢能[J].节能技术,2007,25(5):466-469.
    [9]BENSON H E. Processing of gasification products. In:Chemistry of coal utilization,2nd supplementary volume[R]. New York:Wiley; 1981.
    [10]王亚楠,傅秀美,刘海燕,等.生物质氢最新研究进展与发展趋势[J].应用于环境生物学报,2007,13(6):895-900.
    [11]汪家铭.水电解制氢技术进展及应用[J].技术与市场,2006:11A:6-6.
    [12]陈威,董新法,林维明.可见光分解水制氢光催化材料研究进展[J].化工进展,2007,11(26):1564-1568.
    [13]FUNK J E, REINSTROM R M. Energy requirements in the production of hydrogen from water[J]. IEC Proc.Res.Dev.,1966,5:336-336.
    [14]BROWN L C, FUNK J F, SHOW ALTER S K. Initial screening of thermochemical water-splitting cycles for high efficiency generation of hydrogen fuels using nuclear power[R]. GA-A23373,2000.
    [15]BROWN L C, BESENBRUCH G E, SCHULTZ K R, et al. High efficiency generation of hydrogen fuels using thermochemical cycles and nuclear power[R]. AIChE 2002 Spring National Meeting,New Orleans, Louisiana,2002.
    [16]BROWN L C, BESENBRUCH G E, SCHULTZ K R, et al. High efficiency generation of hydrogen fuels using thermochemical cycles and nuclear power[R]. GA-A24326,2002.
    [17]BROWN L C, LENTSCH R D, BESENBRUCH G E, et al. Alternative flowsheets for the sulfur-iodine thermochemical hydrogen cycle[R]. GA-A24266,2003.
    [18]张平,于波,陈靖,等.热化学循环分解水制氢研究进展[J].化学进展,2005,17(4):643-649.
    [19]BROWN L C, BESENBRUCH G E, LENTSCH R D, et al. High efficiency generation of hydrogen fuels using nuclear power[R]. GA-A24285,2003.
    [20]SAKURAI M, BILGEN E, TSUTSUMI A, et al. Solar UT-3 thermochemical cycle for hydrogen production[J]. Solar Energy,1996,57(1):51-58.
    [21]TEO E D, BRANDON NP, VOS E, et al. A critical pathway energy efficiency analysis of the thermochemical UT-3 cycle[J]. Int J Hydrogen Energy,2005,30(5):559-564.
    [22]IAEA. Hydrogen as an energy carrier and its production by nuclear power[R]. IAEA—TEC1DD—1085,1999.
    [23]祝星,王华,魏永刚,等.金属氧化物两步热化学循环分解水制氢[J].化学进展,2010,22(5):1010-1020.
    [24]CHARVIN P, STEPHANE A, FLORENT L, et al. Analysis of solar chemical processes for hydrogen production from water splitting thermochemical cycles[J]. Energy Conversion and Management,2008,49(6):1547-1556.
    [25]STEINFELD A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions[J]. Int. J. Hydrogen Energy,2002,27(6):611-619.
    [26]FRESNO F, Femandez-Saavedra R, Comez-Mancebo M B, et al. Solar hydrogen production by two-step thermochemical cycles:Evaluation of the activity of commercial ferrites.International Journal of Hydrogen Energy[J].2009,34(7):2918-2924.
    [27]AOKI H, KANEKO H, HASEGAWA N, et al. The ZnFe2O4/(ZnO+Fe3O4) system for H2 production using concentrated solar energy[J]. Solid State Ionics,2004,172(1):113-116.
    [28]GOKON N, TAKAHASHI S, YAMAMOTO H, et al. Thermochemical two-step water-splitting reactor with internally circulating fluidized bed for thermal reduction of ferrite particles[J]. Int. J. Hydrogen Energy,2008,33:2189-2199.
    [29]TAMAURA Y, UEDA Y, MATSUNAMI J, et al. Solar hydrogen production by using ferrites[J]. Solar Energy,1999,65(1):55-57.
    [30]Kaneko H, Kodama Y, Gokon N, et al. Decomposition of Zn-ferrite for O-2 generation by concentrated solar radiation.Solar Energy,2004,76(1):317-322
    [31]Tamaura Y, Hasegawa N, Kojima M, et al. Water splitting with the MN(II)-ferrite-CAo-H2O system at 1273K.Energy,1998,23(10):879-886
    [32]Kaneko H, Hosokawa Y, Gokon N, et al. Enhancement of Op-releasing step with Fe2O3 in the water splitting by MnFe2O4-Na2CO3 system. Journal of Physics andChemistry of Solids, 2001,62:1341-1347
    [33]SERALESSANDRI L, BELLUSCI M, PADELLA F, et al. The oxygen-releasing step in the water splitting cycle by MnFe2O4-Na2CO3 system[J]. Int. J. Hydrogen Energy,2009,34(10): 4546-4550.
    [34]BRECHER L E, SPEWOCK S, WARDE C J. The Westinghouse sulfur cycle for the thermochemical decomposition of water[J]. Int J Hydrogen Energy,1977,2(1):7-15.
    [35]BILGEN E, BILGEN C. A hybrid thermochemical hydrogen producing process based on thecristina-mark cycles[J]. Int J Hydrogen Energy,1986,11(4):241-256.
    [36]BILGEN C, BROGGI A, BILGEN E. The solar cristina process for hydrogen-production. Solar Energy[J].1986,36(3):267-280.
    [37]BILGEN E. Solar hydrogen-production by hybrid thermochemical processes[J]. Solar Energy. 1986,41(2):199-206.
    [38]JEONG Y H, KAZIMI M S. Optimization of the hybrid sulfur cycle for nuclear hydrogen generation[J]. Nuclear Technology,2007,159(2):147-157.
    [39]MAXIMILIAN B, GORENSEK, WILLIAM A S. Hybrid sulfur flowsheets using PEM electrolysis and a bayonet decomposition reactor[J]. Int J Hydrogen Energy,2009,34:4097-4114.
    [40]NORMAN J H, BESENBRUCH G E, O'KEEFE D. Thermochemical water-splitting for hydrogen production [R]. GRI-80/0105, Washington DC:Gas Research Institute,1981.
    [41]NORMAN J H, BESENBRUCH G E, BROWN L C, et al. Thermochemical water-splitting cycle, Bench-scale investigations and process engineering[J]. Int J Hydrogen Energy. 1982;GA-A16713.
    [42]KNOCHE K F, SCHEPERS H, HESSELMANN K. Second law snd cost analysis of the oxygen generation step of the General Atomic sulfur-iodine cycle[R]. Proc. of the 5th World Hydrogen energy conf.,Toronto,Canada,1984:487-502.
    [43]ONUKI K, NAKAJIMA H, IOKA I, et al. IS process for thermochemical hydrogen production[R]. JAERI-Review 94-006,1994.
    [44]Nakajima H, Ikenoya K, Onuki K, et al. Closed-cycle continuous hydrogen production test by thermochemical IS process[J]. Kagaku Kogaku Ronbunshu,1998,24:352-355.
    [45]SHINJI K, NAKAJIMA H, KASAHARA S, et al. A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process[J]. Nucl Eng Des.,2004,233:347-354.
    [46]SHINJI K, KASAHARA S, OKUDA H, et al. A pilot test plan of the thermochemical water-splitting iodine-sulfur process[J]. Nucl Eng Des.,2004,233:355-362.
    [47]SAKABA N, KASAHARA S, ONUKI K, et al. Conceptual design of hydrogen production system with thermochemical water-splitting iodine-sulphur process utilizing heat from the high-temperature gas-cooled reactor HTTR[J]. International Journal of Hydrogen Energy,2007,32: 4160-4169.
    [48]KASAHARA S, HWANG G J, NAKAJIMA H, et al. Effects of process parameters of IS process on total thermal efficiency to produce Hydrogen from water [J]. J Chem Eng Jpn,2003, 36(7):887-899.
    [49]JEAN L, CARLES P, BORGARD J M. Countercurrent reactor design and flowsheet for iodine-sulfur thermochemical water splitting process[J]. International Journal of Hydrogen Energy, 2009,34(22):9060-9075.
    [50]LEE B J, NO H C, YOON H J, et al. An optimal operating window for the Bunsen process in the I-S thermo-chemical cycle [J]. Int. J. Hydrogen Energy,2008,33:2200-2210.
    [51]LEE B J, NO H C, YOON H J, et al. Development of a flowsheet for iodine-sulfur thermo-chemical cycle based on optimized Bunsen reaction [J]. Int. J. Hydrogen Energy,2009,34: 2133-2143.
    [52]张彦威.热化学硫碘开路循环联产氢气和硫酸系统的基础问题研究[D].杭州:浙江大学能源工程学系,2008.
    [53]屈一新.化工过程数值模拟及软件[M].北京:化工工业出版社,2006.
    [54]NOMURA M, OKUDA H, KASAHARA S, et al.Optimization of the process parameters of an electrochemical cell in the IS process[J].Chemical Engineering Science,2005,60:7160-7167.
    [55]YOON H J, NO H C, KIM Y S, et al. Demonstration of the I-S thermochemical cycle feasibility by experimentally validating the over-azeotropic condition in the hydroiodic acid phase of the Bunsen process[J]. International Journal of Hydrogen Energy,2009,34(19):7939-7948.
    [56]SATO S, SHIMIZU S, NAKAJIMA H, et al. A nickel-iodine-sulfur process for hydrogen production[J]. Int.J.Hydrogen Energy, 1983,8(1):15-22.
    [57]M SAKURAI, NAKAJIMA H, AMIR R, et al. Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process[J]. Int. J. Hydrogen Energy,2000;25:613-619.
    [58]HWANG G J, KIM Y H, PARK C S, et al. Bunsen reaction in IS(Iodine-sulfur) process for thermochemical hydrogen production[R]. Proceedings International Hydrogen Energy Congress and Exibition IHEC Istabul, Turkey,2005.
    [59]GUO H F, ZHANG P, BAI Y, et al. Continuous purification of H2SO4 and HI phases by packed column in IS process[J]. International Journal of Hydrogen Energy,2010, 35(7):2836-2839.
    [60]DOKIYA M, FUKUDA K, KAMEYAMA T, et al. Study of thermochemical hydrogen preparation.2. electrochemical hybrid cycle using sulfur-iodine system[J]. Denki Kagaku,1977, 45(3):139-143.
    [61]SHIMIZU S, SATO S, IKEZOE Y, et al. The Nickel-Iodine-Sulfur process for thermochemical hydrogen production.1. Proposal[J]. Denki Kagaku,1981,49(11):699-704.
    [62]COCUZZA G, PIERINI G. Procede pour la production d'hydrogene[R]. Belgian Patent no. 852674,1977.
    [63]BENI D, PIERINI G, SPELTA G B. Process for the separation of hydrogen iodide and sulphuric acid[R]. European Patent no.78200029.3,1978.
    [64]GIACONIA A, CAPUTO G, SAU S, et al. Survey of Bunsen reaction routes to improve the sulfur-iodine thermochemical water-splitting cycle[R]. AIChE Annual Meeting 2007, Salt Lake City, UT:Pergamon-Elsevier Science Ltd,2007.
    [65]SAKURAI M, NAKAJIMA H, ONUKI K, et al. Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process[J].Int J Hydrogen Energy,2000,25:605-611.
    [66]COLETTE S, BRIJOU-MOKRANI N, CARLES P, et al. Experimental study of Bunsen reaction in the framework of massive hydrogen production by the sulfur-iodine thermochemical cycle[R]. WHEC 16/13-16, Lyon, France,2006.
    [67]GIACONIA A, CAPUTO G, CEROLI A, et al. Experimental study of two phase separation in the Bunsen section of the sulfur-iodine thermochemical cycle[J]. International Journal of Hydrogen Energy,2007,32(5):531-536.
    [68]KANG Y H, RYU J C, PARK C S, et al. The study on Bunsen reaction process for iodine-sulfurthermochemical hydrogen production[J]. Korean Chem Eng Res, 2006,44(4):410-416.
    [69]GINOSAR D M, PETKOVIC L M, GLENN A W, et al. Stability of supported platinum sulfuric acid decomposition catalysts for use in thermochemical water splitting cycles[J]. Int. J. Hydrogen Energy,2007,32(4)482-488.
    [70]FORSBERG C, BISCHOFF B, LOUIS K, et al. A lower-temperature iodine-westinghouse-ispra sulfur process for thermochemical production of hydrogen[R]. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725,2003.
    [71]CAPUTO C, FELICI C, TARQUINI P, et al. Membrane distillation of HI/H2O and H2SO4/H2O mixtures for the sulfur-iodine thermochemical process[J]. International Journal of Hydrogen Energy,2007,32:4736-4743.
    [72]IIDA I. Kinetic-behavior of the decomposition of hydrogen iodide on the surface of platinum[J]. Zeitschrift Fur Physikalische Chemie-Frankfurt,1978,109(2):221-232.
    [73]OKEEFE.D R, NORMAN J H, WILLIAMSON D G. Catalysis research in thermochemical water-splitting processes[J]. Catalysis Reviews-Science and Engineering,1980,22(3):325-369.
    [74]SHINDO Y, ITO N, HARAYA K, et al. Kinetics of the catalytic decomposition of hydrogen iodine in the thermochemical hydrogen production[J]. Int J Hydrogen Energy,1984,9(8):695-700.
    [75]ZHANG Y W, WANG Z H, ZHOU J H, et al. Effect of preparation method on platinum-ceria catalysts for hydrogen iodide decomposition in sulfur-iodine cycle[J]. International Journal of Hydrogen Energy,2008,33(2):602-607.
    [76]ZHANG Y W, ZHOU J H, WANG Z H, et al. Influence of the oxidative/reductive treatments on Pt/CeO2 catalyst for hydrogen iodide decomposition in sulfur-iodine cycle [J]. International Journal of Hydrogen Energy,2008,33(9):2211-2217.
    [77]ZHANG Y W, WANG Z H, ZHOU J H, et al. Catalytic decomposition of hydrogen iodide over pre-treated Ni/CeO2 catalysts for hydrogen production in the sulfur-iodine cycle[J]. International Journal of Hydrogen Energy,2009,34(21):8792-8798.
    [78]ZHANG Y W, WANG Z H, ZHOU J H, et al. Ceria as a catalyst for hydrogen iodide decomposition in sulfur-iodine cycle for hydrogen production[J]. International Journal of Hydrogen Energy,2009,34(4):1688-1695.
    [79]HWANG G J, ONUKI K, SHIMIZU S. Studies on hydrogen separation membrane for IS process, Membrane preparation with porous-alumina tube[R]. Research Report 98-002, JAERI, Ibaraki, Japan,1998.
    [80]CHEN W H, HSU P C, LIN B J. Hydrogen permeation dynamics across a palladium membrane in a varying pressure environment[J]. International Journal of Hydrogen Energy, 2010,35(11):5410-5418.
    [81]金会义.已二酸回收技术及溶解度研究[D].天津:天津大学化工学院,2004.
    [82]刘广义.热化学硫碘循环制氢中Bunsen反应与碘化氢分解的模拟与实验研究[D].杭州:浙江大学能源工程学系,2006.
    [83]GOLDSTEIN S, VITART X, BORGARD J M. General comments about the efficiency of the iodine-sulfur cycle coupled to a high temperature gas cooled reactor[J]. Int Scientific J Alternative Energy Ecol,2004,3:20-27.
    [84]CONGER W L. Open-loop thermochemical cycles for the production of hydrogen[J]. Int J Hydrogen Energy,1979,4:517-522.
    [85]HUANG X. Advancing China's pyrite-based sulfuric acid production[J]. Sulfuric Acid Industry,2004,5:15-19.
    [86]QI Y. Situation of China's sulphuric acid and phosphate fertilizer in 2004[J]. Sulfuric Acid Industry,2005,2:11-14.
    [87]MAKOTO S, HAYATO N, RUSLI A, et al. Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process [J]. Int. J. Hydrogen Energy.2000,25:613-619.
    [88]KNOCHE K F, SCHEPER H, HESSELMANN K. Second law and cost analysis of the oxygen generation step of the General Atomic sulfur-iodine cycle[C]. Proceedings of the 5th World Hydrogen energy conference. Toronto:Pergamon Press,1984:487-502.
    [89]ASPEN PLUS用户指南.
    [90]OZTURK I T, HAMMACHE A, BILGEN E. An improved process for h2so4 decomposition step of the sulfur iodine cycle [J]. Energy Conversion and Management,1995,36:11-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700