垫状卷柏化学成分及Selaginellin抗衰老作用与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章概述
     概括了国内外卷柏属植物化学成分和药理活性的研究状况,明确了本课题的研究目标主要为:利用现代色谱分离技术和光谱方法,系统研究垫状卷柏的活性化学成分,重点研究其selaginellin的结构类似成分;在细胞水平上,阐明selaginellin在同型半胱氨酸诱导的血管内皮细胞衰老的作用,以期为动脉粥样硬化等心血管疾病治疗寻找一种新型的先导化合物,为创新药物的研究提供试验依据。
     第二章垫状卷柏的化学成分研究
     研究背景
     垫状卷柏(Selaginella pulvinata Maxim.)为卷柏科卷柏属植物,2005年版《中华人民共和国药典》收载了垫状卷柏S.pulvinata(Hook.et Grev.)Maxim.和卷柏S.tamariscina(Beauv.)Spring等两种植物,卷柏具有活血通经之功效。自1971年,Okigawa首次从卷柏(S.tamariscina)中分离出5个黄酮类化合物以来,至今已有34个黄酮类化合物从卷柏属植物中分离鉴定。其它化学成分为苯丙素类、生物碱类、有机酸类、葸醌类、甾类等。兰州大学Li-Ping Zhang等从S.sinensis中分离出新型碳骨架结构的化合物,命名为selaginellin。
     药理研究提示,卷柏属植物的双黄酮类化合物具有抗氧化和抗病毒以及对心血管的作用。亦有文献报道,卷柏属植物具有抗炎和提高免疫能力等作用。本项研究旨在利用现代色谱分离技术和光谱方法,系统研究垫状卷柏的活性化学成分,重点研究其selaginellin的结构类似成分。
     方法
     运用柱色谱技术和制备高效液相色谱方法分离、纯化化学成分。UV、IR、~1H-NMR、~(13)C-NMR、2D-NMR、MS、HRMS等光谱分析方法,鉴定化合物的结构。
     结果
     (1)从垫状卷柏75%的乙醇提取物中,共分离11个化合物。
     (2)经UV、IR、~1H-NMR、~(13)C-NMR、2D-NMR、MS和HRMS以及各化合物的理化性质,分别鉴定为β-谷甾醇(β-sitostol)、垫状卷柏胆甾酮(pulvinatadione)、穗花衫双黄酮(amentoflavone)、垫状卷柏双黄酮(pulvinatabiflavone)、橡胶树双黄酮(heveaflavone)、异柳杉双黄酮(Isocryptomerin)、selaginellin、垫状卷柏三酚(pulvinataphentriol)、垫状卷柏二醇(pulvinatadiol)、垫状卷柏醛(pulvinatahyde)、垫状卷柏二酚(pulvinataphendiol)。
     (3)垫状卷柏胆甾酮、垫状卷柏双黄酮、垫状卷柏三酚、垫状卷柏二醇、垫状卷柏醛和垫状卷柏二酚为新化合物。
     结论
     1.从垫状卷柏中分离得到11个化合物,其中垫状卷柏胆甾酮(pulvinatadione)、垫状卷柏双黄酮(pulvinatabiflavone)、垫状卷柏三酚(pulvinataphentriol)、垫状卷柏二醇(pulvinatadiol)、垫状卷柏醛(pulvinatahyde)和垫状卷柏二酚(pulvinataphendiol)为新化合物。
     2.垫状卷柏三酚、垫状卷柏二醇、垫状卷柏醛和垫状卷柏二酚等四个化合物为全新结构的炔酚类化合物。
     第三章Selaginellin对同型半胱氨酸诱导的血管内皮细胞衰老的影响及机制研究
     研究背景
     动脉粥样硬化(AS)是严重危害人类的健康的主要疾病之一。AS发病原因及机制十分复杂。同型半胱氨酸(Hcy)为含有巯基的氨基酸,能促进动脉粥样硬化形成,增加冠心病患者的病死率,被认为是AS的独立危险因素。
     血管内皮功能不全是AS血管早期的一个重要病变特征,被认为是AS发生的始动环节。血管内皮功能不全与内皮细胞的衰老及功能紊乱密切相关。氧化应激被认为是导致细胞衰老的关键因素。此外,细胞抗衰老基因表达的下调也是细胞衰老的重要原因。现已发现多种抗衰老相关基因,其中klotho基因在调控内皮细胞衰老中起重要作用。研究显示,Hcy致AS作用与其诱导内皮细胞衰老有关。
     卷柏属于蕨类卷柏科卷柏属植物,具有降血压、降血糖、增强人体免疫功能和抑制氧化应激等作用。Selaginellin为卷柏中提取的一种具有全新结构的单体化合物,体外抗氧化实验结果显示,selaginellin具有较强的抗氧化作用。基于以上研究背景,本实验拟在培养的内皮细胞观察selaginellin对Hcy诱导的细胞衰老的影响并探讨可能涉及的机制。
     方法
     培养人脐静脉内皮细胞(HUVECs)。MTS法检测细胞活力;以β-半乳糖苷酶活性(染色法)和端粒酶活性(TRAP-银染法)检测细胞衰老;用活性氧荧光试剂盒检测细胞内ROS的生成;实时定量PER检测细胞内klotho mRNA的表达。
     结果
     (1)观察10个浓度的selaginellin(3×10~(-9)—10~(-4)M)对内皮细胞活力的影响。MTS结果显示,当selaginellin浓度低于10~(-6)M时对内皮细胞活力无明显影响,而高于10~(-6)M时能显著降低细胞活力。
     (2)Hcy(0.5×10~(-3)M)处理内皮细胞60h,能显著增加β-半乳糖苷酶活性和降低细胞端粒酶活性,提示Hcy能诱导内皮细胞衰老;预处理selaginellin(10~(-7),3×10~(-7)和10~(-6)M)1h能显著抑制Hcy诱导的β-半乳糖苷酶活性增加和端粒酶活性的降低,且呈浓度依赖性。
     (3)Hcy(0.5×10~(-3)M)处理内皮细胞60h,能显著增加细胞内ROS水平;预处理selaginellin(10~(-7),3×10~(-7)和10~(-6)M)1h能浓度依赖性地抑制Hcy诱导的细胞内ROS水平。
     (4)Hcy(0.5×10~(-3)M)处理内皮细胞60h,能显著降低klotho mRNA表达;而selaginellin本身能显著上调klotho mRNA表达,且能逆转Hcy诱导的klothomRNA表达减低。
     结论
     Selaginellin能抑制Hcy诱导的内皮细胞衰老,其机制可能与抑制氧化应激和上调klotho表达有关。
Chapter 1
     Research objectives were identified on the basis of extensive overviews about activity components and pharmacologic action in genus Selaginella.Systematic studies will be taken by the means of modernistic chormotography separate methods and advanced spectrum methods.Among them,the point is the analogs of selaginellin. What's more,the effects of selaginellin on senescence of endothelial cells will be elucidated on cells level which is induced by homocysteine.The ultimate aim is to uncover a novel leading compound which is effective to heart-blood disease such as AS,and to provide test evidences for research about creative new drugs.
     Chapter 2 Studies on Chemical Constituents in Selaginella pulvinata Maxim.
     BACKGROUND
     Selaginella pulvinata Maxim.,one species of genus Selaginella,family Selaginel,was introduced in Chinese Pharmacopeia(2005 Ed)for the effectiveness of promoting blood circulation.Since 1971 when Okigawa obtained 5 flavones from S.tamariscina for the first time,34 flavones have been isolated and identified from genus Selaginella.Other chemical constituents include phenylpropanoids,alkaloids, organic acids,anthraquinones,steroids,et al.Zhang et al.isolated a compound of novel carbon structure,named as selaginellin.
     Pharmacological studies have revealed that biflavones from genus Selaginella exhibit activities such as anti-oxidant,anti-virus,and protective effects on cardiovascular system.Moreover,anti-inflammation and immunity-improvement have also been reported.With the purpose of elucidating the active chemical constituents of S.pulvinata Maxim.,in particular these compounds with similar structures to selaginellin,using modern chromatographic methods and spectroscopic properties.
     METHODS
     Column chromatography and prepared HPLC were used to isolate and purify chemical constituents.
     Spectroscopic properties such as UV,IR,~1H-NMR,~(13)C NMR,2D-NMR,MS and HRMS were used to identify the structures.
     RESULTS
     1.Eleven compounds were obtained from 75%ethanol extracts of S.pulvinata Maxim..
     2.β-Bitostol,pulvinatadione,amentoflavone,pulvinatabiflavone,heveaflavone, isocrypromerin,selaginellin,pulvinataphentriol,pulvinatadiol,pulvinatahyde, pulvinataphendiol were identified on the basis of on the basis of spectral evidences and physicochemical properties.
     3.Pulvinatadione,pulvinatabiflavone,pulvinataphentriol,pulvinatadiol, pulvinatahyde and pulvinataphendiol were new compounds.
     CONCLUSIONS
     1.Eleven compounds were obtained from S.pulvinata Maxim.,among which pulvinatadione,pulvinatabiflavone,pulvinataphentriol,pulvinatadiol,pulvinatahyde and pulvinataphendiol were new compounds.
     2.Pulvinataphentriol,pulvinatadiol,pulvinatahyde and pulvinataphendiol were alkynyl phenols,possessing new structures
     Chapter 3 Effects of selaginellin on homocysteine-induced senescence of endothelial cells
     BACKGROUND
     Atherosclerosis(AS)is recognized as one of the major causes to threaten the life quality of people.Homocysteine(Hcy),an amino acid derived from methionine metabolism,can prompt atherogenesis,and plasma level of Hcy were positively correlated with morbidity and mortality from coronary heart diseases,suggesting Hcy is an independent risk factor for AS.
     Endothelial dysfunction is recognized as an early event in the pathogenesis of AS, which is closed related to senescence and damages of endothelial cells.Oxidative stress plays a key role in inducing cell senescence.Also,the decreased expressions of anti-senescent molecules contribute to progression of cell senescence.It has been reported that pro-atherogenetic properties of Hcy are related to inducing cell senescence.
     Selaginella Tamariscina(Beauv)spring can lower blood pressure,decrease the level of serum glucose,enhance immune function and inhibit oxidant production and so on.Selaginellin,a compound with novel chemical structure,was extracted from Selaginella Tamariscina.Our preliminary data showed that selaginellin had strong anti-oxidative activity.Based on these data mentioned above,in the present study,we investigated the effects of selaginellin on Hcy-induced senescence of endothelial cells (HUVECs)and its underlying mechanisms.
     METHODS
     HUVECs were cultured and used for all these studies.Cell viability was analyzed by using MTT assay.Cell senescence was evaluated usingβ-galactosidase staining and telomerase activity detected by telomerase repeat amplification protocol (TRAP)-silver staining.The level of intracellular reactive oxygen species(ROS) was determined using fluorescent ROS detection kit and the level of klotho mRNA was detected by real time PCR.
     RESULTS
     (1)The effects of different concentrations of selaginelin(3×10~(-9)-10~(-4 M)on cell viability were observed.MTT results showed that the concentrations of selaginellin up to 10~(-6)M had no significant effect on cell viability.
     (2)Treatment with Hcy(0.5 M)for 60h markedly induced the senescence of endothelial cells reflected by decrease in telomerase activity and increase inβ-galactosidase activity,which could attenuated by co-treatment with selaginellin in a concentration-dependent manner.
     (3)Treatment with Hcy(0.5 M)for significantly increased the level of intracellular ROS in endothelial cells.However,selaginellin could significantly inhibit Hcy-induced elevation of intracellualr ROS level.
     (4)The mRNA expression of klotho,an important anti-senescent protein,was markedly decreased in Hcy-incubated endothelial cells.However,selaginellin could significantly upregulate the mRNA expression of klotho in the absence of presence of Hcy.
     CONCLUSIONS
     Selaginellin attenuates Hcy-induced senescence of endothelial cells,and such effects may be related to inhibiting oxidative stress and up-regulating klotho expression.
引文
[1]Lee,H.S.;Oh,W.K.;Kim,B.Y.,et al.Inhibition of phospholipase Cg 1activity by amentoflavone isolated from Selaginella tamariscina.Planta Med,1996,62(4):293-296
    [2]张晓莉,陈明军.卷柏复方对小鼠免疫功能的影响.中医药信息,1997,14:36
    [3]Kenneth R.M.;Carolyn,S.;Hans,G..Carbon-13 NMR of flavonoids.Part IV.Carbon-13 NMR studies of some naturally occurring amentoflavone and hinokiflavone biflavonoids.Phytochem.,1987,26(12):3335-3337
    [4]Shen,J.H.;Wang,G.H.;Sung,P.J.,et al.New cytotoxic oxygenated fucosterols from the brown alga Turbinaria conoides.J.Nat.Prod.,1999,62:224-227
    [5]于德泉,杨峻山.分析化学手册(第二版)—7分册.北京:化学工业出版社,1999.891
    [6]于德泉,杨峻山.分析化学手册(第二版)—7分册.北京:化学工业出版社,1999.832
    [7]司端运,赵守训.粉防己地上部分的非生物碱成分.济宁医学院学报,1993.16:1-5
    [8]Lin,R.C.;Skaltsounis,A.L.;Seguin,E.,et al.Phenolic constituents of Selaginella doederleinii.Planta Med,1994,60(2):168-170
    [9]郑晓柯,史社坡,毕跃峰,等.卷柏中黄酮类成分研究.中草药,2004,35(7):742-743
    [10]Li-Ping Zhang.A New Unusual Natural Pigment from Selaginella sinensis and Its Noticeable Physicochemical Properties J.Org Chem.,2007,72(10):3921-3924
    [11]Mc Cully KS.Vascular pathology of homocysteine:implication for the pathogenesis of arteriosclerosis.Am J Pathology.,1969(56):111
    [12]Nasir K,Tsai M,Rosen BD,et al.Elevated homocysteine is associated with reduced regional left ventricular function:the multi-ethnic study of atherosclerosis.Circulation,2007,115:180-187
    [13]Rasouli ML,Nasir K,Blumenthal RS,et al.Plasma homocysteine predicts progression of atherosclerosis. Atherosclersis, 2001(181): 159-165
    [14] Wang H, Jiang X, Yang F, et al. Cyclin A transcriptional suppression is the major mechanism mediating homocysteine-induced endothelial cell growth inhibition. Blood, 2002(99): 939-945
    [15] Hossain GS, van Thienen JV, Wersuck GH, et al. TDAG51 is induced by homocysteine, promotes detachment mediated programmed cell death, and contributes to the development of atherosclerosis in hyperhomocyseinemia. J Biol Chem, 2003(278): 30317-30327
    [16] Boger RH, Bode-Boger SM, Sydow K, et al. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase is elevated in monkeyswith hyperhomocysteinemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol, 2000(20): 1557-1564
    [17] Frank M, Faraci, Steven R, et al. Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke, 2004(35): 345-347
    [18] Weiss N, Heydrick SJ, Postea O, et al. Influence of hyperhomocysteinemia on the cellular redox state impact on homocysteine-induced endothelial dysfunction. Clin ChemLab Med, 2003(41): 1455-1461
    [19] Hucks D, Thuraisingham RC, Raftery MJ, et al. Homocysteine induced impairment of nitric oxidedeent vasorelaxation is reversible by the superoxide dismutase mimetic TEMPOL Nephrol Dial. Transplant, 2004(19): 1999-2005
    [20] Kartal Ozer N, Negis Y, Aytan N. Molecular mechanisms of cholesterol or homocysteine effect in the development of atherosclerosis: Role of vitamin E. Biofactors, 2003(19): 63-70
    [21] Wang H , Yoshizumi M, Lai K, et al. Inhibition of growth and p21ras methylation in vascular endothelial cells by homocysteine but not cysteine. J Biol Chem, 1997(272): 25380-25385
    [22] Dong Xu, Richard Neville, Toren Finkel. Homocysteine accelerates endothelial cell senescence. FEBS Letters, 2000(470): 20-24
    [23] Gariballa SE. Nutritional factors in stroke. Br J Nutr, 2000(84): 5-17
    [24]McKinley MC.Nutritional aspects and possible pathological mechanisms of hyperhomocysteinaemia;an independent risk factor for vascular disease.Proc Nutr Soc,2000(59):221-237
    [25]Scalera F,Martens-Lobenhoffer J,Tager M,et al.Effect of L-arginine on asymmetric dimethylarginine(ADMA)or homocysteine-accelerated endothelial cell aging.Biochem Biophys Res Commun,2006(345):1075-1082
    [26]Fortunato Scalera,Jurgen Borlak,Bibiana Beckmann,et al.Endogenous Nitric Oxide Synthesis Inhibitor Asymmetric Dimethyl L-Arginine Accelerates Endothelial Cell Senescence.Arterioscler Thromb Vasc Biol,2004:1816-1822
    [27]Von Zglinicki T.Oxidative stress shortens telomeres.Trends Biochem Sci,2002(27):339-344
    [28]Brandes RP,Fleming I,Busse R.Endothelial aging.Cardiovasc.Res.,2005(66):286-294
    [29]Kuro-o M,Matsunura Y,Aizawa H,et al.Mutation of the mouse Klotho gene leads to a syndrome resembling ageing.Nature,1997(390):45-51
    [30]Scalera F,Borlak J,Beckmann B,et al.Endogenous nitric Oxide Synthesis Inhibitor Asymmetric Dimethyl L-Arginine Accelerates Endothelial Cell Senescence.Arterioscler Thromb Vasc Biol,2004(24):1816-1822
    [31]江苏新医学院编.中药大辞典(上册).上海:上海科技出版社,1985,1472
    [32]郑虎占.中药现代研究与应用(第四册).北京:学苑出版社,1997,30
    [33]Sah NK,Singh SN,Sahdev S,et al.Indian herb 'Sanjeevani'(Selaginella bryopteris)can promote growth and protect against heat shock and apoptotic activities of ultra violet and oxidative stress.J Biosic,2005(30):499-505
    [34]Assmus B,Urbich C,Aicher A,et al.HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes.Circ.Res,2003(92):1049-1055
    [35]Imanishi T,Hano T,Sawamura T,et al.Oxidized low-density lipoprotein induces endothelial progenitor cell senescence,leading to cellular dysfunction.Clin Exp Pharmacol Physiol., 2004(31): 407-413
    [36] Kario K, Duell PB, Matsuo T, et al. High plasma homocyst(e)ine levels in elderly Japanese patients are associated with increased cardiovascular disease risk independently from markers of coagulation activation and endothelial cell damage. Atherosclerosis, 2001(157): 441-449
    [37] Wang Y, Zhou Q, Wang S, et al. Homocysteine-induced apoptosis of endothelial cell and its antagonism by folic acid-the roles of caspase3, c-IAP1 and C-IAP2. Wei Sheng Yan Jiu, 2004(33): 310-313
    [38] Zhu JH, Chen JZ, Wang XX, et al. Homocysteine accelerates senescence and red ces proliferation of endothelial progenitor cells. J Mol Cell Cardiol, 2006(40): 648-652
    [39] Li SA, Watanabe M, Yamada H, et al. Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct, 2004,29:91-99
    [40] Nagai T, Yamada K, Kim HC, et al. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J, 2003(17): 50-52
    [41] Ikushima M, Rakugi H, Ishikawa K, et al. Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochem Biophys Res Commun, 2006(339): 827-832
    [1]Shin,D.;Kim,J..Flavonoid constituents of Selaginella tamariscina.Saengyak Hakhoechi,1991,22(4):207-210
    [2]戴忠,王钢力,林瑞超,等.卷柏属植物黄酮类成分研究进展.中国药品标准,2000,1(4):46-49
    [3]Okigawa,M;Hwa,C.W.;Kawano,N.,et al.Biflavones in Selaginella species.Phytochem.,971,10(12):3286-3287
    [4]Huneck,S.;Khaidav,T.Amentoflavone from Selaginella sanguinolenta.Pharmazie,1985,40(6):431
    [5]Sun CM.Selective cytotoxicity of ginkgetin from Selaginella mollendorffii,.Nat.Prod.,1997,60(4):382
    [6]Silva,Glora L.;Cytotoxic biflavonoids from Selaginella wiIldenowii.Ph ytochem.,1995,40(1):129-134
    [7]LIN RC.Phenolic constituents ofSelaginellad oederlenii.Planta Med..1994,60:168
    [8]Qasim,M.A.;Roy,S.K.;Kamil,M.,et al.Phenolic constituents of Selaginellaceae.Indian J.Chem.,Sect.B,1985,24B(2):220
    [9]Chen JJ,Duh CY,Chen JF.New cytotoxic biflavonoids from Selaginella delicatula Planta Med.,2005,71(7):659-665
    [10]吕瑜平,陈业高,文净,深绿卷柏的一个新双黄酮.云南植物研究,2004,26(2):226-228
    [11]Lie-Chwen Lin,Yuh-Chi Kuo,and Cheng-Jen Chou.Cytotoxic Biflavonoids fromSelaginella delicatula.J.Nat.Prod.,2000,63(5):627-630,
    [12]Shin D.,Kim J..Flavonoid constituents of Selaginella tamariscina.Saengyak Hakhoechi,1991,22(4):207-210.
    [13]Silva,Glora L.;Cytotoxic biflavonoids from Selaginella willdenowii.Phytochem.,1995,40(1):129-134
    [14]Lie-Chwen Lin;Cheng-Jen Chou.Three new biflavonoids from Selaginella delicatula Chinese Pharmaceutical Journal,2000,52,(4):211-218
    [15]谭桂山,陈立章,徐康平等.垫状卷柏的化学成份研究.有机化学,2003,24(9):1082-1085
    [16]Lee H S,Oh W K,Kim B Y,,et al.Inhibition ofphospholipase C gamma 1activity by amentoflavone isolated from Selaginella tamariscina.Planta Med.,1996,62(4):293-296.
    [17]毕跃峰,郑晓珂,冯卫生,等.卷柏抗肿瘤药理作用研究.河南中医学院学报,2003,5(3):12-13
    [18]Su Y,Sun C M,Chuang H H,et al.Studies on the cytotoxic mechanisms of ginkgetin in a human ovarian adenocarcinoma cell line.Naunyn Sehrniedeberg's Arch Pharmacol,2000,362:82-90
    [19]Silva,Glora L..Cytotoxic biflavonoids from Selaginella willdenowii.Phytochem.,1995,40(1):129-34
    [20]CHAKRAVARTH B.K.et al.Isolation of Amentoflavone from Selag inella rupestris and its Pharmacological Activity on Central Nervous System,Smooth Muscles and Isolated Frog Heart Preparations.Planta Aled.,1981,43:64
    [21]王宗伟,摘.卷柏中阿曼托黄素对磷脂酶C'I活性的抑制作用.国外医学(药学分册),1979,4:20-21
    [22]LIN Y.,et al.Antiviral Activities of Biflavonoids.Planta Med.,1999,65:120
    [23]徐智,贾素洁,谭桂山等.垫状卷柏中双黄酮药理活性的研究.中国现代医学杂志,14(14),88-89,100
    [24]周荣汉.药用植物化学分类法.上海:上海科学技术出版社.1985:219
    [25]LinR C.New alkaloid glycosides from Selaginella doederleinii.J.Nat.Prod.,1987,50:422
    [26]Liu,R.C.;Peyroux,J.;Seguin,E.,et al.Hypertensive effect of glycosidic derivatives of hordenine isolated from Selaginella doederleinii hieron and structural analogs in rats.Phytotherapy Res.,1991,5(4):188-190
    [27]郑晓珂,史社坡,毕跃峰,等.卷柏中一个新木脂素苷的分离与鉴定.药学学报,2004,39(9):719-721
    [28]毕跃峰,郑晓珂,冯卫生,等.卷柏中化学成分的分离与结构鉴定,药学学报,39(1):41-45
    [29]陈德钊,等.江南卷柏化学成分分析.中草药,1986,17(1):4
    [30]戴忠.中华卷柏的化学成分研究.中草药,2001,32(9):784
    [31]Lin L C,Kuo Y C,Chou C J.Cytotoxic biflavonoids from Selaginella delicatula.J.Nat.Prod.,2000,63(5):627-630
    [32]巫忠德,李兰香,粟舜英,等.抗癌草药石上柏化学成分的研究.中山 大学学报,1981,(2):113
    [33]陈萍.气质联测法测定深绿卷柏中脂溶性成分.中国现代应用药学,1994,11(2):13
    [34]郑兴.垫状卷柏化学成分研究.中草药,2001,32(1):17
    [35]刘海青,林瑞超,冯芳,旱生卷柏化学成分研究(Ⅲ).中草药,2006,37(8):423-426
    [36]回瑞华,侯冬岩,李铁纯,等.千山卷柏中萜类化合物的提取与分析.鞍山师范学院学报,2005,7(4):31-32
    [37]陈萍.气质联测法测定深绿卷柏中脂溶性成分.中国现代应用药学[J],1994,11(2):13
    [38]Perez G.S.;Perez G.,Rosa M.,et al.Inhibitory activity of 3-methylenhydroxy-5-methoxy-2,4-dihydroxy tetrahydrofuran isolated from Selaginella lepidophyla on smooth muscle of Wistar rat.Pharmaceutica Acta Helvetiae,1994,69:149-52.
    [39]江苏省植物研究所编.新华本草纲要(第三册).上海:上海科技出版社.1990:626
    [40]郑虎占.中药现代研究与应用(第四册).上海:学苑出版社.1997:303
    [41]冉先德.中华药海.哈尔滨:哈尔滨出版社.1993:1211
    [42]青海藏药研究所编.中国藏药.上海:上海科技出版社.1999:112
    [43]马峰峻.卷柏复方注射液对犬血液动力学的影响.中成药,1988,(12):26
    [44]陶慧然.佳木斯医学院学报,1993,16(4):1
    [45]苗乃全.卷柏复方对治疗实验性搪尿病及对血流变学的影响.中国中药杂志,1996,21(8):493-495
    [46]陶慧然.镇痛灵对大鼠实验性搪尿病降血糖作用及机制的研究.中草药,1996,27(8):475
    [47]李方莲.卷柏对老龄糖尿病模型鼠的降血搪作用.中国老年学杂志,1999,19(9):301-302
    [48]于丽萍.单剂卷柏对FFR胰岛素敏感性的影响.中成药,2001,23(4):291-292
    [49]吴奕富,等.卷柏对链服佐菌素诱发搪尿病大鼠降血糖作用的研究.福建中医药,2001,32(4):42
    [50]林培英.江南卷柏的免疫药理作用.中药材,1992,15(11):36-38:
    [51]林久茂,陈小峰,王瑞国,等.卷柏对小鼠免疫功能的影响.福建中医学院学报,2003,13(6):36-37,51
    [52]Kuo-YC,Sun-CM,Ysai-WJ,et al.Chinese herbs as modulators of human mes-angial cell proliferation:preliminary studies.J Lab.Clin.Med.1998,132(1):76-85.
    [53]林久茂,王瑞国.卷柏对实验性肝损伤小鼠保护作用的实验研究.福建中医学院学报,2006,16(2):28-30
    [54]祁丽华.卷柏止血作用的实验观察.佳木斯医学院学报,1995,18(4):15
    [55]陈美琳.卷柏止血作用的实验观察.佳木斯医学院学报,1996,21(8):493
    [56]彭智聪.卷柏炒炭后对止血作用的影响.中国中药杂志,2000,25(2):89
    [57]医学生物技术研究院.中国医学科学院学报,1990,12(6):391
    [58]Bombardelli,Ezio.Topical administration of plant extracts having therapeutic activities for treatment of fat deposits.Eur.Pat.Appl.,1991,6 pp
    [59]华南肿瘤医院.中草药通讯[J],1970,(5-6):33
    [60]郑晓珂,吕鹏飞,王玲巧,等.卷柏等5种中药植物雌激素活性筛选的实验研究.中国中药杂志,2006,31(15):1254-1257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700