靶向防龋DNA疫苗增强粘膜免疫的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     本课题组构建的靶向免疫防龋DNA疫苗经过多年的发展,在实验室研究中显示出较强的粘膜免疫效果和防龋保护作用。但是关于靶向免疫防龋DNA疫苗如何增强免疫反应的机制,尚有待进一步研究。本实验的研究目的是探讨靶向防龋DNA疫苗加强粘膜免疫的效果的生物学机制,为今后更好的促进靶向防龋DNA疫苗研究和应用提供的深入的分子机制研究基础。
     研究方法:
     本实验研究首先构建编码小鼠细胞毒性T淋巴细胞抗原4(cytotoxic T lymphocyte antigen 4, CTLA4)胞外区、人IgG1铰链区与Fc段、变形链球菌(Streptococcus mutans) PAc区和GLU区的靶向防龋质粒(pmGJA-P),构建编码人CD5分子引导序列、人IgGl铰链区与Fc段、PAc区和GLU区的非靶向防龋质粒做为对照(pCDA-P).然后,将BALB/c小鼠分成三组,每组20只,分别经过鼻腔滴注途径给予靶向防龋疫苗(给予pmGJA-P鼻腔滴注),非靶向防龋疫苗(给予pCDA-P滴注)和空质粒组(给予PCI滴注,阴性对照组)。比较各种质粒在各试验组诱导的抗体反应,抗原提呈细胞的形成,淋巴细胞增殖反应。此外,比较不同组小鼠头颈部淋巴结里树突状细胞(Dendritic cells, DCs)的表型变化,并应用抗原提呈细胞功能芯片分析不同实验组的DCs细胞在给予疫苗免疫前后基因的变化,实时定量PCR验证芯片分析的结果。
     实验结果:
     1特异性抗体反应:
     本研究检测了14天和28天时各组的唾液和血清中抗PAc和抗GLU抗体水平。结果显示靶向疫苗组唾液中两种抗体水平均明显高于其他组。另外,靶向疫苗组血清中的抗PAc和抗GLU抗体水平也明显高于其他组。非靶向组的唾液和血清中抗PAc和抗GLU抗体水平则显著高于空质粒组。
     2抗原提呈细胞:
     通过运用抗原特异性的ELISPOT assay,本实验分析了从头颈部淋巴结和脾脏分离的单核细胞产生抗原提呈细胞的能力。从靶向疫苗组和非靶向疫苗组的头颈部淋巴结和脾脏分离的单核细胞产生特异性抗原提呈细胞的数目均显著的多于空质粒组。靶向疫苗组的头颈部淋巴结和脾脏分离的单核细胞形成抗原提呈细胞的数目则高于非靶向疫苗组。
     3淋巴细胞增值实验
     从靶向疫苗组和非靶向疫苗组的头颈部淋巴结分离的淋巴结细胞悬液的淋巴细胞增殖能力要明显高于空质粒组,两个使用疫苗的组的脾细胞淋巴细胞增殖能力也要明显高于空质粒组。
     4细胞因子:
     给予靶向和非靶向疫苗的两组,其头颈部淋巴结和脾脏分离的细胞悬液经抗原刺激之后,产生的分泌的IFN-γ和IL-4细胞要明显多于空质粒组。靶向和非靶向疫苗的两组比较,分泌IFN-γ淋巴细胞的数目无显著性差异。但是,无论头颈部淋巴结还是脾脏分离的细胞悬液,靶向疫苗组分泌IL-4的细胞的数目要明显多于非靶向疫苗组。
     从两个疫苗组的小鼠头颈部和脾脏分离的细胞悬液经过刺激后,其IFN-γ,IL-4和IL-5的mRNA表达水平明显高于空质粒组。IFN-γ在两个疫苗组的表达水平无明显差异。但是IL-4和IL-5 mRNA的表达水平,则是靶向疫苗组明显高于非靶向疫苗组。这些结果表明靶向和非靶向组都产生了Th 1/Th2混合型的免疫反应。靶向疫苗组产生更高的Th2型的细胞因子表达,相比非靶向组加强了Th2型的免疫反应。
     5头颈部淋巴结和脾脏分离的树突状细胞的表型分析:
     从头颈部淋巴结和脾脏中分离的单核细胞的中CD11c阳性的DCs在靶向疫苗组要明显多于非靶向组。此外,在靶向组CD11c阳性的细胞的MHCⅡ、CD80和CD86表达更高。而非靶向疫苗组与空质粒组比较,其CD11c阳性细胞的数目,MHCⅡ、CD80和CD86的表达均无明显差异。
     6芯片分析
     有8个基因达到我们选定候选基因的标准,所有候选基因又通过Real-timePCR进行验证,其中有7个候选基因的表达得到Real-time PCR的证实。这些差异基因涉及DCs的成熟,抗原摄取、提呈,生存。
     实验结论:
     我们结果显示,靶向防龋疫苗可能通过提高抗原呈递的效果,促进DC细胞的成熟,并由此提高DCs对抗原的摄取和提呈能力,促进DCs的生存,进而加强DCs对T、B细胞的激活,加强粘膜免疫。
Aims:
     The strategy to construct anti-caries DNA vaccine with targeting to cytotoxic T lymphocyte antigen 4 (CTLA-4) which binds to B7 molecule expressed on the surfaces of antigen-presenting cells(APC), is proved to be an effective way to enhancement of immune response and protective effect compared with untargeted DNA vaccine. But the mechanism of CTLA-4 fusion anticaries DNA vaccine to increase the antigen immune reponse and protection for caries challenge is still unclear.
     Methods:
     We constructed targeted anti-caries DNA vaccine encoding Streptococcus mutans antigens fused to murine CTLA4,untargeted anticaries DNA vaccine encoding Streptococcus mutans antigens fused to human CD5. Mice were given targeted, untargeted anti-caries DNA vaccine and empty plasmids pCI. Then, immune response, the numbers of AFC in CLNs and lymphcytes proliferation were determined. DCs in immune effector tissues were tested by FACS.The gene expression changes of DCs in different groups were tested by gene array. The candidate genes which were selected form gene array were confirmed by Real-time PCR.
     Results
     1. Ag-specific antibody responses
     The salivary anti-PAc and anti-GLU IgA antibody level of Group pmGJA-P were both significantly higher than that of Group pCDA-P at day 14 and 28.The anti-PAc and anti-GLU IgG levels in serum samples of mice vaccinated with pmGJA-P showed significantly higher than those of mice vaccinated with pCDA-P at day 14 and 28.
     Mice given pmGJA-P displayed increasing numbers of PAc and GLU specific IgA AFCs in CLNs. Elevated numbers of anti-PAc and anti-GLU IgG AFCs were detected in spleen of the group immunized with pmGJA-P compared with group with pCDA-P. Mice immunized with pCI as a control group did not exhibit any anti-Ag AFCs.
     2. Lymphocytes proliferative and cytokine responses
     Both splenic and CLNs lymphocytes from mice treated with pmGJA-P and pCDA-P showed significantly difference proliferative responses than pCI group. There was no significantly difference between Group pmGJA-P and pCDA-P.
     Mice immunized pmGJA-P and pCDA-P had higher numbers of PAc and GLU specific IFN-y and IL-4 producing cells in their CLNS and spleens as compared with control groups. The numbers of PAc and GLU specific IFN-y producing cells of CLNs and spleens from mice immunised pmGJA-P were no significantly different in comparison to mice given pCDA-P. Spleens and CLNs from pmGJA-P immunised mice contained elevated numbers of Ag specific IL-4 producing cells had significantly greater numbers of cytokine-secreting than mice given pCDA-P.
     CLNs or spleen from the mice given pmGJA-P exhibited significantly higher levels of IL-4 and IL-5 mRNA expression when compared with mice given pCDA-P. PAc or GLU stimulated lymphocytes from the spleen and CLNs of mice given pmGJA-P or pCDA-P contained significantly increased levels of IFN-y and IL-4 mRNA when compared with mice immunized nasally with pCI. In addition, IFN-γmRNA level was no significant different observed in mice given pmGJA-P and pCDA-P.
     3. DCs subtype in mucosal tissues test by FACS
     Our results observed major increases in numbers of CD11C+DCs in CLNs and spleen of mice given pmGJA-P when compared with mice given pCDA-P or pCI. Further, higher levels of MHC II, CD80, and CD86 were expressed by CD11C+DCs from mice given pmGJA-P compared with mice given pCDA-P or pCI.There was no significant difference in numbers of CD11c+DCs and costimulator molecule expression on CD11c+DCs between mice immunized pCDA-P and pCI.
     4. Gene expression difference
     We defined a selective group of 8 genes that were significantly different expression for at least in one group mice given pmGJA-P or pCDA-P compared with mice given empty plasmids. In selected 8 genes, 7 genes were conformed by Real-time PCR.These genes were involved in DCs mature, Ag uptake, presentation, survival.
     Conclusion
     The machenism of targeted CTLA-4 fusion DNA to enhance immunity may relate to increasing capture of antigen to stimulate DCs mature,migaration,antigen processing,and survival.
引文
1. Smith, D. J.2002. Dental caries vaccines:prospects and concerns. Crit Rev Oral Biol Med 13:335-349.
    2. Wong, M. C., E. C. Lo, E. Schwarz, and H. G. Zhang.2001. Oral health status and oral health behaviors in Chinese Children. J Dent Res 80:1459-1465.
    3. Taubman, M. A., and D. A. Nash.2006. The scientific and public-health imperative for a vaccine against dental caries. Nat Rev Immunol 6:555-563.
    4. Hamada, S., and H. D. Slade.1980. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44:331-384.
    5. Loesche, W. J.1986. The identification of bacteria associated with periodontal disease and dental caries by enzymatic methods. Oral Microbiol Immunol 1:65-72.
    6. Monchois, V., R. M. Willemot, and P. Monsan.1999. Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev 23:131-151.
    7. Koga, T., N. Okahashi, I. Takahashi, T. Kanamoto, H. Asakawa, and M. Iwaki. 1990. Surface hydrophobicity, adherence, and aggregation of cell surface protein antigen mutants of Streptococcus mutans serotype c. Infect Immun 58:289-296.
    8. Bowen, W. H., K. Schilling, E. Giertsen, S. Pearson, S. F. Lee, A. Bleiweis, and D. Beeman.1991. Role of a cell surface-associated protein in adherence and dental caries. Infect Immun 59:4606-4609.
    9. Kuramitsu, H. K., M. Smorawinska, Y. J. Nakano, A. Shimamura, and M. Lis. 1995. Analysis of glucan synthesis by Streptococcus mutans. Dev Biol Stand 85:303-307.
    10. Yu, H., Y. Nakano, Y. Yamashita, T. Oho, and T. Koga.1997. Effects of antibodies against cell surface protein antigen PAc-glucosyltransferase fusion proteins on glucan synthesis and cell adhesion of Streptococcus mutans. Infect Immun 65:2292-2298.
    11. Smith, D. J., W. F. King, J. Rivero, and M. A. Taubman.2005. Immunological and protective effects of diepitopic subunit dental caries vaccines. Infect Immun 73:2797-2804.
    12. Smith, D. J., and M. A. Taubman.1976. Immunization experiments using the rodent caries model. J Dent Res 55 Spec No:C193-205.
    13. Redman, T. K., C. C. Harmon, R. L. Lallone, and S. M. Michalek.1995. Oral immunization with recombinant Salmonella typhimurium expressing surface protein antigen A of Streptococcus sobrinus:dose response and induction of protective humoral responses in rats. Infect Immun 63:2004-2011.
    14. Peacock, Z. S., L. A. Barnes, W. F. King, D. J. Trantolo, D. L. Wise, M. A. Taubman, and D. J. Smith.2005. Influence of microparticle formulation on immunogenicity of SYI, a synthetic peptide derived from Streptococcus mutans GbpB. Oral Microbiol Immunol 20:60-64.
    15. Jia, R., J. H. Guo, M. W. Fan, Z. Bian, Z. Chen, B. Fan, F. Yu, and Q. A. Xu. 2006. Immunogenicity of CTLA4 fusion anti-caries DNA vaccine in rabbits and monkeys. Vaccine 24:5192-5200.
    16. Guo, J. H., R. Jia, M. W. Fan, Z. Bian, Z. Chen, and B. Peng.2004. Construction and immunogenic characterization of a fusion anti-caries DNA vaccine against PAc and glucosyltransferase I of Streptococcus mutans. J Dent Res 83:266-270.
    17. Donnelly, J. J., J. B. Ulmer, J. W. Shiver, and M. A. Liu.1997. DNA vaccines. Annu Rev Immunol 15:617-648.
    18. Fu, T. M., J. B. Ulmer, M. J. Caulfield, R. R. Deck, A. Friedman, S. Wang, X. Liu, J. J. Donnelly, and M. A. Liu.1997. Priming of cytotoxic T lymphocytes by DNA vaccines:requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol Med 3:362-371.
    19. You, Z., X. Huang, J. Hester, H. C. Toh, and S. Y. Chen.2001. Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res 61:3704-3711.
    20. Pulendran, B.2004. Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol Rev 199:227-250.
    21. Coombes, B. K., and J. B. Mahony.2001. Dendritic cell discoveries provide new insight into the cellular immunobiology of DNA vaccines. Immunol Lett 78:103-111.
    22. Brunet, J. F., F. Denizot, M. F. Luciani, M. Roux-Dosseto, M. Suzan, M. G. Mattei, and P. Golstein.1987. A new member of the immunoglobulin superfamily--CTLA-4. Nature 328:267-270.
    23. Thompson, C. B., and J. P. Allison.1997. The emerging role of CTLA-4 as an immune attenuator. Immunity 7:445-450.
    24. Bluestone, J. A.1997. Is CTLA-4 a master switch for peripheral T cell tolerance? J Immunol 158:1989-1993.
    25. Boyle, J. S., J. L. Brady, and A. M. Lew.1998. Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature 392:408-411.
    26. Xu, Q. A., F. Yu, M. Fan, Z. Bian, J. Guo, R. Jia, Z. Chen, B. Peng, and B. Fan.2005. Immunogenicity and protective efficacy of a targeted fusion DNA construct against dental caries. Caries Res 39:422-431.
    27. Drew, D. R., J. S. Boyle, A. M. Lew, M. W. Lightowlers, P. J. Chaplin, and R. A. Strugnell.2001. The comparative efficacy of CTLA-4 and L-selectin targeted DNA vaccines in mice and sheep. Vaccine 19:4417-4428.
    28. Cook, G. C.1996. The smallpox saga and the origin(s) of vaccination. J R Soc Health 116:253-255.
    29. Fenner, F.1980. The global eradication of smallpox. Med J Aust 1:455-455.
    30. Crump, J. A., and E. D. Mintz. Global trends in typhoid and paratyphoid Fever. Clin Infect Dis 50:241-246.
    31. Gidengil, C. A., T. J. Sandora, and G. M. Lee.2008. Tetanus-diphtheria-acellular pertussis vaccination of adults in the USA. Expert Rev Vaccines 7:621-634.
    32. Jacobs, B. L., J. O. Langland, K. V. Kibler, K. L. Denzler, S. D. White, S. A. Holechek, S. Wong, T. Huynh, and C. R. Baskin.2009. Vaccinia virus vaccines:past, present and future. Antiviral Res 84:1-13.
    33. Plotkin, S. A.1999. Vaccination against the major infectious diseases. C R Acad Sci Ⅲ 322:943-951.
    34. Plotkin, S. A.2009. Vaccines:the fourth century. Clin Vaccine Immunol 16:1709-1719.
    35. Shedlock, D. J., and D. B. Weiner.2000. DNA vaccination:antigen presentation and the induction of immunity. J Leukoc Biol 68:793-806.
    36. Fioretti, D., S. Iurescia, V. M. Fazio, and M. Rinaldi. DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010:174378.
    37. Wolff, J. A., R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, and P. L. Felgner.1990. Direct gene transfer into mouse muscle in vivo. Science 247:1465-1468.
    38. Tang, D. C., M. DeVit, and S. A. Johnston.1992. Genetic immunization is a simple method for eliciting an immune response. Nature 356:152-154.
    39. Torres, C. A., A. Iwasaki, B. H. Barber, and H. L. Robinson.1997. Differential dependence on target site tissue for gene gun and intramuscular DNA immunizations. J Immunol 158:4529-4532.
    40. Banchereau, J., and R. M. Steinman.1998. Dendritic cells and the control of immunity. Nature 392:245-252.
    41. Ridge, J. P., F. Di Rosa, and P. Matzinger.1998. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474-478.
    42. Bennett, S. R., F. R. Carbone, F. Karamalis, R. A. Flavell, J. F. Miller, and W. R. Heath.1998. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393:478-480.
    43. Schoenberger, S. P., R. E. Toes, E. I. van der Voort, R. Offringa, and C. J. Melief.1998. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480-483.
    44. Porgador, A., K. R. Irvine, A. Iwasaki, B. H. Barber, N. P. Restifo, and R. N. Germain.1998. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 188:1075-1082.
    45. Lanzavecchia, A., and F. Sallusto.2001. Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2:487-492.
    46. Elbe, A., and G. Stingl.1995. Dendritic cells as stimulator cells of MHC class I-restricted immune responses. Adv Exp Med Biol 378:341-345.
    47. Maldonado-Lopez, R., and M. Moser.2001. Dendritic cell subsets and the regulation of Th1/Th2 responses. Semin Immunol 13:275-282.
    48. Maldonado-Lopez, R., C. Maliszewski, J. Urbain, and M. Moser.2001. Cytokines regulate the capacity of CD8alpha(+) and CD8alpha(-) dendritic cells to prime Th1/Th2 cells in vivo. J Immunol 167:4345-4350.
    49. Sloots, A., C. Mastini, F. Rohrbach, R. Weth, C. Curcio, U. Burkhardt, E. Jager, G. Forni, F. Cavallo, and W. S. Wels.2008. DNA vaccines targeting tumor antigens to B7 molecules on antigen-presenting cells induce protective antitumor immunity and delay onset of HER-2/Neu-driven mammary carcinoma. Clin Cancer Res 14:6933-6943.
    50. Nichols, W. W., B. J. Ledwith, S. V. Manam, and P. J. Troilo.1995. Potential DNA vaccine integration into host cell genome. Ann N YAcad Sci 772:30-39.
    51. Martin, T., S. E. Parker, R. Hedstrom, T. Le, S. L. Hoffman, J. Norman, P. Hobart, and D. Lew.1999. Plasmid DNA malaria vaccine:the potential for genomic integration after intramuscular injection. Hum Gene Ther 10:759-768.
    52. Kanellos, T., I. D. Sylvester, A. G. Ambali, C. R. Howard, and P. H. Russell. 1999. The safety and longevity of DNA vaccines for fish. Immunology 96:307-313.
    53. Katsumi, A., N. Emi, A. Abe, Y. Hasegawa, M. Ito, and H. Saito.1994. Humoral and cellular immunity to an encoded protein induced by direct DNA injection. Hum Gene Ther 5:1335-1339.
    54. Bagarazzi, M. L., J. D. Boyer, K. E. Ugen, M. A. Javadian, M. Chattergoon, A. Shah, M. Bennett, R. Ciccarelli, R. Carrano, L. Coney, and D. B. Weiner. 1998. Safety and immunogenicity of HIV-1 DNA constructs in chimpanzees. Vaccine 16:1836-1841.
    55. MacGregor, R. R., J. D. Boyer, K. E. Ugen, K. E. Lacy, S. J. Gluckman, M. L. Bagarazzi, M. A. Chattergoon, Y. Baine, T. J. Higgins, R. B. Ciccarelli, L. R. Coney, R. S. Ginsberg, and D. B. Weiner.1998. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection:safety and host response. J Infect Dis 178:92-100.
    56. Fynan, E. F., H. L. Robinson, and R. G. Webster.1993. Use of DNA encoding influenza hemagglutinin as an avian influenza vaccine. DNA Cell Biol 12:785-789.
    57. Donnelly, J. J., A. Friedman, D. Martinez, D. L. Montgomery, J. W. Shiver, S. L. Motzel, J. B. Ulmer, and M. A. Liu.1995. Preclinical efficacy of a prototype DNA vaccine:enhanced protection against antigenic drift in influenza virus. Nat Med 1:583-587.
    58. Fomsgaard, A., H. V. Nielsen, N. Kirkby, K. Bryder, S. Corbet, C. Nielsen, J. Hinkula, and S. Buus.1999. Induction of cytotoxic T-cell responses by gene gun DNA vaccination with minigenes encoding influenza A virus HA and NP CTL-epitopes. Vaccine 18:681-691.
    59. Robinson, H. L., C. A. Boyle, D. M. Feltquate, M. J. Morin, J. C. Santoro, and R. G. Webster.1997. DNA immunization for influenza virus:studies using hemagglutinin- and nucleoprotein-expressing DNAs. J Infect Dis 176 Suppl 1:S50-55.
    60. Rossi, J. J., C. H. June, and D. B. Kohn.2007. Genetic therapies against HIV. Nat Biotechnol 25:1444-1454.
    61. Cho, M. W.2000. Assessment of HIV vaccine development:past, present, and future. Adv Pharmacol 49:263-314.
    62. Boyer, J. D., B. Wang, K. E. Ugen, M. Agadjanyan, A. Javadian, P. Frost, K. Dang, R. A. Carrano, R. Ciccarelli, L. Coney, W. V. Williams, and D. B. Weiner.1996. In vivo protective anti-HIV immune responses in non-human primates through DNA immunization. J Med Primatol 25:242-250.
    63. Boyer, J. D., K. E. Ugen, B. Wang, M. Agadjanyan, L. Gilbert, M. L. Bagarazzi, M. Chattergoon, P. Frost, A. Javadian, W. V. Williams, Y. Refaeli, R. B. Ciccarelli, D. McCallus, L. Coney, and D. B. Weiner.1997. Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination. Nat Med 3:526-532.
    64. Osinubi, M.O., X. Wu, R. Franka, M. Niezgoda, A. J. Nok, A. B. Ogunkoya, and C. E. Rupprecht.2009. Enhancing comparative rabies DNA vaccine effectiveness through glycoprotein gene modifications. Vaccine 27:7214-7218.
    65. Koff, R. S.2003. Hepatitis vaccines:recent advances. Int J Parasitol 33:517-523.
    66. Tang, L. L., and K. Z. Liu.2002. Recent advances in DNA vaccine of hepatitis virus. Hepatobiliary Pancreat Dis Int 1:228-231.
    67. Schirmbeck, R., W. Bohm, K. Ando, F. V. Chisari, and J. Reimann.1995. Nucleic acid vaccination primes hepatitis B virus surface antigen-specific cytotoxic T lymphocytes in nonresponder mice. J Virol 69:5929-5934.
    68. Triyatni, M., A. R. Jilbert, M. Qiao, D. S. Miller, and C. J. Burrell.1998. Protective efficacy of DNA vaccines against duck hepatitis B virus infection. J Virol 72:84-94.
    69. McCluskie, M. J., Y. M. Wen, Q. Di, and H. L. Davis.1998. Immunization against hepatitis B virus by mucosal administration of antigen-antibody complexes. Viral Immunol 11:245-252.
    70. Mancini, M., M. Hadchouel, H. L. Davis, R. G. Whalen, P. Tiollais, and M. L. Michel.1996. DNA-mediated immunization in a transgenic mouse model of the hepatitis B surface antigen chronic carrier state. Proc Natl Acad Sci U S A 93:12496-12501.
    71. Grandjean, L., and D. A. Moore.2008. Tuberculosis in the developing world: recent advances in diagnosis with special consideration of extensively drug-resistant tuberculosis. Curr Opin Infect Dis 21:454-461.
    72. Freidag, B. L., G. B. Melton, F. Collins, D. M. Klinman, A. Cheever, L. Stobie, W. Suen, and R. A. Seder.2000. CpG oligodeoxynucleotides and interleukin-12 improve the efficacy of Mycobacterium bovis BCG vaccination in mice challenged with M. tuberculosis. Infect Immun 68:2948-2953.
    73. Lowrie, D. B., C. L. Silva, M. J. Colston, S. Ragno, and R. E. Tascon.1997. Protection against tuberculosis by a plasmid DNA vaccine. Vaccine 15:834-838.
    74. Bonato, V. L., V. M. Lima, R. E. Tascon, D. B. Lowrie, and C. L. Silva.1998. Identification and characterization of protective T cells in hsp65 DNA-vaccinated and Mycobacterium tuberculosis-infected mice. Infect Immun 66:169-175.
    75. Lowrie, D. B., R. E. Tascon, V. L. Bonato, V. M. Lima, L. H. Faccioli, E. Stavropoulos, M. J. Colston, R. G. Hewinson, K. Moelling, and C. L. Silva. 1999. Therapy of tuberculosis in mice by DNA vaccination. Nature 400:269-271.
    76. Wang, R., D. L. Doolan, T. P. Le, R. C. Hedstrom, K. M. Coonan, Y. Charoenvit, T. R. Jones, P. Hobart, M. Margalith, J. Ng, W. R. Weiss, M. Sedegah, C. de Taisne, J. A. Norman, and S. L. Hoffman.1998. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA
    vaccine. Science 282:476-480.
    77. Zhang, F., Y. H. Li, M. W. Fan, R. Jia, Q. A. Xu, J. H. Guo, F. Yu, and Q. W. Tian.2007. Enhanced efficacy of CTLA-4 fusion anti-caries DNA vaccines in gnotobiotic hamsters. Acta Pharmacol Sin 28:1236-1242.
    78. Kutzler, M. A., and D. B. Weiner.2004. Developing DNA vaccines that call to dendritic cells. J Clin Invest 114:1241-1244.
    79. Sallusto, F., M. Cella, C. Danieli, and A. Lanzavecchia.1995. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182:389-400.
    80. Lukas, M., H. Stossel, L. Hefel, S. Imamura, P. Fritsch, N. T. Sepp, G. Schuler, and N. Romani.1996. Human cutaneous dendritic cells migrate through dermal lymphatic vessels in a skin organ culture model. J Invest Dermatol 106:1293-1299.
    81. Forster, R., A. C. Davalos-Misslitz, and A. Rot.2008. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362-371.
    82. Yanagihara, S., E. Komura, J. Nagafune, H. Watarai, and Y. Yamaguchi.1998. EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. J Immunol 161:3096-3102.
    83. Mempel, T. R., S. E. Henrickson, and U. H. Von Andrian.2004. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154-159.
    84. Riol-Blanco, L., N. Sanchez-Sanchez, A. Torres, A. Tejedor, S. Narumiya, A. L. Corbi, P. Sanchez-Mateos, and J. L. Rodriguez-Fernandez.2005. The chemokine receptor CCR7 activates in dendritic cells two signaling modules that independently regulate chemotaxis and migratory speed. J Immunol 174:4070-4080.
    85. Ishizaki, H., A. Togawa, M. Tanaka-Okamoto, K. Hori, M. Nishimura, A. Hamaguchi, T. Imai, Y. Takai, and J. Miyoshi.2006. Defective chemokine-directed lymphocyte migration and development in the absence of Rho guanosine diphosphate-dissociation inhibitors alpha and beta. Journal of Immunology 177:8512-8521.
    86. Yonemura, S., K. Hirao-Minakuchi, and Y. Nishimura.2004. Rho localization in cells and tissues. Exp Cell Res 295:300-314.
    87. Sanchez-Sanchez, N., L. Riol-Blanco, G. de la Rosa, A. Puig-Kroger, J. Garcia-Bordas, D. Martin, N. Longo, A. Cuadrado, C. Cabanas, A. L. Corbi, P. Sanchez-Mateos, and J. L. Rodriguez-Fernandez.2004. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood 104:619-625.
    88. Kamath, A. T., S. Henri, F. Battye, D. F. Tough, and K. Shortman.2002. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100:1734-1741.
    89. McKinsey, T. A., Z. Chu, T. F. Tedder, and D. W. Ballard.2000. Transcription factor NF-kappaB regulates inducible CD83 gene expression in activated T lymphocytes. Mol Immunol 37:783-788.
    90. Prechtel, A. T., and A. Steinkasserer.2007. CD83:an update on functions and prospects of the maturation marker of dendritic cells. Arch Dermatol Res 299:59-69.
    91. West, M. A., R. P. Wallin, S. P. Matthews, H. G. Svensson, R. Zaru, H. G. Ljunggren, A. R. Prescott, and C. Watts.2004. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305:1153-1157.
    92. Faure-Andre, G., P. Vargas, M. I. Yuseff, M. Heuze, J. Diaz, D. Lankar, V. Steri, J. Manry, S. Hugues, F. Vascotto, J. Boulanger, G. Raposo, M. R. Bono, M. Rosemblatt, M. Piel, and A. M. Lennon-Dumenil.2008. Regulation of dendritic cell migration by CD74, the MHC class Ⅱ-associated invariant chain. Science 322:1705-1710.
    93. Pierre, P., S. J. Turley, E. Gatti, M. Hull, J. Meltzer, A. Mirza, K. Inaba, R. M. Steinman, and I. Mellman.1997. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388:787-792.
    94. Riberdy, J. M., J. R. Newcomb, M. J. Surman, J. A. Barbosa, and P. Cresswell. 1992. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature 360:474-477.
    95. Martin, W. D., G. G. Hicks, S. K. Mendiratta, H. I. Leva, H. E. Ruley, and L. Van Kaer.1996. H2-M mutant mice are defective in the peptide loading of class Ⅱ molecules, antigen presentation, and T cell repertoire selection. Cell 84:543-550.
    96. Shen, Z., G. Reznikoff, G. Dranoff, and K. L. Rock.1997. Cloned dendritic cells can present exogenous antigens on both MHC class Ⅰ and class Ⅱ molecules. J Immunol 158:2723-2730.
    97. Guermonprez, P., J. Valladeau, L. Zitvogel, C. Thery, and S. Amigorena.2002. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621-667.
    98. Vitalis, T. Z., Q. J. Zhang, J. Alimonti, S. S. Chen, G. Basha, A. Moise, J. Tiong, M. M. Tian, K. B. Choi, D. Waterfield, A. Jeffries, and W. A. Jefferies. 2005. Using the TAP component of the antigen-processing machinery as a molecular adjuvant. PLoS Pathog 1:e36.
    99. Shibue, T., K. Takeda, E. Oda, H. Tanaka, H. Murasawa, A. Takaoka, Y. Morishita, S. Akira, T. Taniguchi, and N. Tanaka.2003. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 17:2233-2238.
    100. Yamamoto, S., H. Kiyono, M. Yamamoto, K. Imaoka, K. Fujihashi, F. W. Van Ginkel, M. Noda, Y. Takeda, and J. R. McGhee.1997. A nontoxic mutant of cholera toxin elicits Th2-type responses for enhanced mucosal immunity. Proc Natl Acad Sci USA 94:5267-5272.
    101. Fujihashi, K., J. R. McGhee, M. Yamamoto, T. Hiroi, and H. Kiyono.1996. Role of gamma delta T cells in the regulation of mucosal IgA response and oral tolerance. Ann N YAcad Sci 778:55-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700