热处理对Ti-43Al-9V-Y合金显微组织及力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiAl合金薄板在航空航天等领域具有重要的实用价值,本文针对TiAl金属间化合物较脆和热加工性差的缺点,采用包套技术制备了Ti-43Al-9V-Y合金锻坯和板材及Ti-43Al-9V-Y/Ti-6Al-4V复合板材,为了提高热加工性和板材服役的性能指标,本文主要研究了热处理对Ti-43Al-9V-Y合金的显微组织和力学性能的影响。
     研究发现,锻坯中心区原始组织有少量α2/γ层片团,其尺寸约为5μm,体积分数约5%,较多的B2相板条分布在γ相中,其余为块状的B2相和γ等轴晶;在1250℃保温30min后,α2/γ层片团略有长大,块状B2相和γ等轴晶更加细小,形成了更多的B2/γ层片;在1270℃保温30min后,B2/γ层片基本消失,形成了大量的α2/γ层片团,其尺寸约40μm,体积分数约70%,其余为呈网络状包围着层片团的γ板条和B2相;在1290~1310℃保温20~40min形成全层片。随温度的升高和保温时间的延长B2相体积分数减少,γ等轴晶的尺寸没有明显变化。热处理对锻坯边缘区显微组织的影响有相同的规律,但是转变滞后。
     经1300℃30min热处理后获得的全层片组织的锻坯中心区合金在700℃拉伸应变速率为1×10-4 s-1时延伸率为4.23%,抗拉强度为639.46 MPa;应变速率为5×10-4时延伸率为2.83%,抗拉强度为714.39700MPa,可见随应变速率的提高,抗拉强度升高而塑性降低。由1270℃30min热处理后的锻坯中心区和边缘区合金在700℃应变速率为1×10-4拉伸时抗拉强度相近,约为623 MPa,但是中心区有更好的延伸率(2.37%),后者延伸率仅为1.67%;在800℃应变速率为5×10-4拉伸时,中心区的延伸率为16.33%,抗拉强度为468.82MPa,边缘区的延伸率为18.47%,抗拉强度为439.63 MPa。在1270~1320℃保温30min后锻坯边缘区合金的力学性能以1300℃和1310℃为佳,1300℃时延伸率为2.33%,抗拉强度为650.99 MPa,1310℃时延伸率为2.50%,抗拉强度为654.40 MPa;而在1320℃时延伸率为1.60%,抗拉强度为636.86 MPa。
     原始轧态没有流线,全部为细小的近γ组织,γ晶粒尺寸约为15μm,B2相呈网络状分布在γ晶粒周围,细小的富钇相颗粒弥散分布;在1250℃保温30min后仍然为近γ组织但γ等轴晶略有长大,B2相减少;在保温时间为20min时,随保温温度从1290℃上升至1320℃,B2/γ层片增多,B2相和γ等轴晶减少,透射观察发现有γ层片形成;保温时间为30min和40min时,在1290℃形成了少量B2/γ层片,在1300℃B2/γ层片的体积分数增多,到1310℃B2/γ层片的体积分数到达最大值,此时已有少量α2/γ层片团形成,到1320℃B2/γ层片急剧减少,α2/γ层片团大量形成,其体积分数约80%。
     原始轧态Ti-43Al-9V-Y合金在800℃拉伸,应变速率为1×10-4时,延伸率为21.26%,抗拉强度为385.37MPa;应变速率为5×10-4时,延伸率为5.74%,抗拉强度为452.31MPa;应变速率为10×10-4时,延伸率为2.60%,抗拉强度为471.45MPa;应变速率为50×10-4时,延伸率为0.75%,抗拉强度为483.57MPa。可见随应变速率的提高,延伸率下降而抗拉强度提高。
     在复合板材Ti-6Al-4V合金与Ti-43Al-9V-Y合金的结合处,由于Ti、Al、V元素发生了扩散,形成了一条宽约250μm的界面带。界面处结合良好,无裂纹及孔洞。界面带分为较为明显的三层:第一层为高V含量的γ相,为断续的链状,厚度约5μm;第二层含有大量取向无序的片状γ分布在B2的基体中,厚度约为80μm;第三层为扩散形成的过渡层,可能为B2和α2两相共存。界面剪切强度为335.7MPa。
TiAl-based alloy sheet has important practical value in aerospace and other fields. In present paper the sheets of Ti-43Al-9V-Y(at%) alloy and the composite sheet of Ti-43Al-9V-Y/TC4 were fabricated by pack rolling at high temperature. In order to improve its hot work ability and mechanical properties, we applied heat treatment and investigate the effect of heat treatment on microstructure and mechanical properties of Ti-43Al-9V-Y alloy.
     It was found that the the matrix of samples from the center of the forged stock was equiaxedγphase, someα2/γlamellar structure with colony size of 5μm and volume fraction of 5% and amounts of B2 phase with lath or massive structure existed on the matrix. After thermal retardation of 30min at 1250℃, theα2/γlamellar colony had grown, more lath B2 formed, the massive B2 phase and exuiaxedγphase was refine. While after heat treatment at 1270℃lath B2 vanished and theα2/γlamellar structure with colony size of 40μm and volume fraction of about 70% which buried by the network of B2 andγphase had emerged. After thermal retardation of 20-40min at 1290-1310℃, Full Lamellar was formed in samples. The Y element rich phase accumulated at the bound of lamellar which grows slowly at higher temperature. The volume fraction of B2-phase become less as temperature increasing from 1250℃to 1310℃, but the grain size of equiaxedγ-phase crystal didn’t change obviously. The effect of heat treatment on the microstructure transformation in samples got from the edge of forge stock was similar to that of samples from the center of forged stock, but the phase transformation was lagged.
     After thermal retardation of 30min at 1300℃, samples got from the center of forged stock had been tested at 700℃, while strain rate was 1×10-4 s-1, tensile elongation was 4.23% and tensile strength was 639.46 MPa; while strain rate was 5×10-4, elongation was 2.83% and tensile strength was 714.39 MPa. After thermal retardation of 30min at 1270℃, samples got from the center and the edge of the forged stock nearly had the same tensile strength at 700℃/ 1×10-4 s-1, while elongation of the former(2.37%) was higher than that of the latter(1.67%), while tested at 800℃/5×10-4, elongation and tensile strength of the former was 16.33% and 468.82MPa respectively,and that of the latter was 18.47% and 439.63 MPa respectively. After thermal retardation of 30min at 1270-1320℃, samples got from the edge of forged stock had been tested at 700℃/ 1×10-4 s-1, the elongation and tensile strength in samples after heat treatment at1300℃was 2.33% and 650.99 MPa respectively, while the elongation and tensile strength in samples after heat treatment at 1310℃was 2.50% and 654.40 MPa respectively, while the elongation and tensile strength in samples after heat treatment at 1320℃was 1.60% and 636.86 MPa respectively.
     The microstructure of the rolled alloy was refined NG with equiaxedγgrain size of 15μm, theγphase was enclosed by network liked B2 phase, Y rich phase with refined grain size presented dispersive distribution, no flow line was observed.. After thermal retardation of 30min at 1250℃, the microstructure was still NG, but equiaxedγcrystal grew up and the volume fraction of B2 phase was decreased. After thermal retardation of 20min at different temperature, the amount of lath B2/γwas increased with raising the temperature from 1290℃to 1320℃, but the amount exuiaxed B2 andγphase was decreased; while at 30min and 40min, lath B2 inreased when heat treatment temperature below 1310℃and then deceased with increasing the heat treatment temperature, at the same time the lamellar structure ofα2/B2/γwith volume fraction of about 80% emerged..
     Samples of the rolled Ti-43Al-9V-Y alloy had been tested at 800℃. When strain rate was 1×10-4 s-1 the elongation and tensile strength was 21.26% and 385.37MPa respectively; when strain rate was 5×10-4 the elongation and tensile strength was 5.74% and 452.31MPa respectively; when strain rate was 10×10-4 the elongation and tensile strength was 2.60% and 471.45MPa respectively; when strain rate was 50×10-4 the elongation and tensile strength was 0.75% and 483.57MPa respectively. So with increasing of strain rate the elongation was decreased while tensile strength was increased.
     Due to the diffusion of elements of Ti, Al and V, an interface without cracks and holes was formed and the width was about 250μm. Interface bandwidth can be divided into three tiers: the first layer is about 5μm and is composed ofγ-phase with high V content; the second layer contains a lot ofγflake with disordered orientation and the grain size is about 80μm; the third tier is transitional layer with coexistence of B2 andα2. Interfacial shear strength was measured by Single-lap shear tensile test, and the shear strength is 335.7MPa.
引文
1 Mitchell A.JOM,1997:6:40~47
    2 Shen G. In:Sermiatin S L,et al eds.Structural Intermetallics.Proceedings ofInternational Symposium on Structural
    3 Intermetallic.Warrendale PA:TMS,1997:75
    4 Chen G L.Acta Metallurgical995 8:273
    5 Liu C H.Lee G H.Mchkamey C GScr Metall et Mater,1989,3:875-883
    6 Johoson M L,Mikkola D E.Intermetallics,1995;3:389~393
    7张永刚,韩雅芳,陈国良,郭建亭,万晓景,冯涤.金属间化合物结构材料.国防工业出版社。2001
    8 RAO Qiu-hua.HE Yue-hui,HUAN G Bai-yun.Stressanalysis of canned hot forging specimen of TiAl intermetallic compound[J].Trans Nonferrous Met Soc China,1997,7(2):91~94.
    9 CHEN Lin-hui(陈伶晖),HUAN G Bai-yun(黄伯云),QU Xuan-hui(曲选辉).TiAl合金的热机械处理【J】.The Chinese Journal of Nonferrous Metals(国有色金属学报),1996,6(1):121-125.
    10 C.莱茵斯,M.皮特尔斯编.陈振华等译.钛与钛合金.化学工业出版社。2005
    11 J. Yang, J. N. Wang, Y. Wang, Q. F. Xia, B. Zhang. Control of the Homogeneityof the Lamellar Structure of TiAl Alloy Refined by Heat Treatment.Intermetallics. 2001,9:369-372
    12 M. A. Morris, M. Leboeuf. Kinetics of Grain Growth in a y-TiAl Based Alloy.Scripta Mater. 1998,38:369-374
    13 I. Andersen, O. Grong. Analytical Modeling of Grain Growth in Metal andAlloys in the Presence of Growing and Dissolving Precipitates. Acta MetallMater. 1995,43(7):2673~2688
    14 Y W. Kim. Microstructural Evolution and Mechanical Properties of a forgedY-TiAl. Acta Metall Mater. 1992,40:1121-1134
    15刘文胜,黄伯云,唐建成,周科朝,贺跃辉,刘咏.全层片TiAI合金层片生长及其影响因素.中国有色金属学报.2003,13(1):153-156
    16 G A. Salishchev, R. M. Imayer, O. N. Senkov, et al. Formation of a Submicrocrystalline Structure in TiAl and Ti3Al Intermetallics by Hot Working. Materials Science and Engineering A. 2000,A286:236~243
    17陈玉勇,孔凡涛.TiAI合金新材料研究及精密成形.金属学报.2002,38(11):1141-1148
    18 H. Clements, F. Appel, A. Bartels, et al. Processing and Application ofEngineering y-TiAl Based Alloys. Proceeding of the 10" World Conference onTitanium. Hamburg, 2003:2123-2136
    19 J. D. H. Paul. F. Appel, R. Wanger. The Compression Behaviour of NiobiumAlloyed y-titanium Aluminides. Acta mater. 1998,46(4):1075~1085
    20 W. J. Zhang, S. C. Deevi, G. L. Chen. On the Origin of Superior High Strengthof Ti-45Al-10Nb Alloys. Intermetallics. 2002,10:403-406
    21 W. J. Zhang. F. Appel. Effect of Al Content and Nh Addition on the Strengthand Fault Energy of TiAl Alloys. Materials Science and Engineering A.2002,A329-331:649-652
    22 Z. C. Liu. J. P. Lin. S. J. Li. G. L. Chen. Effects of Nb and Al on theMicrostructures and Mechanical Propertis of High Nb Containing TiAl BaseAlloys. Intermetallies. 2002,10:653-659
    23 Y. W. Kim. Strength and Ductility in TiAl Alloys. Intermetallics.1998,6:623-628
    24 J. C. Tang. B. V. Huang. V. H. He, W. S. Liu. K. C. Zhou, A. H. Wu. Hall-PetchRelationship in Two-phase TiAl Alloys with Fully Lamellar Microstructures.Materials Research Bulletin. 2002,37:1315-1321
    25 R. Bohn. T. Klassen, R. Bormann. Room Temperature Mechanical Behavior ofSilicon-doped TiAl Alloys with Grain Size in the Nano- and Submicron-range.Acta Mater. 2001,49:299-311
    26 K. Maruyama, N. Yamada. H. Sato. Effects of Lamellar Spacing on MechanicalProperties of Fully Lamellar Ti-39.4Almol%Al Alloy. Materials Science andEngineering A. 2001,A319-321:360-363
    27 F. Perdrix, M. F. Trichet. J. L. Bonnentien. et al. Relationships betweenInterstitial Content. Microstructure and Mechanical Properties in FullyLamellar Ti-48A1 alloy, with Special Reference to Carbon. Intermetallics.2001,9:807-815
    28 Lanting Zhang. Guohua Qiu, Jiansheng Wu. A Preliminary Research on theMicrostructure and the Mechanical Properties of TiAl-Ti5Si3 Dual Phase Alloys.Scripta Metallurgica et Materialia. 1995,32(10): 1683-1688
    29 P. I. Gouma, M. Karadge. In Situ Observation of Carbide and SilicidePrecipitation in C+Si Alloyed y-TiAl. Materials Letters. 2003, 57:3581-3587
    30 C. Y Nam, D. M. Wee, P. Wang, K. S. Kumar. Microstructure and Toughness ofNitrogen-doped TiAl Alloys. Intermetallics. 2002,10:113-117
    31 J. H. Yun. M. H. Oh, S. W. Nam. et al. Microalloying Effects in TiAl+MoAlloys. Materials Science and Engineering A. 1997,A329-331:702~708
    32 U. Christoph, F. Appel. R. Wagner. Dislocation Dynamics in Carbon-dopedTitanium Aluminide Alloys. Materials Science and Engineering A.1997,A239-240:39~45
    33 K. S. Chan. Y. W. Kim. Influence of Microstructure on Crack-TipMicromechanics and Fracture Behaviors of a Two-Phase TiAl Alloy.Metallurgical Transactions. 1992,23 A: 1663-1677K. S. Chan. TougheningMechanisms in Titanium Aluminides. Metallurgical Transactions.1993,24A:569~575
    34 K. T. Venkateswara Rao, Y. W. Kim. C. L. Muhlstein, R. O. Ritchie.Fatigue-crack Growth and Fracture Resistance of a Two-phase (γ+α2) TiAlAlloy in Duplex and Lamellar Microstuctures. Materials Science andEngineering A. 1995,A192-193:474~482
    35 K. S. Chan. P. Wang, N. Bhate, K. S. Kumar. Intrinsic and Extrinsic FractureResistance in Lamellar TiAl Alloys. Acta Materialia. 2004,52:4601-4614
    36 F. Appel, U. Christoph, M. Oehring. Creep Deformation in Two-phase TitaniumAluminide Alloys. Materials Science and Engineering A.2002,A329-331:780~787
    37 J. Lapin. Creep Behavior of a Cast Intermetallic Ti-45.2Al-2W-0.6Si-0.7BAlloy. Scripta Materialia. 2004,50:261-265
    38 T. Matsuo, T. Nozaki, T. Asai, M. Takeyama. Role of Lamellar Plates in Creepof TiAl Alloy with Fully Lamellar Structrue. Materials Science and EngineeringA. 2002,A329-331:774-779
    39 J. N. Wang, J. Zhu, J. S. Wu, X. W. Du. Effects of Alloying Elements on Creepof TiAl Alloys with Fine Lamellar Structure. Acta Materialia.2002,50:1307-1318
    40 W. J. Zhang, S. C. Deevi. The Controlling Creep Processes in TiAl Alloy atLow and High Stresses. Intermetallics. 2002,10:603-611
    41 C. T. Liu. J. H. Scheibel. P. J. Maziasz, et al. Tensile Properties and FractureToughness of TiAl Alloys with Controlled Microstructures. Intermetallics.1996,4:429-440
    42孔凡涛,陈子勇,田竟,陈玉勇.提高TiAl合金室温塑性的方法.稀有金属材料与工程.2002,32(2):81-86
    43 H. Clements, F. Appel, A. Bartels, et al. Processing and Application of Engineering y-TiAl Based Alloys. Proceeding of the 10" World Conference on Titanium. Hamburg, 2003:2123-2136
    44孔凡涛.稀土对TiAI合金凝固组织及性能影响的研究.哈尔滨工业大学博士论文.2003
    45 A. Loria Edward. Gamma Titanium Aluminides as Prospective StructuralMaterials. Intermetallics. 2000,8:1339-1345
    46 T. Carneiro, Y. W. Kim. Evaluation of Ingots and Alpha- extrusions of GammaAlloys Based on Ti-45Al-6Nb. Intermetallics. 2005.13:1000-1007
    47章得铭,陈贵清,韩杰才,姚振中.EB-PVD制备γ-TiAl合金薄板的研究.航空材料学报,2006.26(4)
    49刘宗昌等编.金属学与热处理.化学工业出版社,2008
    48 M. A. Morris, M. Leboeuf. Kinetics of Grain Growth in aγ-TiAl Based Alloy. Scripta Mater. 1998,38:369-374
    50 Physical metallurgy for wrought gamma titanium aluminides Microstructure control through phase transformations. Intermetallics 13(2005) 993-999
    51吴维,温彤,蒲思洪.层状复合板层间剪切强度的研究现状.机械制造,2009,47(533):34-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700