新型铝离子、氰根离子荧光探针的设计合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阴阳离子无论在生物化学、医学或是环境科学等领域中都起着至关重要的作用,其被广泛应用于化学化工、医药、催化和环境科学中,若其含量超过或低于某个值时可能会造成生物体功能的紊乱,从而影响到环境及生物体的安全。因此对阴阳离子进行检测显得非常重要。本论文设计合成了几种荧光探针用于识别阴离子或阳离子,并对其结构及配位方式进行了研究。全文共分为三个部分:
     第一部分,简要介绍了分子荧光探针的基础知识,几种常见离子荧光探针的研究现状,重点对铝离子和氰根荧光探针的发展及应用做了介绍。
     第二部分,设计合成了一系列席夫碱类的荧光探针H2L1,H2L2,L3,H2L4,并且对H2L‘做了重点阐述,研究了其紫外吸收光谱和荧光光谱的性质。具有含孤电子对的0原子和N原子的H2L1在非生物体系对Al3+离子具有很高的选择性。在H2L1和Al3+形成1:1的刚性结构配合物的过程中,H2L1中分子内电荷转移(ICT)效应减弱,同时产生强烈的螯合(CHEF)效应,这些因素都能促使体系产生荧光增强。其它金属离子几乎不能对H2L‘的荧光产生增强效应的原因可能是不具有合适的离子半径或电负性。
     第三部分,设计合成了一种强荧光喹啉衍生物的荧光传感器Na-HL5,此配体本身具有很强的荧光,能与Hg2+结合形成Hg-L5并发生荧光淬灭,通过荧光滴定,紫外滴定等确定了其配位比为1:1,并通过结构计算推测了其配位方式。此配合物能对CN-产生很好的单一选择性,并且不受其它阴离子的影响。其原因是由于CN-具有很强的配位能力,所以推测其荧光恢复的机理为CN-与配合物Hg-L5中的Hg2+形成了稳定的配离子[Hg(CN)4]2-,将Hg2+从配合物Hg-L5中脱离,故使配体Na-HL5恢复,其荧光光谱、紫外光谱均得到恢复。通过交替加入Hg2+和CN-可实现一个荧光增强、减弱、增强、减弱的循环过程,并且具有很高的效率,几个循环后几乎没有损失,是一个具有高效性的荧光探针。且此探针可应用于细胞中CN-离子的识别研究。
Both metal ions and anions are very important for biochemistry, medical science and the environment. They are widely used in environmental, clinical, chemical, and biological applications. They would generate health risk to human beings when they are in improper quantity. Therefore, detection of these ions is crucial to control the concentration levels in the biosphere and minimize direct affects on human health. The main studies as follows:
     In chapter1, this chapter introduces the background of our work, describes the definition and the structure of the fluorescent chemosensors, and illuminates the design principles. Especially the fluorescent chemosensors of Al3+and CN-.
     In chapter2, this chapter introduces four Schiff base derivatives (H2L1, H2L2, L3, H2L4) for Al3+, Among the various metal ions, only Al3+induces the fluorescence enhancement of H2L1and results an "OFF-ON" type sensing with excellent selectivity and high sensitivity in aqueous system. The lowest detection limit for Al3+is0.17μM, which is much lower than the permissible concentration of Al3+for drinking water in China. Furthermore, the fluorescence microscopic imaging also indicates that H2L1could be applied to detect Al3+in biological environment.
     In chapter3, a new fluorescent chemosensor, sodium2-(2-(1H-benzo[d]imidazol-2-yl)quinolin-8-yloxy)acetate (HL5), based on8-hydroxyquinoline derivative has been designed, synthesized and characterized. Once combined with Hg2+in aqueous solution, HL5displays a fluorescence quenching effect to form the compound mercury(II)(LsHg), which could be fast dissociated by the addition of cyanide in this system so that "ON-OFF-ON" type fluorescence change can be achieved. Cyanide induces the revival of fluorescence of L5Hg and results in "OFF-ON" type sensing with high sensitivity and rapid response in aqueous system. Furthermore, the fluorescence microscopic imaging also indicates that L5Hg is suitable for detection of CN" in biological environment.
引文
[1]S. G. Schulman, Fluorescence and phosphorescence spectroscopy:Physiochemical principles and practice, Pergamon Press, New York,1977.
    [2]N. Klonis, A. H. A. Clayton, V. J. E. W., W. H. Sawyer, J. Photoch. Photobio. A.1998,67, 500-510.
    [3]K.-S. Lee, H.-J. Kim, G.-H. Kim, I. Shin, J.-I. Hong, Org. Lett:2008,10,49-51.
    [4]W. Lin, L. Yuan, Z. Cao, Y. Feng, L. Long, Chem. Eur. J.2009,15,5096-5103.
    [5]A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev.1997,97,1515-1566.
    [6]S. C. Burdette, C. J. Frederickson, W. Bu, S. J. Lippard, J. Am. Chem. Soc.2003,125, 1778-1787.
    [7]T. D. James, P. Linnane, S. Shinkai, Chem. Commun.1996,281-288.
    [8]L. Fabbrizzi, M. Licchelli, P. Pallavicini, D. Sacchi, A. Taglietti, Analyst.1996,121,1763-1768.
    [9]S. C. Burdette, S. J. Lippard, Coord. Chem. Rev.2001,216-217,333-361.
    [10]A. E. Dennis, R. C. Smith, Chem. Commun.2007,4641-4643.
    [11]P. Jiang, Z. Guo, Coord. Chem. Rev.2004,248,205-229.
    [12]A. Ajayaghosh, P. Carol, S. Sreejith, J. Am. Chem. Soc.2005,127,14962-14963.
    [13]K. Komatsu, K. Kikuchi, H. Kojima, Y. Urano, T. Nagano, J. Am. Chem. Soc.2005,127, 10197-10204.
    [14]J.-A. Zhou, X.-L. Tang, J. Cheng, Z.-H. Ju, L.-Z. Yang, W.-S. Liu, C.-Y. Chen, D.-C. Bai, Dalton. Trans.2012,41,10626.
    [15]X. Zhou, B. Yu, Y. Guo, X. Tang, H. Zhang, W. Liu, Inorg. Chem.2010,49,4002-4007.
    [16]Y. Zhang, X. Guo, W. Si, L. Jia, X. Qian, Org. Lett.2008,10,473-476.
    [17]H.-H. Wang, Q. Gan, X.-J. Wang, L. Xue, S.-H. Liu, H. Jiang, Org. Lett.2007,9,4995-4998.
    [18]T. Gunnlaugsson, T. Clive Lee, R. Parkesh, Tetrahedron 2004,60,11239-11249.
    [19]C. B. Murray, D. J. Norris, M. G Bawendi, J. Am. Chem. Soc.1993,115,8706-8715.
    [20]X. Zhou, P. Li, Z. Shi, X. Tang, C. Chen, W. Liu, Inorg. Chem.2012,51,9226-9231.
    [21]X.-L. Tang, X.-H. Peng, W. Dou, J. Mao, J.-R. Zheng, W.-W. Qin, W.-S. Liu, J. Chang, X.-J. Yao, Org. Lett.2008,10,3653-3656.
    [22]T. Gunnlaugsson, T. C. Lee, R. Parkesh, Org. Lett.2003,5,4065-4068.
    [23]S. Kamila, J. F. Callan, R. C. Mulrooney, M. Middleton, Tetrahedron Lett.2007,48,7756-7760.
    [24]E. Gumienna-Kontecka, J. Galezowska, M. Drag, R. Latajka, P. Kafarski, H. Kozlowski, Inorg. Chim.Acta.2004,357,1632-1636.
    [25]S. Goswami, D. Sen, N. K. Das, Org. Lett.2010,12,856-859.
    [26]Y. Zhou, F. Wang, Y. Kim, S.-J. Kim, J. Yoon, Org. Lett.2009,11,4442-4445.
    [27]H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong, J. W. Kim, S. Yan, J. Y. Lee, J. H. Lee, T. Joo, J. S. Kim, J. Am. Chem. Soc.2009,131,2008-2012.
    [28]T. Kubota, K. Tokuno, J. Nakagawa, Y, Kitamura, H. Ogawa, Y. Suzuki, K. Suzuki, K. Oka, Biochem. Biophys. Res. Commun.2003,303,332-336.
    [29]L.-J. Dai, G. Ritchie, D. Kerstan, H. S. HYUNG SUB Kang, D. E. C. Cole, G. A. Quamme, Physiol. Rev.2001,81,51-84.
    [30]H. M. Kim, P. R. Yang, M. S. Seo, J.-S. Yi, J. H. Hong, S.-J. Jeon, Y.-G. Ko, K. J. Lee, B. R. Cho, J. Org. Chem.2007,72,2088-2096.
    [31]H. Komatsu, N. Iwasawa, D. Citterio, Y. Suzuki, T. Kubota, K. Tokuno, Y. Kitamura, K. Oka, K. Suzuki, J. Am. Chem. Soc.2004,126,16353-16360.
    [32]E. M. Nolan, M. E. Racine, S. J. Lippard, Inorg. Chem.2006,45,2742-2749.
    [33]J. Ly, C. Ouyang, X. Yin, H. Zheng, Z. Zuo, J. Xu, H. Liu, Y. Li, Macromol. Rapid Commun. 2008,29,1588-1592.
    [34]J. Jiang, W. Liu, J. Cheng, L. Yang, H. Jiang, D. Bai, W. Liu, Chem. Commun.2012,48,8371.
    [35]K.-S. Lee, H.-J. Kim, G.-H. Kim, I. Shin, J.-I. Hong, Org. Lett.2008,10,49-51.
    [36]J. H. Kim, H. J. Kim, S. H. Kim, J. H. Lee, J. H. Do, H.-J. Kim, J. H. Lee, J. S. Kim, Tetrahedron Lett.2009,50,5958-5961.
    [37]M. H. Lee, S. W. Lee, S. H. Kim, C. Kang, J. S. Kim, Org. Lett.2009,11,2101-2104.
    [38]姜新会,兰州大学硕士毕业论文2011.
    [39]E. Altschuler, Medical Hypotheses 1999,55,22-23.
    [40]J. R. Walton, NeuroToxicology 2006,27,385-394.
    [41]S. Polizzi, E. Pira, M. Ferrara, M. Bugiani, A. Papaleo, R. Albera, S. Palmi, NeuroToxicology 2002,23,761-774.
    [42]B. Wang, W. Xing, Y. Zhao, X. Deng, Environ. Toxicol. Pharmacol.2010,29,308-313.
    [43]T. A. Zafar, D. Teegarden, C. Ashendel, M. A. Dunn, C. M. Weaver, Nutrition Research 2004,24, 243-259.
    [44]C.-H. Guo, G.-S. W. Hsu, C.-J. Chuang, P.-C. Chen, Environ. Toxicol. Pharmacol.2009,27, 176-181.
    [45]A. B. S. Poleo, K.(?)stbye, S. A.(?)xnevad, R. A. Andersen, E. Heibo, L. A. Vallestad, Environ. Pollut.1997,96,129-139.
    [46]J. L. Yang, Annals of Botany 2006,97,579-584.
    [47]L. V. Kochian, O. A. Hoekenga, M. A. Pineros, Annual Review of Plant Biology 2004,55, 459-493.
    [48]H. E. Witters, S. VanPuymbroeck, A. J. H. X. Stouthart, S. E. W. Bonga, Environ. Toxicol. Chem. 1996,15,986-996.
    [49]S. Kim, J. Y. Noh, K. Y. Kim, J. H. Kim, H. K. Kang, S.-W. Nam, S. H. Kim, S. Park, C. Kim, J. Kim, Inorg. Chem.2012,51,3597-3602.
    [50]X. Sun, Y.-W. Wang, Y. Peng, Org. Lett.2012,14,3420-3423.
    [51]D. Maity, T. Govindaraju, Chem. Commun.2012,48,1039.
    [52]A. Sahana, A. Banerjee, S. Das, S. Lohar, D. Karak, B. Sarkar, S. Kanti Mukhopadhyay, A. K. Mukherjee, D. Das, Org. Biomol. Chem.2011,9,5523.
    [53]Y. Lu, S. Huang, Y. Liu, S. He, L. Zhao, X. Zeng, Org. Lett.2011,13,5274-5277.
    [54]J. M. Holloway, R. A. Dahlgren, B. Hansen, W. H. Casey, Nature 1998,395,785-788.
    [55]P. D. Beer, E. J. Hayes, Coord. Chem. Rev.2003,240,167-189.
    [56]J. Wang, J. Wu, Y. Chen, H. Wang, Y. Li, W. Liu, H. Tian, T. Zhang, J. Xu, Y. Tang, Dalton. Trans. 2012,41,12936-12941.
    [57]C. Villena, J. Losada, P. Garcia-Armada, C. M. Casado, B. Alonso, Organometallics 2012,31, 3284-3291.
    [58]Z. Liu, X. Wang, Z. Yang, W. He, J. Org. Chem.2011,76,10286-10290.
    [59]L.-Y. Yao, L. Qin, T.-Z. Xie, Y.-Z. Li, S.-Y. Yu, Inorg. Chem.2011,50,6055-6062.
    [60]M. R. Ajayakumar, P. Mukhopadhyay, S. Yadav, S. Ghosh, Org. Lett.2010,12,2646-2649.
    [61]S. Guha, S. Saha, J. Am. Chem. Soc.2010,132,17674-17677.
    [62]W. Lin, L. Yuan, Z. Cao, Y. Feng, L. Long, Chem. Eur. J.2009,15,5096-5103.
    [63]Guidelines for Drinking-Water Quality, World Health Organization, Geneva,1996.
    [64]C.-H. Lee, H.-J. Yoon, J.-S. Shim, W.-D. Jang, Chem. Eur. J.2012,18,4513-4516.
    [65]N. Kumari, S. Jha, S. Bhattacharya, Chem. Asian J.2012,7,2805-2812.
    [66]M. Dong, Y. Peng, Y.-M. Dong, N. Tang, Y.-W. Wang, Org. Lett.2012,14,130-133.
    [67]L. Yuan, W. Lin, Y. Yang, J. Song, J. Wang, Org. Lett.2011,13,3730-3733.
    [68]H. S. Jung, J. H. Han, Z. H. Kim, C. Kang, J. S. Kim, Org. Lett.2011,13,5056-5059.
    [69]D. P. Perl, A. R. Brody, Science 1980,208,297-299.
    [70]D. P. Perl, D. C. Gajdusek, R. M. Garruto, R. T. Yanagihara, C. J. Gibbs, A. R. Brody, Science 1982,217,1053-1055.
    [71]X. Yang, Y. Tang, S. Bi, G. Yang, J. Hu,Anal. Sci.2003,19,133-138.
    [72]F. Zhang, L. Yang, S. Bi, J. Liu, F. Liu, X. Wang, X. Yang, N. Gan, T. Yu, J. Hu, H. Li, T. Yang, J. Inorg. Biochem.2001,87,105-113.
    [73]M. A. Acheampong, R. J. W. Meulepas, P. N. L. Lens, J. Chem. Technol. Biotechnol.2010,85, 590-613.
    [74]C. Young, L. Tidwell, C. Anderson, Cyanide:Social, Industrial, and Economic Aspects; Minerals, Metals, and Materials Society, Warrendale, PA,2001.
    [75]K. W. Kulig, Cyanide Toxicity, U.S. Department of Health and Human Services, Atlanta, GA, 1991.
    [76]R. Koenig, Science.2000,287,1737-1738.
    [77]Z. Xu, X. Chen, H. N. Kim, J. Yoon, Chem. Soc. Rev.2010,39,127-137.
    [78]H. Schiff,Anal. Chem.1864,131,118-119.
    [79]K. Soroka, R. S. Vithanage, D. A. Phillips, B. Walker, P. K. Dasgupta, Anal. Chem.1987,59, 629-636.
    [80]D. Maity, T. Govindaraju, Inorg. Chem.2010,49,7229-7231.
    [81]D. Maity, T. Govindaraju, Chem. Commun.2010,46,4499-4501.
    [82]N. Chattopadhyay, A. Mallick, S. Sengupta, J. Photoch. Photobio. A.2006,177,55-60.
    [83]Y. G. Zhao, Z. H Lin, H. P Liao, C. Y. Duan, Q. J. Meng, Inorg. Chem. Commun.2006,9, 966-968.
    [84]Q.-F. Zhang, K.-C. Xiong, M. Yang, F.-L. Jiang, M.-C. Hong, J. Struct. Chem.2009,28, 1625-1629.
    [85]C. A. Parker, W. T. Rees, Analyst.1960,55,587-600.
    [86]H. S. Joshi, R. Jamshidi, Y. Tor, Angew. Chem. Int. Ed.1999,38,2721-2725.
    [87]F. Hou, L. Huang, P. Xi, J. Cheng, X. Zhao, G. Xie, Y. Shi, F. Cheng, X. Yao, D. Bai, Z. Zeng, Inorg. Chem.2012,51,2454-2460.
    [88]L. Wang, W. Qin, X. Tang, W. Dou, W. Liu, Q. Teng, X. Yao, Org. Biomol. Chem.2010,8, 3751.
    [89]段方平,南开大学硕士毕业论文2008.
    [90]H.-H. Wang, Q. Gan, X.-J. Wang, L. Xue, S.-H. Liu, H. Jiang, Org. Lett.2007,9,4995-4998.
    [91]J. S. Kim, M. G. Choi, K. C. Song, K. T. No, S. Ann, S.-K. Chang, Org. Lett.2007,9, 1129-1132.
    [92]J. Wu, R. Sheng, W. Liu, P. Wang, J. Ma, H. Zhang, X. Zhuang, Inorg. Chem.2011,50, 6543-6551.
    [93]D. D. K. Chingakule, P. Gans, J. B. Gill, Journal of the Chemical Society, Dalton Transactions 1991,1329-1335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700