周期量级光脉冲单元技术及Yb:YAG薄片激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周期量级激光脉冲不仅是飞秒激光脉冲发展的必然趋势,也是产生阿秒脉冲、推动阿秒科学发展的必经阶段和必要手段。本论文主要围绕周期量级光脉冲获取的单元技术以及重复频率为100kHz的Yb:YAG薄片激光器两方面进行实验研究。论文的主要内容包括:
     一、将充气空心光纤技术与成丝技术相结合,实验分析了自由成丝状态和有空心光纤束缚成丝状态下的光谱差别,并系统研究了在自由成丝状态下,输入脉冲能量、充气气压对成丝光谱展宽的影响,以及有空心光纤束缚时,输入脉冲能量、空心光纤所处成丝位置、空心光纤芯径等实验参数对光谱展宽的影响。
     二、利用空心光纤作为探测器,在强飞秒激光在氩气中成丝的条件下,研究了成丝不同部位的光谱变化,进而推断出成丝范围内脉冲的时域变化。结果表明,空心光纤位于成丝的特定位置时可以获得最宽光谱展宽,对应于成丝部位的最窄脉冲,因此间接证明了成丝的长度范围内,脉冲宽度呈非均匀分布。
     三、对用于评价周期量级光脉冲时域信息的SPIDER装置进行了改进和完善,并成功推出了用于测量飞秒脉冲位相的硬件和软件系统,实现了可靠性、实用性的飞秒脉冲位相测量仪国产化机型。飞秒脉冲位相测量仪在硬件上,采用超薄、超宽带分束镜和超薄非线性转换晶体,有效地减小了附加色散并增大了测量带宽;在软件上,采用独立开发的新型解析算法使位相测量更加精确;在操作上,基于VC编程环境,开发出了具有美观友好的人机对话交互界面,使脉冲位相测量的操作更加可视化。
     四、利用薄片Yb:YAG晶体模块,实验分析了影响Yb:YAG薄片激光器腔内损耗的各种因素;采用声光调Q技术,分析了输出耦合镜透射率、偏振以及重复频率对调Q脉冲输出功率的影响,研究了影响Yb:YAG薄片激光器的调Q输出稳定性的因素,并进一步采用倍频技术获取了二倍频光脉冲输出。通过优化声光Q开关超声功率、Q开关开门宽度以及偏振性提高了脉冲输出的稳定性。在重复频率为100kHz的条件下,获得了平均功率50W的基频调Q脉冲输出,脉冲宽度205ns,脉冲不稳定性为2.0%rms以及20W的倍频光输出,脉冲宽度195ns,脉冲不稳定性为1.5%rms。为建立并实现100kHz的钛宝石激光放大器的提供了基础。
Monocycle pulses are not only the inevitable trend of the development of femtosecond pulses, but also the necessary method and stage for the generation of attosecond pulse and the advancement of attosecond technology. In this dissertation, the unit technique of monocycle pulses, including filamentation, gas-filled hollow fiber and SPIDER, and a 100-kHz Q-switched Yb: YAG thin disk laser was experimentally investigated. The main contents are summarized as follows:
     1. Using the techniques of filamentation and gas-filled hollow fiber, the characteristics of the broadened spectrum formed by filament with and without the hollow fiber restriction are experimentally studied respectively when intense femtosecond pulses are focused into an argon-filled tube. The influence of the input pulse energy and the gas pressure on the broaden spectrum without the hollow fiber restriction and that of input pulse energy, the position and the inner diameter of the hollow fiber on the broaden spectrum with the hollow fiber restriction are also analyzed in detail.
     2. The spectrum evolution along the filament formed by the femtosecond laser in argon gas is experimentally demonstrated through introducing a hollow fiber as a probe. Using the spectrum variation, the time domain variation of pulses in the range of filamentaion can be concluded. At a particular position of the filament, the width of the spectrum expands to its maximum value, which corresponds to the shortest pulse duration. The results indicate that the width of pulses present a non-uniform distribution in the range of the filament.
     3. SPIDER apparatus which is used to evaluate the time domain information of monocycle pulses are greatly improved in the technological operation. And a set of SPIDER apparatus with hardware and software have been produced successfully. This domestic experimental equipment can realize measuring the phase of femtosecond pulses reliably and practicably. In the hardware of the SPIDER apparatus, ultrathin beam splitters with ultrabroad bandwidth film coating and the ultrathin nonlinear crystal are applied to reduce the additional dispersion and enlarge the measurement bandwidth. In the software, the novel arithmetic is used to ensure the precise measurement results. In the manipulation, based on the VC program, the beautiful and friendly interface is designed to make the measurement more visual.
     4. Using the Yb: YAG thin disk modular, the influencing factors on the intracavity loss in a Yb: YAG thin disk laser is experimentally studied. Adopting the technique of acousto-optic modulation, the influence of the output coupler transmission, the polarization and the repetition rate on the acoustic-optic Q-switched output power is discussed respectively. The stability of the acoustic-optic Q-switched pulse is also experimentally studied. Based on the Q-switched thin disk laser, second harmonic generation is obtained by introducing a frequency doubling crystal. By optimizing the polarization, the driver power and the gate width of the AO device, the stability of the Q-switched pulses can be improved greatly. At the repetition rate of 100 kHz, the average fundamental power of 50W with 205ns pulse duration and 2.0%rms pulse stability can be achieved and the average frequency doubling power of 20W with 195ns pulse duration and 1.5%rms pulse stability can be gained, which will be helpful to constructing a 100 kHz Ti: Sapphire amplifier.
引文
1. S. Baker, J. S. Robinson, C. A. Haworth, H. Teng, R. A. Smith, C. C. Chirila, M. Lein, J. W. G. Tisch, and J. P. Marangos, Probing proton dynamics in molecules on an attosecond time scale, Science, 2006, 312(5772): 424-427.
    2. A. H. Zewail, Femtochemistry: Recent progress in studies of dynamics and control of reactions and their transition states, Journal of physical chemistry, 1996, 100(31): 12701-12724.
    3. V. Malka, S. Fritzler, E. Lefebvre, M. M. Aleonard, F. Burgy, J. P. Chambaret, J. F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J. P. Rousseau, J. N. Scheurer, B. Walton, and A. E. Dangor, Electron acceleration by a wake field forced by an intense ultrashort laser pulse, Science, 2002, 298(5598): 1596-1600.
    4. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases, Journal of the Optical Society of America B: Optical Physics, 1987, 4(4): 595-601.
    5. M. Ferray, A. L'Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, Multiple-harmonic conversion of 1064 nm radiation in rare gases, Journal of Physics B: Atomic, Molecular and Optical Physics 1988, 21(3): 31-35.
    6. F. Le Kien, K. Midorikawa, and A. Suda, Attosecond pulse generation using high harmonics in the multicycle regime of the driver pulse, Physical Review A - Atomic, Molecular, and Optical Physics, 1998, 58(4): 3311-3319.
    7. I. P. Christov, M. M. Murnane, and H. C. Kapteyn, High-harmonic generation of attosecond pulses in the "Single-Cycle" regime, Physical Review Letters, 1997, 78(7): 1251-1254.
    8. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, Attosecond metrology, Nature, 2001, 414(6863): 509-513.
    9. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltu?ka, V. Yakovlev, F. Bammer, A. Scrinzi, T. Westerwalbesioh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Atomic transient recorder, Nature, 2004, 427(6977): 817-821.
    10. T. Brabec and F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics, Reviews of Modern Physics, 2000, 72(2): 545-591.
    11. D. Umstadter, S. Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons, Science, 1996, 273(5274): 472-475.
    12. O. Shorokhov, A. Pukhov, and I. Kostyukov, Self-Compression of Laser Pulses in Plasma, Physical Review Letters, 2003, 91(26): 265002.
    13. G. Cerullo, G. Lanzani, M. Nisoli, E. Priori, S. Stagira, M. Zavelani-Rossi, O. Svelto, L. Poletto, P. Villoresi, C. Altucci, and C. De Lisio, Ultra-fast spectroscopy and extreme nonlinear optics by few-optical-cycle laser pulses, Applied Physics B: Lasers and Optics, 2000, 71(1-6): 779-786.
    14. U. Keller, Recent developments in compact ultrafast lasers, Nature, 2003, 424(6950): 831-838.
    15. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. H?nsch, and F. Krausz, Controlling the phase evolution of few-cycle light pulses, Physical Review Letters, 2000, 85(4): 740-743.
    16. J. Reichert, R. Holzwarth, T. Udem, and T. W. H?nsch, Measuring the frequency of light with mode-locked lasers, Optics Communications, 1999, 172(1): 59-68.
    17. J. A. Giordmaine, M. A. Duguay, and J. W. Hansen, Compression of optical pulses, IEEE Journal of Quantum Electronics, 1968, 4(5): 252-255.
    18. R. L. Fork, O. E. Martinez, and J. P. Gordon, Negative dispersion pairs of prisms, Optics Letters, 1984, 9(5): 150-152.
    19. R. E. Sherriff, Analytic expressions for group-delay dispersion and cubic dispersion in arbitrary prism sequences, Journal of the Optical Society of America B: Optical Physics, 1998, 15(3): 1224-1230.
    20. M. Yamashita, M. Ishikawa, K. Torizuka, and T. Sato, Femtosecond-pulse laser chirp compensated by cavity-mirror dispersion, Optics Letters, 1986, 11(8): 504-506.
    21. R. Szip?cs, K. Ferencz, C. Spielmann, and F. Krausz, Chirped multilayer coatings for broadband dispersion control in femtosecond lasers, Optics Letters, 1994, 19(3): 201-203.
    22. R. Szip?cs and A. K?házi-Kis, Theory and design of chirped dielectric laser mirrors, Applied Physics B: Lasers and Optics, 1997, 65(2): 115-135.
    23. E. B. Treacy, Optical pulse compression with diffraction gratings, IEEE Journal of Quantum Electronics, 1969, QE-5(9): 454-458.
    24. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation, Optics Letters, 2000, 25(8): 587-589.
    25. A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker,and D. Kaplan, AOPDF-shaped optical parametric amplifier output in the visible, Applied Physics B: Lasers and Optics, 2005, 81(2-3): 177-180.
    26. N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, Optical pulse compression to 5.0 fs by use of only a spatial light modulator for phase compensation, Journal of the Optical Society of America B: Optical Physics, 2001, 18(11): 1742-1746.
    27. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. D. Trapani, and R. Righini, Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses, Journal of the Optical Society of America B: Optical Physics, 1993, 10(11): 2222-2232.
    28. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible, Optics Letters, 1998, 23(16): 1283-1285.
    29. A. Shirakawa, I. Sakane, and T. Kobayashi, Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared, Optics Letters, 1998, 23(16): 1292-1294.
    30. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification, Applied Physics Letters, 1999, 74(16): 2268-2270.
    31. A. Baltu?ka, T. Fuji, and T. Kobayashi, Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control, Optics Letters, 2002, 27(5): 306-308.
    32. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation, Optics Letters, 2003, 28(22): 2258-2260.
    33. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, Compression of femtosecond optical pulses, Applied Physics Letters, 1982, 40(9): 761-763.
    34. J. G. Fujimoto, A. M. Weiner, and E. P. Ippen, Generation and measurement of optical pulses as short as 16 fs, Applied Physics Letters, 1984, 44(9): 832-834.
    35. J.-M. Halbout and D. Grischkowsky, 12-fs ultrashort optical pulse compression at a high repetition rate, Applied Physics Letters, 1984, 45(12): 1281-1283.
    36. W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, and J. A. Valdmanis, Optical pulse compression to 8 fs at a 5-kHz repetition rate, Applied Physics Letters, 1985, 46(12): 1120-1121.
    37. R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, Compression of optical pulses to six femtoseconds by using cubic phase compensation, Opt.Lett., 1987, 12(7): 483-485.
    38. A. Baltu?ka, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, Optical pulse compression to 5 fs at a 1-MHz repetition rate, Optics Letters, 1997, 22(2): 102-104.
    39. K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma,
    100-TW sub-20-fs Ti: sapphire laser system operating at a 10-Hz repetition rate, Optics Letters, 1998, 23(18): 1468-1470.
    40. K. Yamakawa, M. Aoyama, S. Matsuoka, H. Takuma, D. N. Fittinghoff, and C. P. J. Barty, Ultrahigh-peak and high-average power chirped-pulse amplification of sub-20-fs pulses with Ti:sapphire amplifiers, IEEE Journal on Selected Topics in Quantum Electronics, 1998, 4(2): 385-393.
    41. K. Yamakawa, M. Aoyama, S. Matsuoka, H. Takuma, C. P. J. Barty, and D. Fittinghoff, Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti:sapphire amplifiers, Optics Letters, 1998, 23(7): 525-527.
    42. J. Seres, A. Müller, E. Seres, K. O'Keeffe, M. Lenner, R. F. Herzog, D. Kaplan, C. Spielmann, and F. Krausz, Sub-10-fs, terawatt-scale Ti:sapphire laser system, Optics Letters, 2003, 28(19): 1832-1834.
    43. V. Bagnoud and F. Salin, Amplifying laser pulses to the terawatt level at a
    1-kilohertz repetition rate, Applied Physics B: Lasers and Optics, 2000, 70(S1): 165-170.
    44. Z. Cheng, F. Krausz, and C. Spielmann, Compression of 2 mJ kilohertz laser pulses to 17.5 fs by pairing double-prism compressor: Analysis and performance, Optics Communications, 2002, 201(1-3): 145-155.
    45. M. Pittman, S. Ferre, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Chériaux, Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system, Applied Physics B: Lasers and Optics, 2002, 74(6): 529-535.
    46. C. Rolland and P. B. Corkum, Compression of high-power optical pulses, J. Opt. Soc. Am. B, 1988, 5(3): 641-647.
    47. E. Mével, O. Tcherbakoff, F. Salin, and E. Constant, Extracavity compression technique for high-energy femtosecond pulses, Journal of the Optical Society of America B: Optical Physics, 2003, 20(1): 105-108.
    48. A. K. Dharmadhikari, F. A. Rajgara, and D. Mathur, Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses, Applied Physics B: Lasers and Optics, 2005, 80(1): 61-66.
    49. N. K. M. N. Srinivas, S. S. Harsha, and D. N. Rao, Femtosecond supercontinuum generation in a quadratic nonlinear medium (KDP), OpticsExpress, 2005, 13(9): 3224-3229.
    50. P. Russell, Photonic Crystal Fibers, Science, 2003, 299: 358-362.
    51. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Optics Letters, 1996, 21(19): 1547-1549.
    52. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Optics Letters, 2000, 25(1): 25-27.
    53. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, Supercontinimm generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping, Journal of the Optical Society of America B: Optical Physics, 2002, 19(4): 765-771.
    54. A. L. Gaeta, Nonlinear propagation and continuum generation in microstructured optical fibers, Optics Letters, 2002, 27(11): 924-926.
    55. G. Chang, T. B. Norris, and H. G. Winful, Optimization of supercontinuum generation in photonic crystal fibers for pulse compression, Optics Letters, 2003, 28(7): 546-548.
    56. M. Adachi, K. Yamane, R. Morita, and M. Yamashita, Adaptive pulse compression for photonic crystal fiber by direct feedback of spectral phase, OSA Trends in Optics and Photonics Series, 2004, 96 A: 783-785.
    57. M. Adachi, K. Yamane, R. Morita, and M. Yamashita, Pulse compression using direct feedback of the spectral phase from photonic crystal fiber output without the need for the Taylor expansion method, IEEE Photonics Technology Letters, 2004, 16(8): 1951-1953.
    58. M. Yamashita, K. Yamane, and R. Morita, Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth - Generation of few- to mono-cycle optical pulses, IEEE Journal on Selected Topics in Quantum Electronics, 2006, 12(2): 213-222.
    59. B. Schenkel, R. Paschotta, and U. Keller, Pulse compression with supercontinuum generation in microstructure fibers, Journal of the Optical Society of America B: Optical Physics, 2005, 22(3): 687-693.
    60. M. Nisoli, S. De Silvestri, and O. Svelto, Generation of high energy 10 fs pulses by a new pulse compression technique, Applied Physics Letters, 1996, 68(20): 2793-2795.
    61. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, A novel-high energy pulse compression system: Generation of multigigawatt sub-5-fs pulses, Applied Physics B:Lasers and Optics, 1997, 65(2): 189-196.
    62. M. Nisoli, S. De Silvestri, O. Svelto, R. Szip?cs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, Compression of high-energy laser pulses below 5 fs, Optics Letters, 1997, 22(8): 522-524.
    63. M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Sil Vestri, and O. Svelto, Ultra-broadband continuum generation by hollow-fiber cascading, Applied Physics B: Lasers and Optics, 2002, 75(6-7): 601-604.
    64. G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, Mirror dispersion control of a hollow fiber supercontinuum, Applied Physics B: Lasers and Optics, 2004, 78(5): 551-555.
    65. C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, Optimal spectral broadening in hollow-fiber compressor systems, Applied Physics B: Lasers and Optics, 2005, 80(3): 285-289.
    66. M. Yamashita, H. Sone, R. Morita, and H. Shigekawa, Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking, IEEE Journal of Quantum Electronics, 1998, 34(11): 2145-2149.
    67. L. Xu, N. Karasawa, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber, Optics Communications, 1999, 162(4): 256-260.
    68. N. Karasawa, R. Morita, H. Shigekawa, and M. Yamashita, Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide, Optics Letters, 2000, 25(3): 183-185.
    69. R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. Li, A. Suguro, and M. Yamashita, Sub-5 fs optical pulse characterization, Measurement Science and Technology, 2002, 13(11): 1710-1720.
    70. K. Yamane, T. Kito, R. Morita, and M. Yamashita, 2.8-fs transform-limited optical-pulse generation in the monocycle region, in Conf. Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2004), post deadline paper PDC2, 2004.
    71. K. Yamane, T. Kito, R. Morita, and M. Yamashita, 2.8-fs clean single transform-limited optical-pulse generation and characterization, Springer Series in Chemical Physics, 2004, 79: 13-15.
    72. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, Generation of 3.8-fs pulses from adaptivecompression of a cascaded hollow fiber supercontinuum, Optics Letters, 2003, 28(20): 1987-1989.
    73. W. Kornelis, M. Bruck, F. W. Helbing, C. P. Hauri, A. Heinrich, J. Biegert, and U. Keller, Single-shot dynamics of pulses from a gas-filled hollow fiber, Applied Physics B: Lasers and Optics, 2004, 79(8): 1033-1039.
    74. E. Seres, R. Herzog, J. Seres, D. Kaplan, and C. Spielmann, Generation of intense 8 fs laser pulses, Optics Express, 2003, 11(3): 240-247.
    75. G. Steinmeyer and G. Stibenz, Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors, Applied Physics B: Lasers and Optics, 2006, 82(2): 175-181.
    76. B. F. Mansour, H. Anis, D. Zeidler, P. B. Corkum, and D. M. Villeneuve, Generation of 11 fs pulses by using hollow-core gas-filled fibers at a 100 kHz repetition rate, Optics Letters, 2006, 31(21): 3185-3187.
    77. A. J. Verhoef, J. Seres, K. Schmid, Y. Nomura, G. Tempea, L. Veisz, and F. Krausz, Compression of the pulses of a Ti:sapphire laser system to 5 femtoseconds at 0.2 terawatt level, Applied Physics B: Lasers and Optics, 2006, 82(4): 513-517.
    78. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Applied Physics B: Lasers and Optics, 2004, 79(6): 673-677.
    79. M. Mohebbi and R. Fedosejevs, High-efficiency optical compression of Ti: Sapphire laser pulses at 800 nm using a silver-coated hollow fiber, Applied Physics B: Lasers and Optics, 2003, 76(4): 345-350.
    80. N. Milosevic, G. Tempea, and T. Brabec, Optical pulse compression: Bulk media versus hollow waveguides, Optics Letters, 2000, 25(9): 672-674.
    81. G. Tempea and T. Brabec, Theory of self-focusing in a hollow waveguide, Optics Letters, 1998, 23(10): 762-764.
    82. M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, and K. Nagasaka, Propagation dynamics of femtosecond laser pulses in a hollow fiber filled with argon: Constant gas pressure versus differential gas pressure, Journal of the Optical Society of America B: Optical Physics, 2003, 20(9): 2002-2011.
    83. M. Nurhuda, A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, Propagation dynamics of femtosecond laser pulses in argon, Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66(2): 023811.
    84. M. Nurhuda, A. Suda, K. Midorikawa, and H. Budiono, Control of self-phase modulation and plasma-induced blueshifting of high-energy, ultrashort laser pulses in an argon-filled hollow fiber using conjugate pressure-gradientmethod, Journal of the Optical Society of America B: Optical Physics, 2005, 22(8): 1757-1762.
    85. J. S. Robinson, C. A. Haworth, H. Teng, R. A. Smith, J. P. Marangos, and J. W. G. Tisch, The generation of intense, transform-limited laser pulses with tunable duration from 6 to 30 fs in a differentially pumped hollow fibre Applied Physics B: Lasers and Optics, 2006, 85(4): 525-529.
    86. A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient, Applied Physics Letters, 2005, 86(11): 1-3.
    87. J. H. Sung, J. Y. Park, T. Imran, Y. S. Lee, and C. H. Nam, Generation of
    0.2-TW 5.5-fs optical pulses at 1 kHz using a differentially pumped hollow-fiber chirped-mirror compressor, Applied Physics B: Lasers and Optics, 2006, 82(1): 5-8.
    88. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air, Optics Letters, 1995, 20(1): 73-75.
    89. H. R. Lange, G. Grillon, J. F. Ripoche, M. A. Franco, B. Lamouroux, B. S. Prade, A. Mysyrowicz, E. T. J. Nibbering, and A. Chiron, Anomalous long-range propagation of femtosecond laser pulses through air: Moving focus or pulse self-guiding?, Optics Letters, 1998, 23(2): 120-122.
    90. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, Moving focus in the propagation of ultrashort laser pulses in air, Optics Letters, 1997, 22(5): 304-306.
    91. S. A. Hosseini, Q. Luo, B. Ferland, W. Liu, N. Ak?zbek, G. Roy, and S. L. Chin, Effective length of filaments measurement using backscattered fluorescence from nitrogen molecules, Applied Physics B: Lasers and Optics, 2003, 77(6-7): 697-702.
    92. F. Théberge, W. Liu, Q. Luo, and S. L. Chin, Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses, Applied Physics B: Lasers and Optics, 2005, 80(2): 221-225.
    93. S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P. Tamarov, Filamentation of femtosecond laser pulses in turbulent air, Applied Physics B: Lasers and Optics, 2002, 74(1): 67-76.
    94. K. Cook, A. K. Kar, and R. A. Lamb, White-light filaments induced by diffraction effects, Optics Express, 2005, 13(6): 2025-2031.
    95. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, Conical emission from self-guided femtosecond pulses in air, Optics Letters, 1996, 21(1): 62-64.
    96. G. Schwarz, C. Lehmann, and E. Sch?ll, Symmetry-breaking multiple current filamentation in n-GaAs, Physica B: Condensed Matter, 1999, 272(1): 270-273.
    97. G. Fibich and B. Ilan, Vectorial and random effects in self-focusing and in multiple filamentation, Physica D: Nonlinear Phenomena, 2001, 157(1-2): 112-146.
    98. G. Fibich and B. Ilan, Deterministic vectorial effects lead to multiple filamentation, Optics Letters, 2001, 26(11): 840-842.
    99. G. Fibich and B. Ilan, Multiple filamentation of circularly polarized beams, Physical Review Letters, 2002, 89(1): 139011-139014.
    100. A. Dubietis, G. Tamo?auskas, G. Fibich, and B. Ilan, Multiple filamentation induced by input-beam ellipticity, Optics Letters, 2004, 29(10): 1126-1128.
    101. G. Fibich, S. Eisenmann, B. Ilan, and A. Zigler, Control of multiple filamentation in air, Optics Letters, 2004, 29(15): 1772-1774.
    102. V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse, Applied Physics B: Lasers and Optics, 2005, 80(2): 267-275.
    103. T. D. Grow and A. L. Gaeta, Dependence of multiple filamentation on beam ellipticity, Optics Express, 2005, 13(12): 4594-4599.
    104. J. Garnier, Statistical analysis of noise-induced multiple filamentation, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(4).
    105. J. Liu, H. Schroeder, S. L. Chin, R. Li, and Z. Xu, Ultrafast control of multiple filamentation by ultrafast laser pulses, Applied Physics Letters, 2005, 87(16): 1-3.
    106. M. Mlejnek, E. M. Wright, and J. V. Moloney, Dynamic spatial replenishment of femtosecond pulses propagating in air, Optics Letters, 1998, 23(5): 382-384.
    107. V. Francois, F. A. Ilkov, and S. L. Chin, Supercontinuum generation in CO2 gas accompanied by optical breakdown, Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25(11): 2709-2724.
    108. C. P. Hauri, A. Guandalini, P. Eckle, W. Kornelis, J. Biegert, and U. Keller, Generation of intense few-cycle laser pulses through filamentation - Parameter dependence, Optics Express, 2005, 13(19): 7541-7547.
    109. S. A. Trushin, S. Panja, K. Kosma, W. E. Schmid, and W. Fu, Supercontinuum extending from > 1000 to 250 nm, generated by focusing ten-fs laser pulses at
    805 nm into Ar, Applied Physics B: Lasers and Optics, 2005, 80(4-5):399-403.
    110. L. Berge and A. Couairon, Gas-induced solitons, Physical Review Letters, 2001, 86(6): 1003-1006.
    111. A. L. Gaeta, Catastrophic Collapse of Ultrashort Pulses, Physical Review Letters, 2000, 84(16): 3582-3585.
    112. M. Hatayama, A. Suda, M. Nurhuda, K. Nagasaka, and K. Midorikawa, Spatiotemporal dynamics of high-intensity femtosecond laser pulses propagating in argon, Journal of the Optical Society of America B: Optical Physics, 2003, 20(3): 603-608.
    113. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, Optically turbulent femtosecond light guide in air, Physical Review Letters, 1999, 83(15): 2938-2941.
    114. D. Mikalauskas, A. Dubietis, and R. Danielius, Observation of light filaments induced in air by visible picosecond laser pulses, Applied Physics B: Lasers and Optics, 2002, 75(8): 899-902.
    115. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient, Optics Letters, 2005, 30(19): 2657-2659.
    116. N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping, Physical Review Letters, 2004, 93(17): 173902.
    117. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament, Optics Letters, 2006, 31(2): 274-276.
    118. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Scalable concept for diode-pumped high-power solid-state lasers, Applied physics. B, Photophysics and laser chemistry, 1994, 58(5): 365-372.
    119. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hügel, 1-kW CW thin disc laser, IEEE Journal on Selected Topics in Quantum Electronics, 2000, 6(4): 650-657.
    120. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, Powerful red-green-blue laser source pumped with a mode-locked thin disk laser, Optics Letters, 2004, 29(16): 1921-1923.
    121. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm, Optics Letters, 1995, 20(7): 713-715.
    122. G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, A passively Q-switched Yb:YAG microchip laser, Applied Physics B: Lasers and Optics, 2001, 72(3): 285-287.
    123. F. Brunner, R. Paschotta, J. Aus Der Au, G. J. Spühler, F. Morier-Genoud, R. H?vel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, Widely tunable pulse durations from a passively mode-locked thin-disk Yb:YAG laser, Optics Letters, 2001, 26(6): 379-381.
    124. E. Innerhofer, T. Südmeyer, F. Brunner, R. Hring, A. Aschwanden, R. Paschotta, C. H?nninger, M. Kumkar, and U. Keller, 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser, Optics Letters, 2003, 28(5): 367-369.
    125. F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, 240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser, Optics Letters, 2002, 27(13): 1162-1164.
    126. J. Aus Der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. H?vel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, 16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser, Optics Letters, 2000, 25(11): 859-861.
    127. D. Nickel, C. Stolzenburg, A. Giesen, and F. Butze, Ultrafast thin-disk Yb: KY (WO4)2 regenerative amplifier with a 200-kHz repetition rate, Optics Letters, 2004, 29(23): 2764-2766.
    128. S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, Pulse energy scaling to 5 μJ from a femtosecond thin disk laser, Optics Letters, 2006, 31(18): 2728-2730.
    129. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, Room-temperature diode-pumped Yb:YAG laser, Optics Letters, 1991, 16(14): 1089-1091.
    130. T. Y. Fan, Heat generation in Nd: YAG and Yb: YAG, IEEE Journal of Quantum Electronics, 1993, 29(6): 1457-1459.
    131. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, Low-heat high-power scaling using InGaAs-diode-pumped Yb: YAG lasers, IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(1): 105-116.
    132. W. Koechner, Solid-State Laser Engineering, Berlin: Springer, 1999.
    133. 姚震宇, 吕百达, 涂波, 蒋建锋, 童立新, 武德勇, 高清松, 陈晓琳, 100W二极管泵浦 Nd:YAG 薄片激光器, 强激光与粒子束, 2004, 16(9): 1116-1118.
    134. 吴海生, 闫平, 巩马理, 柳强, 刘敏, 谢韬, M2≤1.14 的 LD 抽运的 Yb:YAG微晶片激光器, 中国激光, 2002, 29(11): 961-964.
    135. 柳强, 巩马理, 潘圆圆, 李晨, 边缘抽运复合 Yb:YAG/YAG 薄片激光器设计与功率扩展, 物理学报, 2004, 53(7): 2159-2164.
    136. 李小莉, 施翔春, 石鹏, 郭明秀, 张贵芬, 陆雨田, 胡企铨, Yb:YAG 薄片激光介质的温度效应, 光学学报, 2001, 21(10): 1268-1271.
    137. 李磊, 杨苏辉, 孙文峰, 赵长明, 激光二极管抽运的高光束质量的 Yb:YAG 薄片激光器, 中国激光, 2004, 31(11): 1285-1288.
    138. Y. Kong, X. Lin, R. Li, Z. Xu, and X. Han, A novel blue light generation by frequency doubling of a diode-pumped Nd:YAG thin disk laser, Optics Communications, 2004, 237(4-6): 405-409.
    139. 李超, 徐震, 李俊林, 吴念乐, 李师群, 姚广涛, 张绍光, 二极管泵浦Yb:YAG Thin Disk 激光器获得 16W 连续激光输出, 量子电子学报, 2002, 19(2): 104-108.
    140. R. Kienberger, M. Hentschel, M. Uiberacker, C. Spielmann, M. Kitzler, A. Scrinzi, M. Wieland, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Steering attosecond electron wave packets with light, Science, 2002, 297(5584): 1144-1148.
    141. T. W. H?nsch, Proposed sub-femtosecond pulse synthesizer using separate phase-locked laser oscillators, Optics Communications, 1990, 80(1): 71-75.
    142. P. Antoine, A. L'Huillier, and M. Lewenstein, Attosecond pulse trains using high-order harmonics, Physical Review Letters, 1996, 77(7): 1234-1237.
    143. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H. G. Muller, and P. Agostini, Observation of a train of attosecond pulses from high harmonic generation, Science, 2001, 292(5522): 1689-1692.
    144. 曹伟, 兰鹏飞, 陆培祥, 紧聚焦激光束作用于电子实现单个阿秒脉冲输出, 物理学报, 2006, 55(5): 2115-2121.
    145. A. Baltu?ka, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. H?nsch, and F. Krausz, Phase-Controlled Amplification of Few-Cycle Laser Pulses, IEEE Journal on Selected Topics in Quantum Electronics, 2003, 9(4): 972-989.
    146. H. J. Lehmeier, W. Leupacher, and A. Penzkofer, Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation, Optics Communications, 1985, 56(1): 67-72.
    147. E. A. J. Marcatili and S. R. A., Hollow metallic and dielectric waveguides for long distance optical transmission and lasers, Bell. Syst. Tech. J. , 1964, 43(4): 1783-1809.
    148. A. Dalgarno and A. E. Kingston, The refractive indices and Verdet constants of the inert gases, Proceedings of the Royal Soc. of London, 1960, A 259(1298):424-433.
    149. 张志刚, 飞秒激光脉冲技术及应用, 北京: 科学出版社, 2006.
    150. G. P. Agrawal, Nonlinear Fiber Optics, San Diego: Academic Press, 1995.
    151. 费浩生, 非线性光学, 北京: 高等教育出版社, 1990.
    152. 石顺祥, 陈国夫, 赵卫, 刘继芳, 非线性光学, 西安: 西安电子科技大学出版社, 2003.
    153. 钱士雄, 王恭明, 非线性光学——原理与进展, 上海: 复旦大学出版社, 2001.
    154. L. V. Keldysh, Ionization in the field of a strong electromagnetic wave, Sov Phys JETP, 1965, 20: 1307-1314.
    155. M. V. Ammosov, N. B. Delone, and V. P. Krainov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field, Sov. Phys. JETP, 1986, 64(5): 1191-1194.
    156. A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, and A. Mysyrowicz, Infrared femtosecond light filaments in air: Simulations and experiments, Journal of the Optical Society of America B: Optical Physics, 2002, 19(5): 1117-1131.
    157. C. Iaconis and I. A. Walmsley, Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses, Optics Letters, 1998, 23(10): 792-794.
    158. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, Techniques for the characterization of sub-10-fs optical pulses: A comparison, Applied Physics B: Lasers and Optics, 2000, 70(S1): 67-75.
    159. G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, Advanced methods for the characterization of few-cycle light pulses: A comparison, Applied Physics B: Lasers and Optics, 2006, 83(4): 511-519.
    160. M. Zavelani-Rossi, D. Polli, G. Cerullo, S. De Silvestri, L. Gallmann, G. Steinmeyer, and U. Keller, Few-optical-cycle laser pulses by OPA: Broadband chirped mirror compression and SPIDER characterization, Applied Physics B: Lasers and Optics, 2002, 74(S1): 245-251.
    161. http://www.ape-berlin.de/gb/products/spider.html.
    162. 何铁英, 光谱位相干涉测量仪(SPIDER)的理论与实验研究: 天津大学硕士学位论文, 2004.
    163. 吴祖斌, 负色散镜的设计、制作和飞秒激光脉冲位相测量技术的研究: 天津大学硕士学位论文, 2005.
    164. http://www.els.de/Products/vdisk.html.
    165. X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, 4.44 W of CW 515 nm green light generated by intracavity frequency doubling Yb: YAG thin disk laser with LBO, Optics Communications, 2006, 267(2): 451-454.
    166. 邓玉强, 小波变换在飞秒激光技术中的应用: 天津大学博士学位论文, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700