肿瘤低氧微环境与氧载体化疗辅助效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨氧载体在辅助肿瘤化疗中的潜在价值,建立两种荷瘤小鼠模型,动态活体显微观测氧载体对接种肿瘤新生血管微循环结构和功能的影响:研究氧载体对肿瘤低氧微环境的影响及其机制。
     方法:(1)体外培养人宫颈癌Hela细胞,将2×10~6个HeLa细胞接种于雌性金黄地鼠右侧颊囊上,构建颊囊部位的粘膜下肿瘤模型。(2)将动物模型随机分为4组(n=10),第一组:对照组,颈静脉插管,注射生理盐水,1周两次;第二组:单纯化疗组,腹腔注射顺铂注射液(5毫克/公斤体重),1周两次;第三组:化疗联合低剂量氧载体(PEG-Hb)组,腹腔注射顺铂注射液(5毫克/公斤体重)+颈静脉插管注射PEG-Hb(0.3克/公斤体重),1周两次;第四组:化疗联合高剂量氧载体(PEG-Hb)组,腹腔注射顺铂注射液(5毫克/公斤体重)+颈静脉插管注射PEG-Hb(0.6克/公斤体重),1周两次。(3)接种肿瘤细胞前及接种后第3、5和7天利用计算机辅助的活体显微观测系统动态连续观测和记录瘤体及其新生血管的形态变化,并通过图像分析软件计算瘤体近、远端微血管面积密度和迂曲度的动态变化;观察并定量分析接种肿瘤细胞后第七天血管中白细胞运动状态的变化,选择直径在40μm左右的小静脉,定量计算滚动及黏附白细胞的数量,测量方法分别采用1分钟内通过观测区段的非黏附白细胞占全部白细胞的百分比和观测区段每平方毫米血管内皮表面的黏附白细胞数。(4)1周后处死动物,处死前1小时腹腔注射外源性生物还原低氧标记物哌莫硝唑(60毫克/公斤体重),处死后免疫组化检测外源性低氧标记物hypoxyprobe-1,以及内源性低氧标记物HIF-1α的表达,评价肿瘤组织hypoxyprobe-1和HIF-1α的变化。(5)ELISA法检测血清中可溶性内皮细胞黏附分子-1(sICAM-1)以及致炎细胞因子TNF-α和IL-6的含量。(6)体外培养人宫颈癌HeLa细胞,将2×10~6个HeLa细胞接种于3~4周雌性BALB/c裸鼠腋下,构建荷瘤裸鼠模型。(7)接种肿瘤细胞两周后,将裸鼠随机分为5组(n=10),第一至四组分组和处理方法与金黄地鼠实验类似,相应处理1周两次。第五组:单纯氧载体PEG-Hb组,尾静脉注射PEG-Hb(0.45克/公斤体重),1周两次。(8)药物处理1月后处死动物。处死前大约1小时腹腔注射外源性生物还原低氧标记物哌莫硝唑(60毫克/公斤体重),处死后免疫组化检测外源性和内源性低氧标记物(HIF-1α)的表达水平,检测肿瘤组织Hypoxyprobe和HIF-1α的变化。免疫组化测定EPO/EPOR、MDR1和CD31的表达水平;(9)提取肿瘤组织总蛋白,免疫印迹检测氧载体辅助化疗后,瘤体组织中EPO/EPOR、MDR1和HIF-1α的表达。(10)ELISA法检测血清中EPO的表达水平。
     结果:(1)实体瘤的生长过程中伴随有明显的血管新生,新生血管表现为迂曲,扩张,囊化和血管周围血液渗出增加等形态变化,尤以瘤体近端明显。模型鼠一般特性的变化:各药物处理组动物体重在第3、5和7天均较对照组明显降低(P<0.05),瘤体体积在第3、5和7天均较对照组明显降低(P<0.01),各处理组间无显著差异。(2)图像分析显示各药物干预组在第3、5和7天较对照组瘤体近端的微血管面积密度和迂曲度均降低(P<0.05)。在瘤体远端的微血管迂曲度各组间无明显差异。瘤体远端微血管面积密度在第5和7天第四组较第二组明显降低(P<0.05)。瘤体近端微血管迂曲度仅在第5天第四组较第二组明显降低,瘤体近端微血管面积密度在第5、7天第四组较第二组明显降低,应用顺铂后引起白细胞在小静脉内明显黏附和滚动,加用PEG-Hb后对白细胞的黏附和滚动没有影响。(3)免疫组化染色显示金黄地鼠瘤组织Hypoxyprobe-1和HIF-1α表达在第4组均较第2组明显降低(P<0.05)。(4)金黄地鼠各组间血清sICAM-1、TNF-α和IL-6表达水平在第二、三和四组均较对照组明显增加,加用PEG-Hb并未降低炎性因子浓度。(6)在裸鼠实验中,联合应用PEG-Hb可以增强顺铂的抑瘤效应,瘤体体积在第4组下降最明显,较单纯化疗组显著(P<0.05)。单纯PEG-Hb组与对照组没有明显差异。(7)免疫组化测定低氧标记物的结果显示Hypoxyprobe-1和HIF-1α表达在第四组较第二组下调明显(P<0.05)。EPO/EPOR、MDR1和CD31在大剂量PEG-Hb联合化疗组较单纯化疗组表达明显降低。而小剂量PEG-Hb联合化疗组较单纯化疗组无明显下降。EPO与HIF-1α表达水平呈正相关(P=0.021 r=0.76)。(8)Western blot检测瘤体HIF-1α、EPO/EPOR和MDR1表达在第四组较第二组明显降低(P<0.05)。(9)ELISA测定裸鼠血清中EPO浓度在第四组较第二组明显下降(P<0.05)。
     结论:(1)金黄地鼠颊囊荷瘤模型适合于观测肿瘤新生血管微循环的变化,为综合评价和分析肿瘤、抗癌药物和肿瘤微环境之间相互作用提供了一个良好的平台。(2)肿瘤生长过程中存在血管新生和组织低氧。大剂量PEG-Hb联合化疗可明显改善金黄地鼠肿瘤模型肿瘤低氧区域的氧供,抑制因低氧而导致的血管新生,降低瘤体近端的微血管面积密度和迂曲度,使不规则和紊乱的微血管网趋于正常化。(3)在较短药物干预和观测期内,加用氧载体与否对动物体重和瘤体大小没有明显影响。(4)化疗药物顺铂可以引起内皮损伤和炎症反应,小静脉中黏附和滚动白细胞数量增加,血清炎性因子TNF-α、IL-6以及内皮损伤标志物sICAM-1表达增加,联合不同剂量的PEG-Hb未能减轻顺铂诱发的炎症反应。(5)裸鼠肿瘤模型可用于客观的观察PEG-Hb联合化疗对瘤体生长和动物一般特性的影响,化疗联合大剂量PEG-Hb较单纯化疗增加抑瘤率,瘤体明显缩小,PEG-Hb的化疗增敏效应与剂量有关。(6)大剂量PEG-Hb的辅助化疗效应可能是通过改善低氧微环境,内源性及外源性低氧标志物下调;HIF-1α发挥转录因子的中枢作用,作用相关调控基因,减少低氧适应性反应;抑制EPO/EPOR信号的传递,降低MDR1的表达逆转耐药和继发的抗血管新生效应。
     目的:观察不同浓度和作用时间的氯化钴对体外培养的肿瘤细胞活力、增殖和凋亡的影响,探讨建立合理实用的体外肿瘤化学低氧模型的模式。
     方法:(1)体外培养肺癌细胞株A549和人宫颈癌HeLa细胞株,MTT方法和流式细胞仪(FCM)检测不同浓度的氯化钴(0、10、50、100、200、400、800和2000μmol/L),在相应的时间(4、8、12、24、48小时)内对肿瘤细胞活力以及增殖和凋亡的影响。(3)氯化钴处理肿瘤细胞后提取总蛋白,免疫印迹测定内源性低氧标记物HIF-1α和相关凋亡蛋白的表达。
     结果:(1)终浓度≤200μmol/L氯化钴处理肿瘤细胞24小时,MTT检测细胞活力几乎未受影响,而加大氯化钴浓度或延长处理时间明显降低细胞活力。(2)流式细胞仪测定低浓度氯化钴(200μmol/L)处理细胞后受损细胞多为早期凋亡细胞。高浓度氯化钴(800μmol/L)作用后受损细胞多为晚期凋亡和坏死细胞,而且A549细胞的凋亡率明显高于HeLa细胞,分别为39%和29%。(3)Western blot结果显示氯化钴(200μM)处理A549相应时间(4、8、12、24、48hr)后,HIF-1α表达上调,24小时达高峰(P<0.05),延长处理时间则下调,Bax和P53表达上调,而Bcl-2表达下调;氯化钴(200μmol/L)处理HeLa细胞相应时间后HIF-1α表达上调,24小时达高峰,延长处理时间则下调,Bax表达上调,而Bcl-2表达下调。P53基础表达水平低,且细胞经过氯化钴处理后表达无变化。氯化钴处理A549不同浓度(0、50、100、200和400μmol/L)相同时间(24小时)HIF-1α表达与作用浓度呈正相关,200μmol/L时达高峰(P<0.05),增加浓度则下调,Bax和P53表达上调,而Bcl-2表达下调。相同方式处理HeLa细胞,结果HIF-1α表达与氯化钴浓度平行变化,200μmol/L时达高峰,增加浓度则下调。Bax表达上调,而Bcl-2表达下调,P53表达水平低且无显著变化。
     结论:(1)氯化钴依作用浓度和时间影响体外培养的肿瘤细胞增殖和凋亡,中低浓度氯化钴在较短时间内处理细胞,受损细胞多为早期凋亡。高浓度(800μmol/L)处理后受损细胞为晚期凋亡和坏死成分。(2)HeLa细胞P53表达水平低不参与细胞凋亡过程,不同细胞株间凋亡率有差异,对氯化钴的反应性不同。(3)氯化钴诱导内源性低氧标志物HIF-1α的表达在一定范围内(~200μmol/L,24小时)是正相关的,与抗凋亡蛋白的表达同向平行。浓度增加和处理时间延长导致HIF-1α表达下调和细胞凋亡率增加,背离模拟低氧的初衷。(4)在体外进行化学性模拟低氧时,要慎重考虑氯化钴的作用浓度和时间,本试验提示氯化钴在浓度200μmol/L左右处理24小时是一个较佳的模拟低氧模式。
Objective:The aim of current study was to investigate the potential benefit of oxygen carrier in tumor chemotherapy.The effect of oxygen carrier on the microcirculation of tumor tissues based on two established tumor models was observed and evaluated.The changes of tumor oxygenation and neovascularization after oxygen carrier administration and the possible underline mechanism were explored.
     Methods:(1) Cultured HeLa cells were injected into submucosa of 3-4-week-old female golden hamster cheek pouch to build the tumor model.(2) Fourty tumor burden hamsters were randomly assigned to four groups(n=10) and treated respectively:group 1: control group,hamsters were administrated with saline twice a week through a right jugular vein catheter;group 2:cisplatin group,the hamsters were administrated with cisplatin(5mg/kg b.w.) twice a week;group 3:cisplatin group plus low concentration of PEG-Hb,the hamsters were administrated with cisplatin(5mg/kg b.w.) plus PEG-Hb (0.3g/kg b.w.) twice a week.Group 4:cisplatin plus high concentration of PEG-Hb group, the hamsters were administrated with cisplatin(5mg/kg b.w.) combined with PEG-Hb (0.6g/kg b.w.) twice a week.(3) Computor assisted intravital microscopy system was used in observing and recording tumor neovascularization on 0、3、5、7 day post innoculation, then off-line analyze images to detect the changes of the microvessel tortuosity and area functional capillary density.Leukocytes movement pattern in venule was also measured on the 7th day after innoculation.(4) Immunohistochemistry of endogenous hypoxia maker (HIF-1α) and exogenous hypoxia maker(Hypoxyprobe-1) were tested in tumor tissues.(5) Serum level of soluble Intercellular adhesion molecule-1(sICAM-1),TNF-αand IL-6 were detected by enzyme-linked immunosorbent assay(ELISA).(6) Cultured HeLa cells were subcutaneously injected to the armpits of 3-4-week-old female BALB/c nude mice to built another tumor model.(7) One month post-innoculation,the nude mice were randomly assigned to five groups(n=10) and treated respectively,group 1-4 were similar to golden hamsters' arrangement;group 5,PEG-Hb group,the nude mice were administrated with PEG-Hb(0.45g/kg b.w.) twice a week.(8) Animals were sacrificed after a month of respective treatment,tumor tissue hypoxia situation was also evaluated by endogenous hypoxia maker(HIF-1α) and exogenous hypoxia maker(Hypoxyprobe-1). Immunohistochemical staining method was used to detected the expression level of EPO,EPOR,MDR1 and CD31 in tumor tissue.(9) Western blot method was used to detected the expression of EPO/EPOR,MDR1 and HIF-1αin tumor tissue.(10) Serum level of EPO was detected by ELISA.
     Results:(1) In the concomitance with solid tumor development the angiogenesis is notable,tortuosity,dilation,sacculation and permeability morphological changes are the specific features of newly formed tumor vessels.In golden hamster experiment,the body weight and tumor volume on 3,5,7 day post-innoculation both were significantly decreased in group 2,3 and 4 compared with control group.(2) Microvessel tortuosity was increased post-innoculation,which was more intensive in the inner ring than the outer ring of the tumor.On the fifth day the tortuosity in group 4 was markedly reduced compared with group 2 in peritumoral area.Area capillary density was increased parallel with the tumor development,chemotherapy treatment significantly decreaed it in the inner ring surrounding tumor mass.On the fifth and seventh day the area capillary density in group 4 was markedly reduced compared with group 2.Cisplatin can induce leukocyte rolling and sticking to venule,which was not effected with PEG-Hb administration.(3) The expression of Hypoxyprobe-1 and HIF-1αwere significantly decreased in group 4 compare with group 2(P<0.05).(4) Cisplatin can up-regulate pro-inflammatory factors(sICAM-1, TNF-α,IL-6),which was not influenced with PEG-Hb treatment.(6) In BALB/c nude mice study,chemotherapy combined with PEG-Hb administration can enhance its tumor inhibition effect,after treatment the tumor volume was decreased sharply in group 4.(7) The lowest hypoxia marker expression was detected in group 4.EPO/EPOR,MDR1 and CD31 were decreased in group 4 compare with group2(P<0.05).EPO level was positive correlation with HIF-1αexpression(P=0.021 r=0.76).(8) Serum level of EPO was decreased in group 4 compare with group2(P<0.05).
     Conclusion:(1)The tumor model established in golden hamster cheek pouch is a ideal model for microvascular observation.It is favorable in tumor newly formed vessels observation and evaluation of drugs influence on tumor microcirculation.(2)Tissue hypoxia and angiogenesis are concomitant with neoplasma,high concentration of PEG-Hb combined with cisplatin can be benefit to tumor tissue oxygenation,subsequently contribute to anti-angiogenesis and tumor microvessels normalization.(3) There are no significant difference in body weight and tumor volume changes when cisplatin combined with or without blood substitute in a short time period.(4) Cisplatin treatment involves in endothelium injury and inflammatory reaction,adding blood substitute could not depress inflammation.(5)After one month treatment nude mice tumor volume inhibited obviously in group 4,blood substitue concentration is an important factor in assistant tumor chemotherapy.(6) EPO/EPOR and MDR1 which are modulated by HIF-1αmight participate in the process of blood substitue chemotherapy sensitizasion.
     Objective:To investigate the effect of cobalt chloride on tumor cells proliferation and apoptosis in vitro,to explore the reasonable strategy of cobalt chemical mimic hypoxia.
     Method:Two tumor cell lines(A549 and HeLa) were cultured in vitro,After the cells were exposed to CoCl_2(0.05~2mmol/L) for different time period(4~48h),cells viability、proliferation and apoptosis were maesured by MTT and FCM methods.HIF-1αand related apoptosis proteins expression were detected by Western blot.
     Result:At concentration of 2001μmol/L within 24hr cell viability was weakly changed. However,higher dose or prolonged challenge of CoCl_2 significantly decreased cell survival rate(p<0.05).It is clearly showed that most of the damaged cells were early apoptosis population after CoCl_2(200μmol/L) incubation within 24hr,contrary to a higher concentration of CoCl_2(800umol/L) most of the damaged cells were late apoptosis and necrosis parts.Moreover,A549 cell apoptosis rate was significantly higher than HeLa cell (39%vs29%).Western blot analysis revealed that CoCl_2(200μmol/L) exposure implicated in up-regulating the expression of HIF-1α,Bax,p53 and down-regulating the expression of Bcl-2 in A549 cell within 24hr,Similar results were observed in HeLa cell,except p53.A low level of p53 protein expression was detected with or without CoCl_2 in HeLa cell.But higher concentration(~400μM) or prolonged CoCl_2 challenge changed the tendency of HIF-1αexpression in the two lines as well as Bcl-2,Bax.Therefore,this feature illustrated that prolonged or higher dose of cobalt exposure was not positive to expected chemical hypoxia effect(HIF-1αexpression).
     Conclusion:Dose and time-dependent effect of cobalt chloride on the tumor cells proliferation and apoptosis,most of the damaged cells were early apoptosis population after cobalt(200μM) incubation within 24hr,higher dose of CoCl_2 caught late apoptosis and necrosis.P53 did not involved in the process of HeLa cell's apoptosis.The apoptosis effect of CoCl_2 is tumor cell specific.In a limited range of cobalt concentration HIF-1αexpression posseses positive relation with cobalt.But prolonged or higher dose of cobalt exposure was not positive to expected chemical hypoxia effect(HIF-1αexpression).The concentration around 200μM within 24hr period time may be a reasonable choice in chemical hypoxia mimicry.The concentration and duration of cobalt chloride should be taken into consideration in chemical mimic hypoxia.
引文
1. Intaglietta M, Cabrales P, Tsai AG. Microvascular perspective of oxygen-carrying and -noncarrying blood substitutes. Annu Rev Biomed Eng, 2006, 8:289-321.
    2. Chang TM, Farmer M, Geyer RP, et al. Blood substitutes based on modified hemoglobin and fluorochemicals. ASAIO Trans, 1987, 33(4):819-823.
    3. Tsuchida E, Sakai H, Horinouchi H, et al. Hemoglobin-vesicles as a transfusion alternative. Artif Cells Blood Substit Immobil Biotechnol, 2006, 34(6):581-588.
    4. Chang TM. Blood substitutes based on nanobiotechnology. Trends Biotechnol, 2006, 24(8):372-377.
    5. Sakai H, Horinouchi H, Tomiyama K, et al. Hemoglobin-vesicles as oxygen carriers: influence on phagocytic activity and histopathological changes in reticuloendothelial system. Am J Pathol, 2001, 159(3): 1079-1088.
    6. Sakai H, Tsuchida E. Hemoglobin-vesicles for a Transfusion Alternative and Targeted Oxygen Delivery. J Liposome Res, 2007, 17(3):227-235.
    7. Tsai AG, Cabrales P, Intaglietta M. Oxygen-carrying blood substitutes: a microvascular perspective. Expert Opin Biol Ther, 2004,4(7): 1147-1157.
    8. Ness PM, Cushing MM. Oxygen therapeutics: pursuit of an alternative to the donor red blood cell. Arch Pathol Lab Med, 2007, 131(5):734-741.
    9. Lungu GF, Li ML, Xie X, et al. In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion. Int J Oncol, 2007, 30(1):45-54.
    10. Kim JW, Gao P, Dang CV. Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev, 2007.
    11. Zhou J, Schmid T, Schnitzer S, et al. Tumor hypoxia and cancer progression. Cancer Lett, 2006, 237(1):10-21.
    12. Gordan JD, Simon MC. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev, 2007, 17(1):71-77.
    13. Zhang X, Kon T, Wang H, et al. Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1 alpha. Cancer Res, 2004, 64(22):8139-8142.
    14. Shin DH, Chun YS, Lee DS, et al. Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood, 2008.
    15. Huang XZ, Wang J, Huang C, et al. Emodin enhances cytotoxicity of chemotherapeutic drugs in prostate cancer cells: the mechanisms involve ROS-mediated suppression of multidrug resistance and hypoxia inducible factor-1(#). Cancer Biol Ther, 2007, 7(3).
    16. Ryschich E, Schmidt J, Hammerling GJ, et al. Transformation of the microvascular system during multistage tumorigenesis. Int J Cancer, 2002, 97(6):719-725.
    17. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971, 285(21):1182-1186.
    18. Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol, 2004, 57(10): 1009-1014.
    19. Koshikawa N, Takenaga K. Hypoxia-regulated expression of attenuated diphtheria toxin A fused with hypoxia-inducible factor-1 alpha oxygen-dependent degradation domain preferentially induces apoptosis of hypoxic cells in solid tumor. Cancer Res, 2005, 65(24):11622-11630.
    20. Arcasoy MO, Amin K, Chou SC, et al. Erythropoietin and erythropoietin receptor expression in head and neck cancer: relationship to tumor hypoxia. Clin Cancer Res, 2005, 11(1):20-27.
    21. Kuwai T, Kitadai Y, Tanaka S, et al. Expression of hypoxia-inducible factor-1 alpha is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer, 2003, 105(2):176-181.
    22. Liu L, Ning X, Sun L, et al. Hypoxia-inducible factor-1 alpha contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci, 2008, 99(1):121-128.
    23. Ebert BL, Bunn HF. Regulation of the erythropoietin gene. Blood, 1999, 94(6): 1864-1877.
    24. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev, 1992, 72(2):449-489.
    25. Masuda S, Okano M, Yamagishi K, et al. A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. J Biol Chem, 1994, 269(30):19488-19493.
    26. Yasuda Y, Masuda S, Chikuma M, et al Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis. J Biol Chem, 1998, 273(39):25381-25387.
    27. Conrad KP, Benyo DF, Westerhausen-Larsen A, et al Expression of erythropoietin by the human placenta. Faseb J, 1996, 10(7):760-768.
    28. Magnanti M, Gandini O, Giuliani L, et al Erythropoietin expression in primary rat Sertoli and peritubular myoid cells. Blood, 2001, 98(9):2872-2874.
    29. Kertesz N, Wu J, Chen TH, et al. The role of erythropoietin in regulating angiogenesis. Dev Biol, 2004, 276(1): 101 -110.
    30. Wu H, Lee SH, Gao J, et al. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development, 1999, 126(16):3597-3605.
    31. Moulder JE, Rockwell S. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev, 1987, 5(4):313-341.
    32. Sasabe E, Zhou X, Li D, et al. The involvement of hypoxia-inducible factor-1 alpha in the susceptibility to gamma-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells. Int J Cancer, 2007, 120(2):268-277.
    33. Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol, 2004, 14(3):198-206.
    34. Comerford KM, Wallace TJ, Karhausen J, et al Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res, 2002, 62(12):3387-3394.
    35. Liang BC. Effects of hypoxia on drug resistance phenotype and genotype in human glioma cell lines. J Neurooncol, 1996, 29(2):149-155.
    36. Zhu H, Chen XP, Luo SF, et al. Involvement of hypoxia-inducible factor-1-alpha in multidrug resistance induced by hypoxia in HepG2 cells. J Exp Clin Cancer Res, 2005, 24(4):565-574.
    37. Diaz-Gonzalez JA, Russell J, Rouzaut A, et al. Targeting hypoxia and angiogenesis through HIF-1 alpha inhibition. Cancer Biol Ther, 2005, 4(10): 1055-1062.
    38. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003, 3(10):721-732.
    39. Rockwell S. Tumor radiation responses and tumor oxygenation in aging mice. Exp Gerontol, 1989, 24(1):37-48.
    40. Teicher BA, Holden SA, Menon K, et al. Effect of hemoglobin solution on the response of intracranial and subcutaneous 9L tumors to antitumor alkylating agents. Cancer Chemother Pharmacol, 1993, 33(1):57-62.
    41. Teicher BA, Dupuis NP, Emi Y, et al. Increased efficacy of chemo- and radio-therapy by a hemoglobin solution in the 9L gliosarcoma. In Vivo, 1995, 9(1): 11-18.
    42. Teicher BA, Holden SA, Ara G, et al. Effect of a bovine hemoglobin preparation (SBHS) on the response of two murine solid tumors to radiation therapy or chemotherapeutic alkylating agents. Biomater Artif Cells Immobilization Biotechnol, 1992, 20(2-4):657-660.
    43. Xiu RJ, Zweifach BW. Microvascular vasomotion—II. Vasomotion in skeletal muscle. Zhonghua Yi Xue Za Zhi, 1985, 65(4):203-207.
    44. Xiu RJ, Intaglietta M. Computer analysis of the microvascular vasomotion. Chin Med J(Engl), 1986, 99(5):351-360.
    45. Xiu RJ, Intaglietta M. Microvascular vasomotion: I. Long-term observation and computer analysis of the vasomotion. Zhonghua Yi Xue Za Zhi, 1985, 65(3):129-135.
    46. Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat, 1995, 36(2):169-180.
    47. Yu M, Han J, Cui P, et al. Cisplatin up-regulates ICAM-1 expression in endothelial cell via a NF-kappaB dependent pathway. Cancer Sci, 2008, 99(2):391-397.
    48. Shing Y, Folkman J, Sullivan R, et al. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science, 1984, 223(4642): 1296-1299.
    49. Strieth S, Eichhorn ME, Sutter A, et al. Antiangiogenic combination tumor therapy blocking alpha(v)-integrins and VEGF-receptor-2 increases therapeutic effects in vivo. Int J Cancer, 2006, 119(2):423-431.
    50. Seaman S, Stevens J, Yang MY, et al Genes that distinguish physiological and pathological angiogenesis. Cancer Cell, 2007, 11(6):539-554.
    51. Vajkoczy P, Ullrich A, Menger MD. Intravital fluorescence videomicroscopy to study tumor angiogenesis and microcirculation. Neoplasia, 2000, 2(1-2):53-61.
    52. Gimbrone MA, Jr., Gullino PM. Angiogenic capacity of preneoplastic lesions of the murine mammary gland as a marker of neoplastic transformation. Cancer Res, 1976, 36(7 PT2):2611-2620.
    53. Gullino PM. Angiogenesis and neoplasia. N Engl J Med, 1981, 305(15):884-885.
    54. Asaishi K, Endrich B, Gotz A, et al. Quantitative analysis of microvascular structure and function in the amelanotic melanoma A-Mel-3. Cancer Res, 1981, 41(5): 1898-1904.
    55. Miyoshi C, Ohshima N. Vascular endothelial growth factor (VEGF) expression regulates angiogenesis accompanying tumor growth in a peritoneal disseminated tumor model. In Vivo, 2001, 15(3):233-238.
    56. Shan S, Sorg B, Dewhirst MW. A novel rodent mammary window of orthotopic breast cancer for intravital microscopy. Microvasc Res, 2003, 65(2): 109-117.
    57. Xiu RJ, Duan CG, Mu GF. [Angiogenesis induced by SP2/0 and HeLa tumor cells]. Zhonghua Zhong Liu Za Zhi, 1987, 9(2):95-98.
    58. Xiu RJ, Duan CG, Mu GF. Study on angiogenesis induced by SP2/0 and HeLa tumor cells. Proc Chin Acad Med Sci Peking Union Med Coll, 1988, 3(1):26-32.
    59. Endrich B, Goetz A, Messmer K. Distribution of microflow and oxygen tension in hamster melanoma. Int J Microcirc Clin Exp, 1982, 1(1):81-99.
    60. Vajkoczy P, Blum S, Lamparter M, et al Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med, 2003, 197(12):1755-1765.
    61. Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol, 1999, 155(3):739-752.
    
    62. Hendrix MJ, Seftor RE, Seftor EA, et al. Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination. Cancer Res, 2002, 62(3):665-668.
    63. Riess JG. Oxygen carriers ("blood substitutes")—raison d'etre, chemistry, and some physiology. Chem Rev, 2001, 101(9):2797-2920.
    64. Horn EP, Standl T, Wilhelm S, et al. Bovine hemoglobin increases skeletal muscle oxygenation during 95% artificial arterial stenosis. Surgery, 1997, 121(4):411-418.
    65. Kawaguchi AT, Fukumoto D, Haida M, et al. Liposome-encapsulated hemoglobin reduces the size of cerebral infarction in the rat: evaluation with photochemically induced thrombosis of the middle cerebral artery. Stroke, 2007, 38(5):1626-1632.
    66. George I, Yi GH, Schulman AR, et al A polymerized bovine hemoglobin oxygen carrier preserves regional myocardial function and reduces infarct size after acute myocardial ischemia. Am J Physiol Heart Circ Physiol, 2006, 291(3):H1126-1137.
    67. Asanuma H, Nakai K, Sanada S, et al. S-nitrosylated and pegylated hemoglobin, a newly developed artificial oxygen carrier, exerts cardioprotection against ischemic hearts. J Mol Cell Cardiol, 2007,42(5):924-930.
    68. Jahr JS, Walker V, Manoochehri K. Blood substitutes as pharmacotherapies in clinical practice. Curr Opin Anaesthesiol, 2007, 20(4):325-330.
    69. Lyng H, Sundfor K, Rofstad EK. Oxygen tension in human tumours measured with polarographic needle electrodes and its relationship to vascular density, necrosis and hypoxia. Radiother Oncol, 1997, 44(2): 163-169.
    70. Olive PL, Durand RE, Raleigh JA, et al. Comparison between the comet assay and pimonidazole binding for measuring tumour hypoxia. Br J Cancer, 2000, 83(11):1525-1531.
    71. Arteel GE, Thurman RG, Raleigh JA. Reductive metabolism of the hypoxia marker pimonidazole is regulated by oxygen tension independent of the pyridine nucleotide redox state. Eur J Biochem, 1998, 253(3):743-750.
    72. Raleigh JA, Calkins-Adams DP, Rinker LH, et al. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res, 1998, 58(17):3765-3768.
    73. Varia MA, Calkins-Adams DP, Rinker LH, et al. Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. Gynecol Oncol, 1998, 71(2):270-277.
    74. Ljungkvist AS, Bussink J, Kaanders JH, et al. Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res, 2007, 167(2):127-145.
    75. Shin KH, Diaz-Gonzalez JA, Russell J, et al. Detecting Changes in Tumor Hypoxia with Carbonic Anhydrase IX and Pimonidazole. Cancer Biol Ther, 2007, 6(1).
    76. Jankovic B, Aquino-Parsons C, Raleigh JA, et al. Comparison between pimonidazole binding, oxygen electrode measurements, and expression of endogenous hypoxia markers in cancer of the uterine cervix. Cytometry B Clin Cytom, 2006, 70(2):45-55.
    77. Raleigh JA, Chou SC, Arteel GE, et al. Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res, 1999, 151(5):580-589.
    78. Kobayashi K, Komatsu T, Iwamaru A, et al. Oxygenation of hypoxic region in solid tumor by administration of human serum albumin incorporating synthetic hemes. J Biomed Mater Res A, 2003, 64(1):48-51.
    79. Tanaka J, Holden SA, Herman TS, et al. Response of subpopulations of the FSall C fibrosarcoma to low dose x-rays and various potential enhancing agents. Anticancer Res, 1992, 12(3):1029-1033.
    80. Robinson MF, Dupuis NP, Kusumoto T, et al. Increased tumor oxygenation and radiation sensitivity in two rat tumors by a hemoglobin-based, oxygen-carrying preparation. Artif Cells Blood Substit Immobil Biotechnol, 1995, 23(3):431-438.
    81. Gottschalk A, Raabe A, Hommel M, et al. Influence of the hemoglobin solution HBOC-201 on tissue oxygenation in the rat R1H-tumor. Artif Cells Blood Substit Immobil Biotechnol, 2005, 33(4):379-389.
    82. Raabe A, Gottschalk A, Hommel M, et al. No effect of the hemoglobin solution HBOC-201 on the response of the rat R1H tumor to fractionated irradiation. Strahlenther Onkol, 2005, 181(11):730-737.
    83. Standl T, Horn P, Wilhelm S, et al. Bovine haemoglobin is more potent than autologous red blood cells in restoring muscular tissue oxygenation after profound isovolaemic haemodilution in dogs. Can J Anaesth, 1996, 43(7):714-723.
    84. Kohn S, Fradis M, Podoshin L, et al Endothelial injury of capillaries in the stria vascularis of guinea pigs treated with cisplatin and gentamicin. Ultrastruct Pathol, 1997, 21(3):289-299.
    85. Kohn S, Fradis M, Ben-David J, et al. Nephrotoxicity of combined treatment with cisplatin and gentamicin in the guinea pig: glomerular injury findings. Ultrastruct Pathol, 2002, 26(6):371-382.
    
    86. Kirchmair R, Walter DH, Ii M, et al. Antiangiogenesis mediates cisplatin-induced peripheral neuropathy: attenuation or reversal by local vascular endothelial growth factor gene therapy without augmenting tumor growth. Circulation, 2005, 111(20):2662-2670.
    87. Luke DR, Vadiei K, Lopez-Berestein G. Role of vascular congestion in cisplatin-induced acute renal failure in the rat. Nephrol Dial Transplant, 1992, 7(1): 1-7.
    88. Winston JA, Safirstein R. Reduced renal blood flow in early cisplatin-induced acute renal failure in the rat. Am J Physiol, 1985, 249(4 Pt 2):F490-496.
    89. Icli F, Karaoguz H, Dincol D, et al. Severe vascular toxicity associated with cisplatin-based chemotherapy. Cancer, 1993, 72(2):587-593.
    90. Johnson JL, Moore EE, Gonzalez RJ, et al. Alteration of the postinjury hyperinflammatory response by means of resuscitation with a red cell substitute. J Trauma, 2003, 54(1):133-139; discussion 139-140.
    
    91. Johnson JL, Moore EE, Offner PJ, et al Resuscitation with a blood substitute abrogates pathologic postinjury neutrophil cytotoxic function. J Trauma, 2001, 50(3):449-455; discussion 456.
    92. Caswell JE, Strange MB, Rimmer DM, 3rd, et al. A novel hemoglobin-based blood substitute protects against myocardial reperfusion injury. Am J Physiol Heart Circ Physiol, 2005,288(4):H1796-1801.
    93. Cheng AM, Moore EE, Johnson JL, et al. Polymerized hemoglobin induces heme oxygenase-1 protein expression and inhibits intercellular adhesion molecule-1 protein expression in human lung microvascular endothelial cells. J Am Coll Surg, 2005, 201(4):579-584.
    94. Plock JA, Tromp AE, Contaldo C, et al Hemoglobin vesicles reduce hypoxia-related inflammation in critically ischemic hamster flap tissue. Crit Care Med, 2007, 35(3):899-905.
    95. Anagnostou A, Liu Z, Steiner M, et al. Erythropoietin receptor mRNA expression in human endothelial cells. Proc Natl Acad Sci U S A, 1994, 91(9):3974-3978.
    96. Ammarguellat F, Gogusev J, Drueke TB. Direct effect of erythropoietin on rat vascular smooth-muscle cell via a putative erythropoietin receptor. Nephrol Dial Transplant, 1996, 11(4):687-692.
    97. Ogilvie M, Yu X, Nicolas-Metral V, et al. Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts. J Biol Chem, 2000, 275(50):39754-39761.
    98. Parsa CJ, Kim J, Riel RU, et al. Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts. J Biol Chem, 2004, 279(20):20655-20662.
    99. Haroon ZA, Amin K, Jiang X, et al. A novel role for erythropoietin during fibrin-induced wound-healing response. Am J Pathol, 2003, 163(3):993-1000.
    100. Watanabe D, Suzuma K, Matsui S, et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med, 2005, 353(8):782-792.
    101. Acs G, Acs P, Beckwith SM, et al. Erythropoietin and erythropoietin receptor expression in human cancer. Cancer Res, 2001, 61(9):3561-3565.
    102. Batra S, Perelman N, Luck LR, et al. Pediatric tumor cells express erythropoietin and a functional erythropoietin receptor that promotes angiogenesis and tumor cell survival. Lab Invest, 2003, 83(10): 1477-1487.
    103. Ribatti D, Marzullo A, Gentile A, et al. Erythropoietin/erythropoietin-receptor system is involved in angiogenesis in human hepatocellular carcinoma. Histopathology, 2007, 50(5):591-596.
    104. Acs G, Zhang PJ, McGrath CM, et al. Hypoxia-inducible erythropoietin signaling in squamous dysplasia and squamous cell carcinoma of the uterine cervix and its potential role in cervical carcinogenesis and tumor progression. Am J Pathol, 2003, 162(6): 1789-1806.
    105. Yasuda Y, Musha T, Tanaka H, et al. Inhibition of erythropoietin signalling destroys xenografts of ovarian and uterine cancers in nude mice. Br J Cancer, 2001, 84(6):836-843.
    106. Cheng YX, Pu DM, Liu R, et al [Influence of hypoxia inducible factor-1 alpha on cervical cancer cell line HeLa in vitro]. Zhonghua Fu Chan Ke Za Zhi, 2007, 42(8):551-554.
    107. Liu M, Li D, Aneja R, et al PO(2)-dependent differential regulation of multidrug resistance 1 gene expression by the c-Jun NH2-terminal kinase pathway. J Biol Chem, 2007,282(24):17581-17586.
    108. Comerford KM, Cummins EP, Taylor CT. c-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1 alpha-dependent P-glycoprotein expression in hypoxia. Cancer Res, 2004, 64(24):9057-9061.
    109. Jogi A, Vallon-Christersson J, Holmquist L, et al Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp Cell Res, 2004, 295(2):469-487.
    110.Song X, Liu X, Chi W, et al. Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1 alpha gene. Cancer Chemother Pharmacol, 2006, 58(6):776-784.
    1. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 1996, 379(6560):88-91.
    2. Kaliman PA, Okhrimenko SM. [Glucose-fatty acids cycle in cobalt chloride-induced oxidative stress in rats]. Ukr Biokhim Zh, 2005, 77(2):154-158.
    3. Gordan JD, Simon MC. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev, 2007, 17(1):71-77.
    4. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 2001, 292(5516):464-468.
    5. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992, 12(12):5447-5454.
    6. Semenza GL, Nejfelt MK, Chi SM, et al. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci U S A, 1991, 88(13):S680-S684.
    7. Chun YS, Kim MS, Park JW. Oxygen-dependent and -independent regulation of HIF-1 alpha. J Korean Med Sci, 2002, 17(5):581-588.
    8. Wang GL, Semenza GL. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood, 1993, 82(12):3610-3615.
    9. Kaya B, Creus A, Velazquez A, et al Genotoxicity is modulated by ascorbic acid. Studies using the wing spot test in Drosophila. Mutat Res, 2002, 520(1-2):93-101.
    10. Kitahara J, Yamanaka K, Kato K, et al. Mutagenicity of cobalt and reactive oxygen producers. Mutat Res, 1996, 370(3-4):133-140.
    11. Leonard A, Lauwerys R. Mutagenicity, carcinogenicity and teratogenicity of cobalt metal and cobalt compounds. Mutat Res, 1990, 239(1): 17-27.
    12. Morita H, Umeda M, Ogawa HI. Mutagenicity of various chemicals including nickel and cobalt compounds in cultured mouse FM3A cells. Mutat Res, 1991, 261(2):131-137.
    13. Ermolli M, Menne C, Pozzi G, et al. Nickel, cobalt and chromium-induced cytotoxicity and intracellular accumulation in human hacat keratinocytes. Toxicology, 2001, 159(1-2):23-31.
    14. Hatori N, Pehrsson SK, Clyne N, et al. Acute cobalt exposure and oxygen radical scavengers in the rat myocardium. Biochim Biophys Acta, 1993, 1181(3):257-260.
    15. Lewis CP, Demedts M, Nemery B. The role of thiol oxidation in Cobalt(II)-induced toxicity in hamster lung. Biochem Pharmacol, 1992,43(3):519-525.
    16. Khanna SS, Gill TS. Effect of cobalt salts on the glycemia and islet histology of Channa punctatus (Bloch). Acta Anat (Basel), 1975, 92(2): 194-201.
    17. Goebeler M, Roth J, Meinardus-Hager G, et al. The contact allergens nickel chloride and cobalt chloride directly induce expression of endothelial adhesion molecules. Behring Inst Mitt, 1993, (92):191-201.
    18. Zou W, Zeng J, Zhuo M, et al. Involvement of caspase-3 and p38 mitogen-activated protein kinase in cobalt chloride-induced apoptosis in PC12 cells. J Neurosci Res, 2002, 67(6):837-843.
    19. Zou W, Yan M, Xu W, et al. Cobalt chloride induces PC12 cells apoptosis through reactive oxygen species and accompanied by AP-1 activation. J Neurosci Res, 2001, 64(6):646-653.
    20. Chandel NS, Vander Heiden MG, Thompson CB, et al. Redox regulation of p53 during hypoxia. Oncogene, 2000, 19(34):3840-3848.
    21. Piret JP, Mottet D, Raes M, et al. CoC12, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Ann N Y Acad Sci, 2002, 973:443-447.
    22. Schnitzer SE, Schmid T, Zhou J, et al. Hypoxia and HIF-1 alpha protect A549 cells from drug-induced apoptosis. Cell Death Differ, 2006,13(9):1611-1613.
    23. Kim CY, Tsai MH, Osmanian C, et al. Selection of human cervical epithelial cells that possess reduced apoptotic potential to low-oxygen conditions. Cancer Res, 1997, 57(19):4200-4204.
    24. Olbryt M, Jarzab M, Jazowiecka-Rakus J, et al. Gene expression profile of B 16(F10) murine melanoma cells exposed to hypoxic conditions in vitro. Gene Expr, 2006, 13(3):191-203.
    25. Vengellur A, Phillips JM, Hogenesch JB, et al. Gene expression profiling of hypoxia signaling in human hepatocellular carcinoma cells. Physiol Genomics, 2005, 22(3):308-318.
    26. Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol, 2004, 57(10): 1009-1014.
    27. Goldberg MA, Schneider TJ. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem, 1994, 269(6):4355-4359.
    28. Huang GW, Yang LY, Lu WQ. Effects of PI3K and p42/p44 MAPK on overexpression of vascular endothelial growth factor in hepatocellular carcinoma. World J Gastroenterol, 2004, 10(6):809-812.
    29. Hoet PH, Roesems G, Demedts MG, et al. Activation of the hexose monophosphate shunt in rat type II pneumocytes as an early marker of oxidative stress caused by cobalt particles. Arch Toxicol, 2002, 76(1): 1-7.
    30. Triantafyllou A, Liakos P, Tsakalof A, et al. Cobalt induces hypoxia-inducible factor-1 alpha (HIF-1 alpha) in HeLa cells by an iron-independent, but ROS-, PI-3K- and MAPK-dependent mechanism. Free Radic Res, 2006,40(8):847-856.
    31. Karovic O, Tonazzini I, Rebola N, et al. Toxic effects of cobalt in primary cultures of mouse astrocytes. Similarities with hypoxia and role of HIF-1 alpha. Biochem Pharmacol, 2007, 73(5):694-708.
    32. Yang SJ, Pyen J, Lee I, et al. Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase 1/2 activation in rat C6 glioma cells. J Biochem Mol Biol, 2004, 37(4):480-486.
    33. Kim HJ, Yang SJ, Kim YS, et al. Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase activation in human cervical cancer HeLa cells. J Biochem Mol Biol, 2003, 36(5):468-474.
    34. Chen D, Li M, Luo J, et al. Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem, 2003, 278(16):13595-13598.
    35. Halterman MW, Federoff HJ. HIF-1alpha and p53 promote hypoxia-induced delayed neuronal death in models of CNS ischemia. Exp Neurol, 1999, 159(1):65-72.
    36. Dameron KM, Volpert OV, Tainsky MA, et al. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science, 1994, 265(5178): 1582-1584.
    37. Mukhopadhyay D, Tsiokas L, Sukhatme VP. Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res, 1995, 55(24):6161-6165.
    38. Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998, 394(6692):485-490.
    39. D'Angelo G, Duplan E, Boyer N, et al. Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem, 2003, 278(40):38183-38187.
    40. Dann CE, 3rd, Bruick RK, Deisenhofer J. Structure of factor-inhibiting hypoxia-inducible factor 1: An asparaginyl hydroxylase involved in the hypoxic response pathway. Proc Natl Acad Sci U S A, 2002, 99(24):15351-15356.
    41. Kilic M, Kasperczyk H, Fulda S, et al. Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance. Oncogene, 2007, 26(14):2027-2038.
    42. Piret JP, Lecocq C, Toffoli S, et al. Hypoxia and CoC12 protect HepG2 cells against serum deprivation- and t-BHP-induced apoptosis: a possible anti-apoptotic role for HIF-1. Exp Cell Res, 2004, 295(2):340-349.
    43. Piret JP, Minet E, Cosse JP, et al. Hypoxia-inducible factor-1-dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tert-butyl hydroperoxide-induced apoptosis. J Biol Chem, 2005, 280(10):9336-9344.
    44. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003, 3(10):721-732.
    45. Krick S, Eul BG, Hanze J, et al. Role of hypoxia-inducible factor-1 alpha in hypoxia-induced apoptosis of primary alveolar epithelial type II cells. Am J Respir Cell Mol Biol, 2005, 32(5):395-403.
    1. Remy B, Deby-Dupont G, Lamy M. Red blood cell substitutes: fluorocarbon emulsions and haemoglobin solutions. Br Med Bull, 1999, 55(1):277-298.
    2. Leese PT, Noveck RJ, Shorr JS, et al Randomized safety studies of intravenous perflubron emulsion. I. Effects on coagulation function in healthy volunteers. Anesth Analg, 2000,91(4):804-811.
    3. Bunn HF, Jandl JH. The renal handling of hemoglobin. II. Catabolism. J Exp Med, 1969, 129(5):925-934.
    4. Benesch R, Benesch RE. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys Res Commun, 1967, 26(2): 162-167.
    5. Bonegio RG, Fuhro R, Ragno G, et al. A comparison of the acute hemodynamic and delayed effects of 50% exchange transfusion with two different cross-linked hemoglobin based oxygen carrying solutions and Pentastarch. Artif Cells Blood Substit Immobil Biotechnol, 2006, 34(2): 145-157.
    6. Rebel A, Cao S, Kwansa H, et al. Dependence of acetylcholine and ADP dilation of pial arterioles on heme oxygenase after transfusion of cell-free polymeric hemoglobin. Am J Physiol Heart Circ Physiol, 2006, 290(3):H1027-1037.
    7. Cheng AM, Moore EE, Johnson JL, et al. Polymerized hemoglobin induces heme oxygenase-1 protein expression and inhibits intercellular adhesion molecule-1 protein expression in human lung microvascular endothelial cells. J Am Coll Surg, 2005, 201(4):579-584.
    8. Qin X, Kwansa H, Bucci E, et al. Role of 20-HETE in the pial arteriolar constrictor response to decreased hematocrit after exchange transfusion of cell-free polymeric hemoglobin. J Appl Physiol, 2006, 100(1):336-342.
    9. Creteur J, Sibbald W, Vincent JL. Hemoglobin solutions—not just red blood cell substitutes. Crit Care Med, 2000, 28(8):3025-3034.
    10. Pearce LB, Gawryl MS. The pharmacology of tissue oxygenation by biopure's hemoglobin-based oxygen carrier, Hemopure (HBOC-201). Adv Exp Med Biol, 2003, 530:261-270.
    11. Stollings JL, Oyen LJ. Oxygen therapeutics: oxygen delivery without blood. Pharmacotherapy, 2006, 26(10): 1453-1464.
    12. Farmer M, Ebeling A, Marshall T, et al. Validation of virus inactivation by heat treatment in the manufacture of diaspirin crosslinked hemoglobin. Biomater Artif Cells Immobilization Biotechnol, 1992, 20(2-4):429-433.
    13. McKenzie JE, Cost EA, Scandling DM, et al. Effects of diasprin cross-linked hemoglobin (DCLHb) on cardiac function and ECG in the swine. Biomater Artif Cells Immobilization Biotechnol, 1992, 20(2-4):683-687.
    14. van Iterson M, Sinaasappel M, Burhop K, et al Low-volume resuscitation with a hemoglobin-based oxygen carrier after hemorrhage improves gut microvascular oxygenation in swine. J Lab Clin Med, 1998, 132(5):421-431.
    15. Winslow RM. MP4, a new nonvasoactive polyethylene glycol-hemoglobin conjugate. Artif Organs, 2004, 28(9):800-806.
    16. Tsai AG, Vandegriff KD, Intaglietta M, et al. Targeted O2 delivery by low-P50 hemoglobin: a new basis for 02 therapeutics. Am J Physiol Heart Circ Physiol, 2003, 285(4):H1411-1419.
    17. Young MA, Riddez L, Kjellstrom BT, et al. MalPEG-hemoglobin (MP4) improves hemodynamics, acid-base status, and survival after uncontrolled hemorrhage in anesthetized swine. Crit Care Med, 2005, 33(8):1794-1804.
    18. Atoji T, Aihara M, Sakai H, et al. Hemoglobin vesicles containing methemoglobin and L-tyrosine to suppress methemoglobin formation in vitro and in vivo. Bioconjug Chem, 2006, 17(5):1241-1245.
    19. Sakai H, Masada Y, Takeoka S, et al. Characteristics of bovine hemoglobin as a potential source of hemoglobin-vesicles for an artificial oxygen carrier. J Biochem, 2002, 131(4):611-617.
    20. Arifin DR, Palmer AF. Physical properties and stability mechanisms of poly(ethylene glycol) conjugated liposome encapsulated hemoglobin dispersions. Artif Cells Blood Substit Immobil Biotechnol, 2005, 33(2):137-162.
    21. Leonard M, De Boisseson MR, Hubert P, et al. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. J Control Release, 2004, 98(3):395-405.
    22. Zhao J, Liu CS, Yuan Y, et al. Preparation of hemoglobin-loaded nano-sized particles with porous structure as oxygen carriers. Biomaterials, 2007, 28(7): 1414-1422.
    23. Tsai AG, Cabrales P, Intaglietta M. Oxygen-carrying blood substitutes: a microvascular perspective. Expert Opin Biol Ther, 2004, 4(7): 1147-1157.
    24. Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol, 2004, 57(10): 1009-1014.
    25. Koshikawa N, Takenaga K. Hypoxia-regulated expression of attenuated diphtheria toxin A fused with hypoxia-inducible factor-1 alpha oxygen-dependent degradation domain preferentially induces apoptosis of hypoxic cells in solid tumor. Cancer Res, 2005, 65(24): 11622-11630.
    26. Dong Z, Venkatachalam MA, Wang J, et al. Up-regulation of apoptosis inhibitory protein IAP-2 by hypoxia. Hif-1-independent mechanisms. J Biol Chem, 2001, 276(22):18702-18709.
    27. Arcasoy MO, Amin K, Chou SC, et al. Erythropoietin and erythropoietin receptor expression in head and neck cancer: relationship to tumor hypoxia. Clin Cancer Res, 2005, 11(1):20-27.
    28. Kuwai T, Kitadai Y, Tanaka S, et al. Expression of hypoxia-inducible factor-1 alpha is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer, 2003, 105(2): 176-181.
    29. Liu L, Ning X, Sun L, et al. Hypoxia-inducible factor-1 alpha contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci, 2008, 99(1): 121-128.
    30. Ebert BL, Bunn HF. Regulation of the erythropoietin gene. Blood, 1999, 94(6): 1864-1877.
    31. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev, 1992, 72(2):449-489.
    32. Masuda S, Okano M, Yamagishi K, et al. A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. J Biol Chem, 1994, 269(30):19488-19493.
    33. Yasuda Y, Masuda S, Chikuma M, et al. Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis. J Biol Chem, 1998, 273(39):25381-25387.
    34. Conrad KP, Benyo DF, Westerhausen-Larsen A, et al. Expression of erythropoietin by the human placenta. Faseb J, 1996, 10(7):760-768.
    35. Magnanti M, Gandini O, Giuliani L, et al. Erythropoietin expression in primary rat Sertoli and peritubular myoid cells. Blood, 2001, 98(9):2872-2874.
    36. Kertesz N, Wu J, Chen TH, et al. The role of erythropoietin in regulating angiogenesis. Dev Biol, 2004, 276(1): 101-110.
    37. Wu H, Lee SH, Gao J, et al. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development, 1999, 126(16):3597-3605.
    38. Moulder JE, Rockwell S. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev, 1987, 5(4):313-341.
    39. Sasabe E, Zhou X, Li D, et al. The involvement of hypoxia-inducible factor-1 alpha in the susceptibility to gamma-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells. Int J Cancer, 2007, 120(2):268-277.
    40. Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol, 2004, 14(3): 198-206.
    41. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res, 2002, 62(12):3387-3394.
    42. Liang BC. Effects of hypoxia on drug resistance phenotype and genotype in human glioma cell lines. J Neurooncol, 1996, 29(2): 149-155.
    43. Zhu H, Chen XP, Luo SF, et al. Involvement of hypoxia-inducible factor-1-alpha in multidrug resistance induced by hypoxia in HepG2 cells. J Exp Clin Cancer Res, 2005, 24(4):565-574.
    44. Diaz-Gonzalez JA, Russell J, Rouzaut A, et al. Targeting hypoxia and angiogenesis through HIF-1alpha inhibition. Cancer Biol Ther, 2005, 4(10):1055-1062.
    45. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003, 3(10):721-732.
    46. Hudson CC, Liu M, Chiang GG, et al. Regulation of hypoxia-inducible factor 1 alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol, 2002, 22(20):7004-7014.
    47. Rockwell S. Tumor radiation responses and tumor oxygenation in aging mice. Exp Gerontol, 1989, 24(1):37-48.
    48. Teicher BA, Holden SA, Menon K, et al. Effect of hemoglobin solution on the response of intracranial and subcutaneous 9L tumors to antitumor alkylating agents. Cancer Chemother Pharmacol, 1993, 33(1):57-62.
    49. Teicher BA, Dupuis NP, Emi Y, et al. Increased efficacy of chemo- and radio-therapy by a hemoglobin solution in the 9L gliosarcoma. In Vivo, 1995, 9(1): 11-18.
    50. Teicher BA, Holden SA, Ara G, et al. Effect of a bovine hemoglobin preparation (SBHS) on the response of two murine solid tumors to radiation therapy or chemotherapeutic alkylating agents. Biomater Artif Cells Immobilization Biotechnol, 1992, 20(2-4):657-660.
    51. Raabe A, Gottschalk A, Hommel M, et al. No effect of the hemoglobin solution HBOC-201 on the response of the rat R1H tumor to fractionated irradiation. Strahlenther Onkol, 2005, 181(11):730-737.
    52. Gottschalk A, Raabe A, Hommel M, et al. Influence of the hemoglobin solution HBOC-201 on tissue oxygenation in the rat R1H-tumor. Artif Cells Blood Substit Immobil Biotechnol, 2005, 33(4):379-389.
    53. Standl T, Horn P, Wilhelm S, et al. Bovine haemoglobin is more potent than autologous red blood cells in restoring muscular tissue oxygenation after profound isovolaemic haemodilution in dogs. Can J Anaesth, 1996, 43(7):714-723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700