多金属氧酸盐/layer-by-layer复合纳米结构多层膜的构筑与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构材料嵌入聚合物基质中形成的纳米复合物由于其在催化,磁学,以及光子学中的潜在应用而倍受关注。本论文工作以多金属氧酸盐为核心通过交替沉积技术与原位化学反应相结合来制备此类复合膜。
     利用有效的在前体膜中成核、生长纳米粒子的方法,使用Keggin型钨系、钼系多酸,有目的地利用其酸性,强氧化性,在膜中发生反应,从合成出基于多酸的纳米粒子,通过增加多酸的反应循环数,我们可以实现了纳米粒子的可控合成,采用UV-vis光谱、FTIR光谱、X-射线光电子能谱、扫描电子显微镜、原子力显微镜、透射电子显微镜、循环伏安对所制备的纳米复合膜进行了组成、结构和性质表征。研究结果表明,多金属氧酸盐纳米粒子在复合膜中原位形成了,且保持原来的结构和性能。膜的特征吸光度随着反应循环的增加而线性增长,膜表面在反应前后也呈现不同的粗糙度。
     当我们利用多酸的酸性进行原位反应时,先将被聚电解质前体膜修饰后的基片放入多酸溶液中吸附,然后再吸附作为沉淀剂的季铵盐,使多酸在膜中被沉淀下来,不同种类的多酸或实验条件,可以得到不同的实验结果。以12-钼磷酸为原料,形成的纳米粒子不仅尺寸而且形貌均随反应循环而发生变化,其形貌由最初的球型粒子逐渐生长成为鹅卵石型结构;以12-钨硅酸为原料,则形成了分散均匀的纳米棒,纳米棒的长度可以通过季铵盐的烷基链来调节;当选择硝酸银为沉淀剂时,我们改变了反应顺序,先将前体膜浸入硝酸银溶液中,然后再浸入钨硅酸溶液中,从而得到了构型好的球状纳米粒子,并且一直保持球状形貌。
     当利用多酸的强氧化性进行原位反应时,先将前体膜浸入pH=4的吡咯单体溶液中,在此状态下,吡咯单体带正电荷,可以被吸附到膜内,然后再浸入12-钼磷酸的溶液中,使吡咯单体在膜中发生氧化聚合,形成多酸杂化的聚吡咯纳米粒子,随着反应循环的增加,纳米粒子的尺寸增大了,而且当反应到一定程度后,纳米粒子清晰可见,并且有些连接成链。
     聚电解质前体膜不仅可以用作纳米反应器,而且它还可以修饰基片,从而组装一些对基片有特殊要求的材料。选择含有氨基的聚阳离子和PSS交替沉积来构筑前体膜,将截短的多臂碳纳米管垂直组装到了膜上,共价键的引入大大提高了形成的单层膜的稳定性,而且交替沉积技术的使用也克服了以往自组装碳纳米管阵列要求金或银基片的局限。
Nanocomposites of nanometer-sized materials embedded within a polymer matrix have attracted much attention, for their potential applications in catalysis, magnetics, and photonics. This thesis focuses on the preparation of such nanocomposite films based on polyoxometalates by combination of layer-by-layer self-assembly technology with in situ chemical reaction.
     The effective method of nucleation and growth of nanoparticles as applied to synthesize W- and Mo- containing polyoxometalates nanoparticles in precursor films by making use of their acidity or oxidative property. The controllable synthesis of nanoparticles can be achieved by increasing synthetic cycle of polyoxometalates. The composition, structure, and properties of the as prepared composite films have been characterized in detail by UV-vis, FTIR, X-ray photoelectron spectra, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and cycle voltammograms. The results indicate that the polyoxometalates nanoparticles in-situ formed in the films and their identities were preserved. The characteristic absorbance increased nearly in line with the number of synthetic cycle. The nanocomposite films showed different roughness before and after synthesis.
     By using the acidity of polyoxometalates, the substrate modified by polyelectrolyte precursor film was alternately dipping into polyoxometalates solution and solution of tetraalkylammonium salts as precipitator. The experiments show that different polyoxometalates as starting materials or reaction condition can lead to different results. Both the size and morphology of the nanoparticles changed with synthetic cycle when H3PMo12O40 was as raw material. Moreover, the morphology of them changed from global to egg-shaped. While, well dispersed nanorods were achieved when H4SiW12O40 was as raw material and the size of them increased with the reaction cycle. The length of nanorods can be tailored by choosing tetraalkylammonium with different alkyl chain. However, the manipulative sequence was exchanged when AgNO3 was as precipitator. The substrate was dipping into AgNO3 solution first and then H4SiW12O40 solution. The well defined global nanoparticles can be obtained and the size of them also increased with synthetic cycle, whereas, the morphology of them didn’t change.
     By using the strong oxidative property of polyoxometalates, the precursor films were immersed in pyrrole monomer solution with pH=4 and then in H3PMo12O40 solution. The positive charged pyrrole monomer was adsorbed and then polymerized in the films. Repeating above steps, the polypyrrole nanoparticles doped with polyoxometalates were formed and the size of them increased with the increasing of synthetic. Moreover, the
引文
[1] Pope M T, Müller A. Polyoxometalate Chemistry from Topology via Self-Assembly to Applications [M]. Netherlands: Kluwer Academic Publishers, 2001. P1-6.
    [2] Pope M T. Heteropoly and Isopoly Oxometalates [M]. Berlin: Springer-Verlag, 1983. 1-10.
    [3] Müller A, Peters F, Pope M T. Polyoxometalates: Very Large Clusters-Nanoscale Magnets [J], Chem Rev, 1998, 98(1): 239-271.
    [4] 王恩波,胡长文,许林著,多酸化学导论[M]. 北京:化学工业出版社,1998,1.
    [5] (a) Berzelius J. Pogg Ann, 1826, 6: 369; (b) 佐佐木行美. 化学縂说. 1993, 20: 3.
    [6] Svanberg L, Struve H. J Prakt Chem, 1848, 44: 257-291.
    [7] Marignac C. C R Acad Sci, 1862, 55: 888.
    [8] Bradley A J, Illingworth J W. Proc Roy Soc A, 1936, 157: 113.
    [9] Evans H T, Jr. The crystal structures of ammonium and potassium molybdotellurates[J]. J Am Chem Soc, 1948, 70(3): 1291-1292.
    [10] Aderson J S. Nature 1937, 140: 850.
    [11] (a)Lindqvist I, Arkiv Kemi. 1950, 2: 325; (b) Shimao E. Bull Soc Chem Japan, 1967, 40: 1609; (c) Evans H T, Jr. Refined molecular structure of the heptamolybdate and hexamolybdotellurate ions[J]. J Am Chem Soc, 1968, 90(12): 3275-3276.
    [12] Dawson B. The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62)· 14H2O[J]. Acta Crystallogr, 1953, 6(2): 113-126.
    [13] Katsoulis D E, A survey of applications of polyoxometalates [J]. Chem Rev, 1998, 98(1): 359-387.
    [14] Müller A, Beckmann E, B?gge H, et al. Inorganic Chemistry Goes Protein Size: A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking[J]. Angew Chem Int Ed Engl, 2002, 41(7): 1162-1167.
    [15] Yamase T, Prokop P V. Photochemical Formation of Tire-Shaped Molybdenum Blues: Topology of a Defect Anion, [Mo142O432H28(H2O)58]12- [J]. Angew Chem Int Ed Engl, 2002, 41(3): 466-469.
    [16] Yamase T. Photo- and Electrochromism of Polyoxometalates and Related Materials [J]. Chem Rev, 1998, 98(1): 307-326.
    [17] You X, Shan B, Zhang X, et al. Absorption spectra of an electrochromic window based on molybdovanadophosphoric acid, Prussian blue and a solid polymer electrolyte[J]. J Appl Electrochem, 1997, 27(11): 1297-1299.
    [18] Nakamura O, Kodama T. O. Chem Lett, 1979, 79(1):17-21.
    [19] Nakamura O. U.S. Patent 4, 454, 224 1985.
    [20] Yamauchi S Japan Patent 62, 277, 126 1987.
    [21] Signal Co Inc. Japan Patent 62, 172, 084 1987.
    [22] Müller A, Shah S Q N, B?gge H. Molecular growth from a Mo176 to a Mo248 cluster [J]. Nature, 1999, 397(6714): 48-50.
    [23] Gomez-Garcia C J, Borras-Almenar J J, Coronado E. Organic-inorganic salts made by TTF and magnetic clusters [J]. Synth Met, 1993, 56(1):2023-2027.
    [24] Kozhevnikov I V. Catalysis by heteropoly acids and multicomjponent polyoxometalates in liquid-phase reactions [J]. Chem Rev, 1998, 98(1): 171-198.
    [25] 戴树桂. 环境化学进展 [M], 北京:化学工业出版社,2005.
    [26] Yamase T, Watanabe R. Photoredox chemistry of Keggin dodecatungstoborate [BW12O40]5– and role of heterogeneous catalysis in hydrogen formation [J]. J Chem Soc Dalton Trans, 1986, (8):1669-1672.
    [27] Yamase T, Usami T. Photocatalytic dimerization of olefins by decatungstate(VI), [W10O32]4–, in acetonitrile and magnetic resonance studies of photoreduced species [J]. J Chem Soc Dalton Trans, 1988, (1):183-190.
    [28] Yamase T. Production of hydrogen by photogalvanic cell. Part IV [1]. Photoelectrochemistry of alkylammonium tungstate [J]. Inorg Chim Acta, 1981, 54: L165-L167.
    [29] Yamase T. Hydrogen production by ultraviolet irradiation of alkylammonium polytungstate in neutral aqueous solutions [J]. Inorg Chim Acta, 1982, 64, L155-L156.
    [30] Brown A P, Anson F C. Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface [J]. Anal Chem, 1977, 49(11): 1589-1595.
    [31] Yamase T, Fujita H, Fukushima K. Medical chemistry of polyoxometalates. Part 1. Potent antitumor activity of polyoxomolybdates on animal transplantable tumors and human cancer xenograft [J]. Inorg Chim Acta, 1988, 151(1): 15-18.
    [32] Yamase T, Tomita K. Medical chemistry of polyoxometalates Part 3. Electrochemical study of a 1:1 polyoxomolybdate-flavin mononucleotide complex in aqueous solutions [J]. Inorg Chim Acta, 1990, 169(2): 147-150.
    [33]Ito T, Inumaru K, Misono M. Structure of Porous Aggregates of the Ammonium Salt of Dodecatungstophosphoric Acid, (NH4)3PW12O40: Unidirectionally Oriented Self-Assembly of Nanocrystallites [J]. J Phys Chem B, 1997, 101(48): 9958-9963.
    [34] Ito T, Inumaru K, Misono M. Epitaxially Self-Assembled Aggregates of Polyoxotungstate Nanocrystallites, (NH4)3PW12O40: Synthesis by Homogeneous Precipitation Using Decomposition of Urea [J]. Chem Mater, 2001, 13(3): 824-831.
    [35] Kang Z H, Wang E B, Jiang M, et al. Convenient Controllable Synthesis of Inorganic 1D Nanocrystals and 3D High-Ordered Microtubes [J]. Eur J Inorg Chem, 2003, 370-376.
    [36] Kang Z H, Wang Y B, Wang E B, et al. Polyoxometalates nanoparticles: synthesis, characterization and carbon nanotube modification [J]. Solid State Commun 2004, 129(9): 559-564.
    [37] Kang Z H, Wang E B, Jiang M, et al. Synthesis and characterization for polyoxometalate nanowires based on a novel microemulsion process [J]. Nanotechnology, 2004, 15(5): 55-58.
    [38] 康振辉. 基于“C-H-O”体系软化学的碳纳米管的合成、剪裁与催化特性[D]. 长春:东北师范大学化学系,2005.
    [39] Jiang M, Wang E B, Kang Z H. In Situ Controllable Synthesis of Polyoxometalate Nanoparticles in Polyelectrolyte Multilayers [J]. J Mater Chem, 2003, 13(4):647-649.
    [40] Bu W F, H L Li, Sun H. Polyoxometalate-Based Vesicle and Its Honeycomb Architectures on Solid Surfaces [J]. J Am Chem Soc, 2005, 127(22), 8016-8017.
    [41] Bu W F, Wu L X, Zhang X. Surfactant-Encapsulated Europium-Substituted Heteropolyoxotungatate: The Structural Characterization and Photophysical Properties of Its Solid State, Solvent-Casting Film, and Langmuir-Blodgett Film [J]. J Phys Chem B, 2003, 107(48): 13425-13431.
    [42] Bu W F, Li H L, Li W. Surfactant-Encapsulated Europium-Substituted Heteropolyoxotungstates: Structural Characterizations and Photophysical Properties [J]. J Phys Chem B, 2004, 108(34):12776-12782.
    [43] Zhang X, Shen J C. Self-assembled ultrathin films: from layered nanoarchitectures to functional assemblies [J].Adv Mater, 1999, 11(13): 1139-1143.
    [44] Decher G. Layered nanoarchitectures via directed assembly of anionic and cationic molecules, in Comprehensive supramolecular chemistry, Vol. 9, Templating, self-assembly and self-organization [M]. Ed. Sauvage J P, Housseini M W, New York: Pergamon Press, 1996, 507-528.
    [45] Lehn J M. Supramolecular Chemistry-Concepts and Perspectives [M]. Weinheim: VCH Publishers, 1995.
    [46] Ringsdorf H, Schlarb B, Venzmer J, et al. Molecular Architecture and Function of Polymeric Oriented Systems: Models for the Study of Organization, Surface Recognition, and Dynamics of Biomembranes [J]. Angew Chem Int Ed, 1988, 27(1): 113-158.
    [47] Shen J C, Sun J Q, Zhang X. Polymeric nanostructured composite films [J]. Pure Appl Chem, 2000, 72(1-2): 147.
    [48] V?gtle F. Supramolecular Chemistry [M].Translated by Zhang Xi, Lin Zhi-Hong, Gao Qian. Changchun: Jilin University Press, 1995.
    [49] 孙俊奇. 纳米结构三维组装与功能化研究[D]. 长春:吉林大学,2001.
    [50] 张铁锐. 多金属氧酸盐的组装及光电功能特性的研究[D]. 长春:吉林大学化学学院,2003.
    [51] Blodgett K B, Langmuir I. Built-Up Films of Barium Stearate and Their OpticalProperties [J]. Phys Rev, 1937, 51(11): 964-982.
    [52] Blodgett K B. Films Built by Depositing Successive Monomolecular Layers on a Solid Surface [J]. J Am Chem Soc, 1935, 57(6): 1007-1022.
    [53] Ulman A. Formation and Structure of Self-Assembled Monolayers [J]. Chem Rev, 1996, 96(4): 1533-1554.
    [54] Nuzzo R G. Fusco F A, Allara D L. Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces [J]. J Am Chem Soc, 1987,109 (8): 2358-2368.
    [55] Poter M D. Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry [J], J Am Chem Soc, 1987,109 (12): 3559-3568.
    [56] Allara D L, Nuzzo R G. Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface [J]. Langmuir, 1985, 1(1): 45-52.
    [57] Maoz R, Sagiv J. Penetration-controlled reactions in organized monolayer assemblies. 1. Aqueous permanganate interaction with monolayer and multilayer films of long-chain surfactants [J]. Langmuir, 1987, 3(6): 1034-1044.
    [58] Tillman N. Incorporation of phenoxy groups in self-assembled monolayers of trichlorosilane derivatives. Effects on film thickness, wettability, and molecular orientation [J]. J Am Chem Soc, 1988,110 (18): 6136-6144.
    [59] Katz H E. A photoreceptor specific protein kinase C mediates calcium-dependent photoreceptor deactivation and light-dependent retinal degeneration in Drosophila [J]. Science, 1991, 254: 1458-1465.
    [60] Tillman N, Ulman A, Penner T L. Formation of multilayers by self-assembly [J]. Langmuir, 1989, 5 (1): 101-111.
    [61] Decher G, Hong J D, Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces [J]. Thin Solid Film, 1992, 210-211 (2): 831-835.
    [62] Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites[J]. Science, 1997, 277 (5330): 1232-1237.
    [63] Decher G, Schmitt J. Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes[J]. Progr Colloid Polym Sci, 1992, 89:160-164.
    [64] (a) Schmitt J, Grünewald T, Kj?r K, et al. The Internal Structure of Layer-by-Layer Adsorbed Polyelectrolyte Films: A Neutron and X-ray Reflectivity Study [J]. Macromolecules, 1993, 26(25): 7058-7063; (b) Caruso F. Hollow Capsule Processing through Colloidal Templating and Self-Assembly [J]. Chem Eur J, 2000, 6(3): 413-419.
    [65] Hong J D, Lowack K, Schmitt J, et al. Layer-by-Layer Deposited Multilayer Assemblies of POlyelectrolytes and Proteins: From Ultrathin Films to Protein Arrays [J]. Progr Colloid Polym Sci 1993, 93: 98-102.
    [66] Decher G, Lehr B, Lowack, et al. New Nanocomposite Films for Biosensors: Layer-by-Layer adsorbed Films of Polyelectrolytes, Proteins or DNA [J]. Biosens Bioelectron, 1994, 9(9-10): 677-684.
    [67] Onda M, Lvov Y, Ariga K, et al. Sequential Actions of Glucose Oxidase and Peroxidase in Molecular Films Assembled by Layer-by-layer Alternate Adsorption [J]. Biotechnol Bioeng, 1996, 51(2): 163-167.
    [68] Mecking S, Thomann R. Core-Shell Microspheres of a Catalytically Active Rhodium Complex Bound to a Polyelectrolyte-Coated Latex [J]. Adv Mater, 2000, 12(13): 953-956.
    [69] Tian J, Wu C C, Thompson M E, et al. Photophysical Properties, Self-Assembled Thin Films, and Light-Emitting-Diodes of Poly(p-Pyridylvinylene)s and Poly(p-Pyridinium Vinylene)s [J]. Chem Mater, 1995, 7(11): 2190-2198.
    [70] Farhat T R, Schlenoff J B. Ion-Transport and Equilibria in Polyelectrolyte Multilayers [J]. Langmuir, 2001, 17(4): 1184-1192.
    [71] Harris J J, Bruening M L. Electrochemical and in-Situ Ellipsometric Investigation of the Permeability and Stability of Layered Polyelectrolyte Films [J]. Langmuir, 2000, 16(4): 2006-2013.
    [72] Decher G. in : Decher G, Schlenoff J B, editors. Multilayer thin films-Sequential assembly of nanocomposite materials. Weinheim: Wiley-VCH, 2003, 1-46.
    [73] Lvov Y, Ariga K, Kunitake T. Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption [J]. J Am Chem Soc, 1995,117(22): 6117-6123.
    [74] Lvov Y, Decher G, Sukhorukov G. Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine) [J]. Macromolecules, 1993, 26(20): 5396-5399.
    [75] Cooper T, Campbell A, Crane R, Formation of polypeptide-dye multilayers by electrostatic self-assembly technique [J]. Langmuir, 1989, 11(7): 2713-2718.
    [76] Kleinfeld E R, Ferguson G S, Stepwise formation of ultrathin films of a titanium (hydr)oxide [J]. Science, 1994, 265: 370-373.
    [77] Lvov Y, Ariga K, Onda M, et al, Alternate Assembly of Ordered Multilayers of SiO2 and Other Nanoparticles and Polyions [J]. Langmuir, 1997, 13(23): 6195-6203.
    [78] Ichinose I, Tagawa H, Mizuki S, et al, Formation Process of Ultrathin Multilayer Films of Molybdenum Oxide by Alternate Adsorption of Octamolybdate and Linear Polycations [J]. Langmuir,1998, 14(1): 187-192.
    [79] Ariga K, Lvov Y, Kunitake T, Assembling Alternate Dye-Polyion Molecular Films by Electrostatic Layer-by-Layer Adsorption [J]. J Am Chem Soc, 1997,119(9): 2224-2231.
    [80] Rouse J H, Lillehei P T. Electrostatic Assembly of Polymer/Single Walled Carbon Nanotube Multilayer Films [J]. Nano Lett, 2003, 3(1): 59-62.
    [81] He J A, Valluzzi R, Yang K, et al, Electrostatic Multilayer Deposition of a Gold-Dendrimer Nanocomposite [J]. Chem Mater, 1999, 11(11): 3268-3274.
    [82] Serizawa T, Yamaguchi M, Akashi M, Enzymatic Hydrolysis of a Layer-by-Layer Assembly Prepared from Chitosan and Dextran Sulfate [J]. Macromolecules, 2002, 35(23): 8656-8658.
    [83] Wang L Y, Fu Y, Wang Z, et al, Investigation into an Alternating Multilayer Film of Poly(4-Vinylpyridine) and Poly(acrylic acid) Based on Hydrogen Bonding [J]. Langmuir, 1999, 15(4): 1360-1363.
    [84] Kim J, Wang H C, Kumar J, et al, Novel Layer-by-layer Complexation Technique and Properties of the Fabricated Films [J]. Chem Mater, 1999, 11(8): 2250-2256.
    [85] Shimazaki Y, Mitsuishi M, Ito S, et al, Preparation and Characterization of the Layer-by-Layer Deposited Ultrathin Film Based on the Charge-Transfer Interaction in Organic Solvents [J]. Langmuir, 1998, 14(10): 2768-2773.
    [86] Chen K, Caldwell W B, Mirkin C A. Fullerene self-assembly onto (MeO)3Si(CH2)3NH2-modified oxide surfaces [J]. J Am Chem Soc, 1993, 115(3): 1193-1194
    [87] Pileni M P, Reverse micelles as microreactors [J]. J Phys Chem, 1993, 97(27): 6961-6973.
    [88] Kane R S, Cohen R E, Silbey R, et al, Synthesis of Doped ZnS Nanoclusters within Block Copolymer Nanoreactors [J]. Chem Mater, 1999, 11(1): 90-93.
    [89] Wang Y, Herron N. Optical properties of cadmium sulfide and lead (II) sulfide clusters encapsulated in zeolites [J]. J Phys Chem,1987, 91(2): 257-260.
    [90] Gannelis E P, Krishnamoorti R, Manias E, Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes [J]. Advances in Polymer Science, 1999, 138: 107-147.
    [91] Xiong H M, Cheng M H, Zhou Z Q, et al, A New Approach to the Fabrication of a Self-Organizing Film of Heterostructured Polymer/Cu2S Nanoparticles [J]. Adv Mater, 1998, 10(7): 529-532.
    [92] Xiong H M, Cheng M H, Zhou Z Q, A New Approach for Fabrication of a Self-Organizing Film of Heterostructured Ppolymer/CdS Nanoparticles [J]. Supramolecular Science, 1998, 5(5-6): 623-626.
    [93] Joly S, Kane R, Radzilowski L, et al, Multilayer Nanoreactors for Metallic and Semiconducting Particles [J]. Langmuir, 2000, 16(3): 1354-1359.
    [94] Wang T C, Polyelectrolyte Multilayer Nanoreactors for Preparing Silver Nanoparticle Composites: Controlling Metal Concentration and Nanoparticle Size [J]. Langmuir, 2002, 18(8): 3370-3375.
    [95] Dai J H, Bruening M L. Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films [J]. Nano Lett, 2002, 2(5), 497-501.
    [96] Dante S, Hou Z, Risbud S, et al, Nucleation of Iron Oxy-Hydroxide Nanoparticles by Layer-by-Layer Polyionic Assemblies [J], Langmuir, 1999, 15(6): 2176-2182.
    [97] Zhang L Q, Dutta A K, Jarero G, et al. Nucleation and growth of cobalt hydroxide crystallites in organized polyionic assemblies [J]. Langmuir, 2000, 16(17): 7095-7100.
    [98] Dutta A K, Jarero G, Zhang L Q, et al, In-Situ Nucleation and Growth of -FeOOH Nanocrystallites in Polymeric Supramolecular Assemblies [J]. Chem Mater, 2000,12(1): 176-181.
    [99] Dutta A K, Ho T Hang L Q, et al. Nucleation and Growth of Lead Sulfide Nano- and Microcrystallites in Supramolecular Polymer Assemblies [J]. Chem Mater 2000, 12(4): 1042-1048.
    [100] Fojas A M, Murphy E, Stroeve P. Layer-by-Layer Polymeric Supramolecular Structures Containing Nickel Hydroxide Nanoparticles and Microcrystallites [J]. Ind Eng Chem Res, 2002, 41(11): 2662-2667.
    [101] Stroeve P. Nucleation of Nanoparticles in Ultrathin Polymer Films in Encyclopedia of Nanoscience Nanotechnology [M], New York: Marcel Dekker, 2004, pp. 2713–2719.
    [102] Gomez-Romero P, Lira-Cantu M. Hybrid organic-inorganic electrodes: the molecular materials formed between polypyrrole and the phosphomolybdate anion [J]. Adv Mater 1997, 9(2): 144-147.
    [103] Lira-Cantu M, Gomez-Romero P. In Recent Research Developments in Physical Chemistry [M] Pandalai S G., Ed. Transworld Research Network, 1997.
    [104] Lapkowski M, Barth M, Lefrant S, et al. Changes in catalytic properties of substituted and unsubstituted heteropolyacids in conductive polymer matrix [J]. Synth Met, 1995, 69(1-3): 127-128.
    [105] Cho K, Kim Y, Choy J-H, Chung S, et al. Electrochemical property of surface modified polypyrrole film with heteropoly anions [J]. Synth Met 1995, 69(1-3): 481-482.
    [106] Zagorska M, Kulsezewicz-Bajer L, Lefrant S, et al. Modification of polyacetylene and polyalkylthiophene by doping with heteropolyanions [J]. Synth Met, 1990, 37(1-3): 99-106.
    [107] Keita B, Bouaziz D, Nadjo L. Surface functionalization with oxometallates entrapped in polymeric matrices: Part 3. Homogeneous vs. heterogeneous-phase formation and equilibria of isopolytungstates[J]. J Electroanal Chem 1990, 284(2): 431-444.
    [108] Pham M C, Moslih J, Chauveau F, et al. In situ multiple internal reflection Fourier transform infrared spectroscopic (MIRFTIRS) study of the electrochemical immobilization of heteropolyanions in poly(1-naphthol) coated electrodes [J]. J Appl Electrochem, 1991, 21(10): 902-909.
    [109] Pham M –C, Mostefai M, Lacaze P -C. Synthesis and characterization of electrodesmodified by poly(1-naphthol) films doped with heteropolyanions [J]. Synth Met, 1992, 52(3): 305-317.
    [110] Clemente-León M, Coronado E, Galan-Mascaros J R, et al. Hybrid molecular materials based on organic molecules and the inorganic magnetic cluster [M4(H2O)2(PW9O34)2]10- (M2+=Co, Mn) [J]. J Mater Chem 1998, 8(2): 309-312.
    [111] Clemente-León, M.; Agricole, B.; Mingotaud, C.; et al. Toward new organic/inorganic superlattices: Keggin POMs in Langmuir and Langmuir-Blodgett films [J]. Langmuir 1997, 13(8): 2340-2347.
    [112] Clemente-León M, Mingotaud C, Agricole B, et al. Application of the Langmuir-Blodgett technique to POMs: towards new magnetic films [J]. Angew Chem Int Engl, 1997, 36(10): 1114-1116.
    [113] Clemente-León M, Mingotaud C, Gomez-Garcia C J, et al. POMs in Langmuir-Blodgett films: toward new magnetic materials [J]. Thin Solid Films 1998, 327-329: 439-442.
    [114] Clemente-León M, Mingotaud C, Gomez-Garcia C J, et al. Magnetic films based upon POM clusters and single molecule nanomagnets [J], Synth Met 1999, 103(1-3): 2263-2264.
    [115] Liu S, Tang Z, Wang E, et al. Fabrication and characterization of heteropolyanion Langmuir-Blodgett Films [J], Thin Solid Films 1999, 339(1-2): 277-283.
    [116] Kurth D G., Lehmann P, Volkmer D, et al. Surfactant-encapsulated clusters (SECs): (DODA)20(NH4)[H3Mo57V6(NO)6O183(H2O)18], a case study [J], Chem Eur J, 2000, 6(2): 385-393.
    [117] Volkmer D, Du Chesne A, Kurth D G, et al. Toward nanodevices: synthesis and characterization of the nanoporous surfactant-encapsulated Keplerate (DODA)40(NH4)2[(H2O)nMo132O372(CH3COO)30(H2O)72] [J], J Am Chem Soc, 2000, 122(9): 1995-1998.
    [118] Clemente-León M, Coronado E, Delgaes P, et al. Hybrid Langmiur-Blodgett films formed by alternating layers of magnetic polyoxometalate clusters and organic donor molecules-towards the preparation of multifunctional molecular materials [J], Adv Mater 2001,13(8): 574-577.
    [119] Wang J, Wang H, Fu L, Liu F, et al. Study on highly ordered luminescent Langmuir-Blodgett films of heteropolytungstate complexes containing lanthanide [J], Thin Solid Films, 2002, 415(1-2): 242-247.
    [120] Wang J, Wang H, Liu F, et al. Langmuir-Blodgett films based on europium-substituted heteropolytungstate and their luminescence properties [J], J Luminescence, 2003, 101(1-2): 63-70.
    [121] Ichinose L, Tagawa H, Mizuki S, et al. Formation process of ultrathin multilayer films of molybdenum oxide by alternate adsorption of octamolybdate and linear polycations [J],Langmuir 1998 14(1): 187-192.
    [122] Moriguchi L, Fendler J H Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylanunonium) chloride and sodium decatungstate [J]. Chem Mater 1998, 10(8): 2205-2211.
    [123] Caruso F, Kurth D G, Volkmer D, et al. Ultrathin molybdenum plyoxometalate-polyelectrolyte multilayer films [J], Langmuir, 1998, 14(13): 3462-3465.
    [124] Kurth D G Volkmer D, Ruttorf M, et al. Ultrathin composite films incorporating the nanoporous isopolyoxomolybdate "Keplerate" (NH4)42[Mo132O372(CH3COO)30(H2O)72] [J], Chem Mater 2000, 12(10): 2829-2831.
    [125] Liu S, Kurth D G., Bredenkotter B, et al. The Structure of Self-Assembled Multilayers with Polyoxometalate Nanoclusters [J]. J Am Chem Soc, 2002, 124 (41): 12279-12287.
    [126] Xu L, Zhang H, Wang E, et al. Preparation and characterization of photoluminescent ultrathin films based on polyoxometalates [J], Mater Chem Phys, 2003, 77 (2): 484-488.
    [127] Xu L, Zhang H, Wang E, et al. Photoluminescent multilayer films based on polyoxometalates [J], J Mater Chem, 2002, 12(3): 654-657.
    [128] Xu L, Wang E, Li Z, et al. Preparation and nonlinear optical properties of ultrathin composite films containing both a polyoxometalate anion and a binuclear phthalocyanine, New J Chem 2002, 26(6): 782-786.
    [129] Kuhn A, Anson F C. Adsorption of monolayer of P2Mo18O626- and deposition of multiple layers of Os(bpy)32+-P2Mo18O626- on electrode surfaces [J], Langmuir, 1996, 12(22): 5481-5488.
    [130] Cheng L, Niu L, Gong J, et al. Electrochemical growth and characterization of POM-containing monolayers and multilayers on alkanethiol monolayers self-assembled on gold electrodes [J], Chem Mater 1999, 11(6): 1465-1475.
    [131] Liu S, Tang Z, Shi Z, et al. Electrochemical preparation and characterization of silicotungstic heteropolyanion monolayer electrostatically linked aminophenyl on carbon electrode surface [J], Langmuir, 1999, 15(21): 7268-7275.
    [132] Liu J, Cheng L, Liu B, et al. Covalent Modification of a Glassy Carbon Surface by 4-Aminobenzoic Acid and Its Application in Fabrication of a Polyoxometalates-Consisting Monolayer and Multilayer Films [J], Langmuir, 2000, 16(19): 7471-7476.
    [133] Tang Z, Liu S, Wang E, et al. Preparation, Structures, and Electrochemistry of a New Polyoxometalate-Based Organic/Inorganic Film on Carbon Surfaces [J], Langmuir, 2000, 16(13): 5806-5813.
    [134] Cheng L, Cox J A.Nanocomposite Multilayer Film of aRuthenium Metallodendrimer and a Dawson-Type Polyoxometalate asa Bifunctional Electrocatalyst [J], Chem Mater, 2002, 14 (1): 6-8.
    [135] 冯威,张铁锐,刘延,等. Keggin 结构钨磷酸/聚乙烯毗咯烷酮复合膜的制备和光致变色性质研究 [J],高等学校化学学报,2001, 22(5): 830-832.
    [136] Feng W, Zhang T R, Wei L, et al. Photochromic behavior and mechanism of thin films in H3PW12O40/polyacrylamide system [J], Mater Lett, 2002, 54(4): 309- 313.
    [137] Zhang T R, Feng W, Lu R, et al. Synthesis and characterization of polyoxometalate based photochromic inorganic-organic nanocomposites [J], Thin Solid Films, 2002, 402(1-2): 237-241.
    [138] Zhang T R, Feng W, Lu R, et al. Preparation of photochromic sol-gel composite films containing dodecaphosphotungstic acid [J], Mater Chem Phys, 2003, 78 (2): 380-384.
    [139] Wang J, Liu F, Fu L, et al. Luminescence properties of rare earth-polyoxometalate thin film deposited by sol-gel process [J], Mater Lett, 2002, 56(3): 300-304.
    [1] Tang Z Y, Kotov N A, Giersig M. Self-assembly: From nanoscale to microscale colloids [J]. Science,2002, 297(5579): 237-240.
    [2] Chan W C W, Nie S M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection [J]. Science, 1998, 281(5385): 2016-2018.
    [3] Park S J, Taton T A, Mirkin C A. Arry-based electrical detection of DNA with nanoparticles [J]. Science, 2002, 295(5559):1503-1506.
    [4] Ostrander J W, Mamedov A A, Kotov N A, et al. Two modes of linear layer-by-layer growth of nanoparticle- polylectrolyte multilayers and different interactions in the layer-by-layer deposition [J] J Am Chem Soc, 2001,123(6): 1101-1110.
    [5] Kotov N A. in Multilayer Thin Films-Sequential Assembly of Nanocomposite Materials[M]. Decher G, Schlenoff J B. Wiley-VCH: Weinheim, 2003, P208-243.
    [6] Decher G.. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites [J]. Science, 1997, 277(5330): 1232-1237.
    [7] Zhang X, Shen J C. Self-Assembled Ultrathin Films: From Layered Nanoarchitectures to Functional Assemblies [J]. Adv. Mater., 1999, 11, 1139-1143.
    [8] Lvov Y, Lu Z, Schenkman J B, Zu X, et al. Direct Electrochemistry of Myoglobin and Cytochrome P450cam in Alternate Layer-by-Layer Films with DNA and Other Polyions [J]. J Am Chem Soc, 1998,120(17): 4073-4080.
    [9] Jiang S, Liu M. Aggregation and Induced Chirality of an Anionic meso-Tetraphenylsulfonato Porphyrin (TPPS) on a Layer-by-Layer Assembled DNA/PAH Matrix [J]. J Phys Chem B, 2004,108(9): 2880-2884.
    [10] Zhang H Y, Fu Y, Wang D, et al. Hydrogen-bonding-directed layer-by-layer assembly of dendrimer and poly(4-vinylpyridine) and micropore formation by post-base treatment [J]. Langmuir, 2003,19(20): 8497-8502.
    [11] Zhang H Y, Wang Z Q, Zhang Y Q, et al. Hydrogen-bonding-directed layer-by-layer assembly of poly(4-vinylpyridine) and poly(4-vinylphenol): Effect of solvent composition on multilayer buildup [J]. Langmuir, 2004, 20(21): 9366-9370.
    [12] Liu S Q, Kurth D G., Bredenk?tter B, et al. The Structure of Self-Assembled Multilayers with Polyoxometalate Nanoclusters [J]. J Am Chem Soc, 2002, 124(41): 12279-12287.
    [13] Cassagneau T, Mallouk T E, Fendler J H. Layer-by-layer assembly of thin film zener diodes from conducting polymers and CdSe nanoparticles [J]. J Am Chem Soc, 1998, 120(31): 7848-7859.
    [14] Wang T C, Rubner M F, Cohen R E. Manipulating nanoparticle size within polyelectrolytemultilayers via electroless nickel deposition [J]. Chem. Mater., 2003,15(1): 299-304.
    [15] Dai J H, Bruening M L. Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films [J]. Nano Lett, 2002, 2(5): 497-501.
    [16] Wang T C, Rubner M F, Cohen R E. Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size [J]. Langmuir, 2002, 18(8): 3370-3375.
    [17] Joly S, Kane R, Radzilowski L, et al.Multilayer nanoreactors for metallic and semiconducting particles [J]. Langmuir, 2000, 16(3): 1354-1359.
    [18] Dante S, Hou Z, Risbud S, et al. Nucleation of Iron Oxy-Hydroxide Nanoparticles by Layer-by-Layer Polyionic Assemblies [J]. Langmuir, 1999, 15(6): 2176-2182.
    [19] Zhang L Q, Dutta A K, Jarero G, et al. Nucleation and growth of cobalt hydroxide crystallites in organized polyionic assemblies [J]. Langmuir, 2000, 16(17): 7095-7100.
    [20] Dutta A K, Jarero G, Zhang L Q, et al, In-Situ Nucleation and Growth of -FeOOH Nanocrystallites in Polymeric Supramolecular Assemblies [J]. Chem Mater, 2000,12(1): 176-181.
    [21] Dutta A K, Ho T Hang L Q, et al. Nucleation and Growth of Lead Sulfide Nano- and Microcrystallites in Supramolecular Polymer Assemblies [J]. Chem Mater 2000, 12(4): 1042-1048.
    [22] Fojas A M, Murphy E, Stroeve P. Layer-by-Layer Polymeric Supramolecular Structures Containing Nickel Hydroxide Nanoparticles and Microcrystallites [J]. Ind Eng Chem Res, 2002, 41(11): 2662-2667.
    [23] Stroeve P. Nucleation of Nanoparticles in Ultrathin Polymer Films, in Encyclopedia of Nanoscience Nanotechnology [M], New York: Marcell Dekker, 2004, P2713-2719.
    [24] Pope M T, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines [J]. Angew Chem Int Ed Engl, 1991, 30(1): 34-48.
    [25] Errington R J, in Polyoxometalate Chemistry from Topology via Self-assembly to Applications [M]. M T Pope and Müller A. Netherlands: Kluwer, 2001, P7-22.
    [26] Müller A, Zhou Y S, Zhang L J, et al. En route to coordination chemistry under confined conditions in a porous capsule: Pr3+ with different coordination shells [J]. Chem Commun, 2004, (18): 2038-2045.
    [27] Ito T, Inumaru K, Misono M. Epitaxially Self-Assembled Aggregates of Polyoxotungstate Nanocrystallites, (NH4)3PW12O40: Synthesis by Homogeneous Precipitation Using Decomposition of Urea [J]. Chem Mater, 2001, 13(3): 824-831.
    [28] Kang Z H, Wang E B, Jiang M, et al. Convenient Controllable Synthesis of Inorganic 1D Nanocrystals and 3D High-Ordered Microtubes [J]. Eur J Inorg Chem, 2003, 370-376.
    [29] Jiang M, Wang E B, Kang Z H. In situ controllable synthesis of polyoxometalate nanoparticles in polyelectrolyte multilayers [J]. J Mater Chem, 2003, 13(4):647-649.
    [30] Filowitz M, Ho R K C, Klemperer W G. et al. Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 1. Sensitivity and resolution [J]. Inorg Chem, 1979, 18(1):93-103 and references therein.
    [31] Kurth D G Volkmer D, Ruttorf M, et al. Ultrathin composite films incorporating the nanoporous isopolyoxomolybdate "Keplerate" (NH4)42[Mo132O372(CH3COO)30(H2O)72] [J], Chem Mater 2000, 12(10): 2829-2831.
    [32] Liu S Q, Volkmer D, Kurth D G., From molecular modules to modular materials [J]. J Clus Sci, 2003, 14(3): 405-419.
    [33] Jiang M, Wang E B, Wei G. et al.A novel photochromic multilayer based on preyssler's cluster [J]. New J Chem, 2003, 27(9): 1291-1293.
    [34] Cho J, Quinn J F, Caruso F. Fabrication of Polyelectrolyte Multilayer Films Comprising Nanoblended Layers [J] J Am Chem Soc, 2004, 126(8): 2270-2271.
    [35] Quinn J F, Yeo J C C, Caruso F. Layer-by-Layer Assembly of Nanoblended Thin Films: Poly(Allylamine Hydrochloride) and a Binary Mixture of a Synthetic and Natural Polyelectrolyte [J]. Macromolecules, 2004, 37(17): 6537-6543.
    [36] (a) Wang X L, Kang Z H, Wang E B, et al. Inorganic- organic hybrid polyoxometalate nanoparticle modified wax impregnated graphite electrode: preparation, electrochemistry and electrocatalysis [J]. J Electroanal Chem, 2002, 523(1-2) 142-147.
    [37] Wang X L, Wang E B, Lan Y, et al. Renewable PMo12-Based Inorganic-Organic Hybrid Material Bulk-Modified Carbon Paste Electrode: Preparation, Electrochemistry and Electrocatalysis [J]. Electroanalysis, 2002, 14(15-16): 1116-1121.
    [38] Unoura K, Tanaka N. Comparative study of the electrode reactions of 12-molybdosilicate and 12-molybdophosphate [J]. Inorg Chem 1983, 22(20): 2963-2964
    [39] Liu S Q, Tang Z Y, Wang Z X et al. Oriented Polyoxometalate-Polycation Multilayers on a Carbon Substrate [J]. J Mater Chem, 2000, 10(12): 2727-2733.
    [1] (a) Pope M T, Müller A. Polyoxometalate Chemistry from Topology via Self-assembly to Applications[M]. Netherlands: Kluwer, 2001; (b) (a) Pope M T, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines Angew Chem Int Ed Engl, 1991, 30: 34-48; (c) Liu S Q, Volkmer D, Kurth D G., From molecular modules to modular materials [J]. J Clus Sci, 2003, 14(3): 405-419.
    [2] (a) Katsoulis D E. A Survey of Applications of Polyoxometalates [J]. Chem Rev, 1998, 98(1): 359-387; (b) Klemperer W G, Wall C G. Polyoxoanion Chemistry Moves Toward the Future: From Solids and Solutions to Surfaces [J]. Chem Rev, 1998, 98(1): 297-306.
    [3] (a) Moriguchi I, Fendler J H. Chem Mater, 1998, 10(8): 2205-2211; (b) Kurth D G Volkmer D, Ruttorf M, et al. Ultrathin composite films incorporating the nanoporous isopolyoxomolybdate "Keplerate" (NH4)42[Mo132O372(CH3COO)30(H2O)72] [J], Chem Mater 2000, 12(10): 2829-2831; (c) Kurth D G Volkmer D, Ruttorf M, et al. Ultrathin composite films incorporating the nanoporous isopolyoxomolybdate "Keplerate" (NH4)42[Mo132O372(CH3COO)30(H2O)72] [J], Chem Mater 2000, 12(10): 2829-2831.
    [4] (a) Decher G.. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites [J]. Science, 1997, 277(5330): 1232-1237; (b) Zhang X, Shen J C, Adv. Mater., 1999, 11, 1139-1143.
    [5] (a) Caruso F, Caruso R A, M?hwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science, 1998, 282(5391): 1111-1114; (b) Chen H, Zeng G H, Wang Z Q. To Combine Precursor Assembly and Layer-by-layer Deposition for Incorporation of Single-charged Species: Nanocontainers with Charge-selectivity and Nanoreactors [J]. Chem Mater, 2005, 17(26): 6679-6685; (c) Lvov Y, Ariga K, Kunitake T. Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption [J]. J Am Chem Soc, 1995, 117(22): 6117-6123; (d) Kotov N A, Dekany I, Fendler J H. Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films [J]. J Phys Chem, 1995, 99(35): 13065-13069.
    [6] Kotov N A, in Multilayer Thin Films – Sequential Assembly of Nanocomposite Materials [M]. Decher G, Schlenoff J B, Wiley-VCH: Weinheim, 2003, P208-243.
    [7] (a) Wang T C, Rubner M F, Cohen R E. Manipulating nanoparticle size within polyelectrolyte multilayers via electroless nickel deposition [J]. Chem Mater, 2003,15(1): 299-304; (b) Lee D, Rubner M F, Cohen R E. Formation of Nanoparticle-Loaded Microcapsules Based on Hydrogen-Bonded Multilayers [J]. Chem Mater, 2005, 17(5): 1099-1105.
    [8] Dai J H, Bruening M L. Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films [J]. Nano Lett, 2002, 2(5), 497-501.
    [9] (a) Stroeve P. Nucleation of Nanoparticles in Ultrathin Polymer Films, in Encyclopedia of Nanoscience Nanotechnology [M], New York: Marcell Dekker, 2004, P2713-2719; (b) Dutta A K, Jarero G, Zhang L Q, et al, In-Situ Nucleation and Growth of -FeOOH Nanocrystallites in Polymeric Supramolecular Assemblies [J]. Chem Mater, 2000,12(1): 176-18; (c) Zhang L Q, Dutta A K, Jarero G, et al. Nucleation and growth of cobalt hydroxide crystallites in organized polyionic assemblies [J]. Langmuir, 2000, 16(17): 7095-7100.
    [1] Fendler J H. Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications [M], Weinheim : Wiley-VCH Verlag Gmbh, 1998.
    [2] Fendler J H, Meldrum FC. The colloid chemical approach to nanostructured materials [J]. Adv Mater, 1995, 7(7): 607-632.
    [3] Weller H. Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules [J]. Angew Chem Int Ed Engl, 1993, 32(1): 41-53.
    [4] Kidambi S; Dai J H, Li J, et al. Selective Hydrogenation by Pd Nanoparticles Embedded in Polyelectrolyte Multilayers [J]. J Am Chem Soc, 2004, 126(9): 2658-2659.
    [5] Espinal L, Suib S L, Rusling J F. Electrochemical Catalysis of Styrene Epoxidation with Films of MnO2 Nanoparticles and H2O2 [J]. J Am Chem Soc, 2004,126(24): 7676-7682.
    [6] Matsui J, Akamatsu K, Hara N, et al. SPR Sensor Chip for Detection of Small Molecules Using Molecularly Imprinted Polymer with Embedded Gold Nanoparticles [J]. Anal Chem, 2005, 77(13): 4282-4285.
    [7] Yu A, Liang Z, Cho J, et al. Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films [J]. Nano Lett, 2003, 3(9): 1203-1207.
    [8] Kietzke T, Neher D, Kumke M, et al. A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices [J]. Macromolecules, 2004, 37(13): 4882-4890.
    [9] Tseng R J, Huang J, Ouyang J, et al. Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films [J]. Nano Lett 2005, 5(6): 1077-1080.
    [10] Cho J H, Lee S H, Kang H, et al. Quantitative analysis on the adsorbed amount and structural characteristics of spin self-assembled multilayer films [J]. Polymer, 2003, 44(18): 5455-5459.
    [11] Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites [J]. Science 1997, 277(5330): 1232-1237.
    [12] Fou A C, Rubner M F. Molecular-Level Processing of Conjugated Polymers. 2. Layer-by-Layer Manipulation of In-Situ Polymerized p-Type Doped Conducting Polymers [J]. Macromolecules, 1995, 28(21): 7115-7120.
    [13] Zhang X, Shen J C. Self-Assembled Ultrathin Films: From Layered Nanoarchitectures to Functional Assemblies [J]. Adv Mater, 1999, 11(13): 1139-1143.
    [14] Liu S Q, Kurth D G, Bredenk?tter B, et al. The Structure of Self-Assembled Multilayers with Polyoxometalate Nanoclusters [J]. J Am Chem Soc 2002, 124(41): 12279-12287.
    [15] Moriguchi I, Fendler JH. Characterization and electrochromic properties of ultrathin filmsself-assembled from poly(diallyldimethylanunonium) chloride and sodium decatungstate [J]. Chem Mater, 1998, 10(8): 2205-2211.
    [16] Liu SQ, Kurth DG, M?hwald H, Volkmer D. A thin-film electrochromic device based on a polyoxometalate cluster [J].Adv Mater, 2002, 14(3): 225-228.
    [17] Lan Y, Wang EB, Song YH, et al. Covalent assembly of shortened multiwall carbon nanotubes on polyelectrolyte films and relevant electrochemistry study [J]. J Colloid Interface Sci, 2005, 284(1): 216-221.
    [18] Dai JH, Bruening ML.Catalytic Nanoparticles Formed by Reduction of Metal Ions in Multilayered Polyelectrolyte Films [J]. Nano Lett, 2002, 2(5): 497-501.
    [19] Wang TC, Rubner MF, Cohen RE. Manipulating nanoparticle size within polyelectrolyte multilayers via electroless nickel deposition [J]. Chem Mater, 2003, 15(1): 299-304.
    [20] Wang TC, Rubner MF, Cohen RE. Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size [J]. Langmuir 2002, 18(8): 3370-3375.
    [21] Joly S, Kane R, Radzilowski L. Multilayer nanoreactors for metallic and semiconducting particles [J]. Langmuir, 2000, 16(3): 1354-1359.
    [22] Lee D, Rubner MF, Cohen RE. Formation of Nanoparticle-Loaded Microcapsules Based on Hydrogen-Bonded Multilayers [J]. Chem Mater, 2005, 17(5):1099-1105.
    [23] Dante S, Hou ZZ, Risbud S, et al. Nucleation of Iron Oxy-Hydroxide Nanoparticles by Layer-by-Layer Polyionic Assemblies [J].Langmuir, 1999, 15(6): 2176-2182.
    [24] Zhang LQ, K.Dutta A, Jarero G, et al. Nucleation and growth of cobalt hydroxide crystallites in organized polyionic assemblies [J].Langmuir 2000, 16(17): 7095-7100.
    [25] Dutta AK, Jarero G, Zhang LQ, et al. In-Situ Nucleation and Growth of -FeOOH Nanocrystallites in Polymeric Supramolecular Assemblies [J]. Chem Mater 2000; 12(1): 176-181.
    [26] Dutta AK, Ho T, Zhang LQ, et al. Nucleation and Growth of Lead Sulfide Nano- and Microcrystallites in Supramolecular Polymer Assemblies [J]. Chem Mater, 2000, 12(4): 1042-1048.
    [27] Fojas AM, Murphy E, Stroeve P. Layer-by-Layer Polymeric Supramolecular Structures Containing Nickel Hydroxide Nanoparticles and Microcrystallites [J]. Ind Eng Chem Res, 2002, 41(11): 2662-2667.
    [28] Stroeve P. Nucleation of Nanoparticles in: Ultrathin Polymer Films in Encyclopedia of Nanoscience Nanotechnology, New York: Marcell Dekker, 2004, P2713-2719.
    [29] Jiang M, Wang E B, Wei G, et al. In situ controllable synthesis of polyoxometalate nanoparticles in polyelectrolyte multilayers [J]. J Mater Chem, 2003, 13(4): 647-649.
    [30] Ferreira M, Rubner MF. Molecular-Level Processing of Conjugated Polymers. 1. Layer-by-Layer Manipulation of Conjugated Polyions [J]. Macromolecules, 1995, 28(21):7107-7114.
    [31] Cheung JH, Stockton WB, Rubner MF. Molecular-Level Processing of Conjugated Polymers. 3. Layer-by-Layer Manipulation of Polyaniline via Electrostatic Interactions [J]. Macromolecules, 1997, 30(9): 2712-2716.
    [32] Stockton WB, Rubner MF. Molecular-Level Processing of Conjugated Polymers. 4. Layer-by-Layer Manipulation of Polyaniline via Hydrogen-Bonding Interactions [J]. Macromolecules, 1997, 30(9): 2717-2725.
    [33] Wakizaka D, Fushimi T, Ohkita H, et al. Hole transport in conducting ultrathin films of PEDOT/PSS prepared by layer-by-layer deposition technique [J]. Polymer, 2004, 45(25): 8561-8565.
    [34] Zheng SP, Tao C, He Q, Zhu HF, Li JB. Self-assembly and characterization of polypyrrole and polyallylamine multilayer films and hollow shells [J]. Chem Mater, 2004, 16(19): 3677-3681.
    [35] Neoh KG, Teo HW, Kang ET. Enhancement of growth and adhesion of electroactive polymer coatings on polyolefin substrates [J]. Langmuir, 1998, 14(10): 2820-2826.
    [36] Park MK, Onishi K, Locklin J, et al. Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells [J]. Langmuir, 2003, 19(20): 8550-8554.
    [37] Ram M K, Adami M, Paddeu S, et al. Nano-assembly of glucose oxidase on the in situ self-assembled films of polypyrrole and its optical, surface and electrochemical characterizations [J]. Nanotechnology, 2000, 11(2): 112-119.
    [38] Jang J, Oh JH. Morphogenesis of Evaporation-Induced Self-Assemblies of Polypyrrole Nanoparticles Dispersed in a Liquid Medium [J].Langmuir, 2004, 20(20): 8419-8422.
    [39] Ram MK, Adami M, Faraci P, et al. Physical insight in the in-situ self-assembled films of polypyrrole [J].Polymer, 2000, 41(20): 7499-7509.
    [40] Pich A, Lu Y, Boyko V, et al. Thermo-sensitive poly (N-vinylcaprolactam- co-acetoacetoxyethyl methacrylate) microgels: 2. Incorporation of polypyrrole [J]. Polymer, 2003, 44(25): 7651-7659.
    [41] Bae WJ, Kim KH, Jo WH, et al. Fully exfoliated nanocomposite from polypyrrole graft copolymer/clay [J]. Polymer, 2005, 46(23): 10085-10091.
    [42] Gómez-Romero P, Lira-Cantú M. Hybrid organic-inorganic electrodes: the molecular material formed between polypyrrole and the phosphomolybdate anion [J].Adv Mater, 1997, 9(2): 144-147.
    [43] Lira-Cantú M, Gómez-Romero P. Electrochemical and chemical syntheses of the hybrid organic-inorganic electroactive material formed by phosphomolybdate and polyaniline. Application as cation-insertion electrodes [J]. Chem Mater, 1998, 10(3): 698-704.
    [44] Gómez-Romero P. Hybrid organic-inorganic materials- In search of synergic activity[J].Adv Mater, 2003, 13(3): 163-174.
    [45] Filowitz M, Ho RKC, Klemperer WG, et al. Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 1. Sensitivity and resolution [J]. Inorg Chem, 1979, 18(1): 93-103 and references therein.
    [46] Kotov NA. In Multilayer Thin Films-Sequential Assembly of Nanocomposite Materials [M]. Decher G, Schlenoff J B. eds. Weinheim: Wiley-VCH, 2003, P216-217.
    [47] Dong SJ, Jin W. Study of a 1:12 phosphomolybdic anion doped polypyrrole film electrode and its catalysis [J]. J Electroanal Chem, 1993, 354(1-2): 87-97.
    [48] Ham HT, Choi YS, Jeong N, et al. Singlewall carbon nanotubes covered with polypyrrole nanoparticles by the miniemulsion polymerization [J]. Polymer, 2005, 46(17): 6308-6315.
    [49] Kim JW, Liu F, Choi HJ, et al. Intercalated polypyrrole/Na+-montmorillonite nanocomposite via an inverted emulsion pathway method [J]. Polymer, 2003, 44(1): 289-293.
    [50] Zou XQ, Shen Y, Peng Z Q, et al. Preparation of a phosphopolyoxomolybdate P2Mo18O626- doped polypyrrole modified electrode and its catalytic properties [J]. J Electroanal Chem, 2004, 566(1): 63-71.
    [1] Iijima S, Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(7): 56-58.
    [2] De Heer W A, Chatelain A, Ugarte D. A Carbon Nanotube Field-Emission Electron Source [J]. Science, 1995, 270(5239): 1179-1180.
    [3] Fan S, Chapline M G, Franklin N R, et al. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties [J]. Science, 1999, 283(5401): 512-514.
    [4] Rinzler A G., Hafner J H, Nikolaev P, et al. Unraveling nanotubes: Field emission from an atomic wire [J]. Science, 1995, 269(5230): 1550-1553.
    [5] Collins P G, Zettl A, Bando H, et al. Nanotube Nanodevice [J]. Science, 1997, 278(5335): 100-102.
    [6] Frank S, Poncharal P, Wang Z L, et al. Carbon Nanotube Quantum Resistors [J]. Science, 1998, 280(5370): 1744-1746.
    [7] Tans S J, Verschueren A R M, Dekker C, et al. Room-temperature transistor based on a single carbon nanotube [J]. Nature, 1998, 393(6680): 49-52.
    [8] Kong J, Franklin N R, Zhou C W, et al. Nanotube Molecular Wires as Chemical Sensors [J]. Science, 2000, 287(5418): 622-625.
    [9] Modi A, Koratkar N, Lass E, et al. Miniaturized gas ionization sensors using carbon nanotubes [J]. Nature, 2003, 424(6945): 171-174.
    [10] Li W Z, Xie S S, Qian L X, et al. Large-Scale Synthesis of Aligned Carbon Nanotubes[J]. Science 1996, 274(5293): 1701-1703.
    [11] Pan Z W, Xie S S, Chang B H, et al. Very long carbon nanotubes [J]. Nature, 1998, 394(6694): 631-632.
    [12] Ren Z F, Huang Z P, Xu J W, et al. Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass [J]. Science, 1998, 282(5391): 1105-1107.
    [13] Terrones M, Grobert N, Zhang J P, et al. Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films [J]. Chem Phys Lett, 1998, 285(5-6):299-305.
    [14] Liu Z F, Shen Z Y, Zhu T, et al. Organizing Single-Walled Carbon Nanotubes on Gold Using a Wet Chemical Self-Assembling Technique [J]. Langmuir, 2000, 16(8):3569-3573.
    [15] Wu B, Zhang J, Wei Z, et al. Chemical Alignment of Oxidatively ShortenedSingle-Walled Carbon Nanotubes on Silver Surface [J]. J Phys Chem B, 2001, 105(22): 5075-5078.
    [16] Diao P, Liu Z F, Wu B, et al. Chemically Assembled Single-Wall Carbon Nanotubes and their Electrochemistry [J]. Chem Phys Chem, 2002, 3(10): 898-991.
    [17] Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites [J]. Science, 1997, 277(5330): 1232-1237.
    [18] Zhang X, Shen J C. Self-Assembled Ultrathin Films: From Layered Nanoarchitectures to Functional Assemblies [J], Adv Mater, 1999, 11(13): 1139-1143;
    [19] Jiang M, Wang E B, Kang Z H, et al. In situ controllable synthesis of polyoxometalate nanoparticles in polyelectrolyte multilayers [J]. J Mater Chem, 2003, 13(4): 647-649.
    [20] Chattopadhyay D, Galeska I, Papadimitrakopoulos F. Metal-Assisted Organization of Shortened Carbon Nanotubes in Monolayer and Multilayer Forest Assemblies [J]. J Am Chem Soc, 2001, 123(38): 9451-9452.
    [21] Kim B, Sigmund W M. Self-Alignment of Shortened Multiwall Carbon Nanotubes on Polyelectrolyte Layers [J]. Langmuir, 2003, 19(11): 4848-4851.
    [22] Mamedov A A, Kotov N A, Prato M, et al.Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites [J]. Nature Materials, 2002, 1(3): 190-194;
    [23] Rouse J H, Lillehei P T. Electrostatic Assembly of Polymer/Single Walled Carbon Nanotube Multilayer Films [J]. Nano Lett, 2003, 3(1): 59-62.
    [24] Kang Z H, Wang E B, Gao L, et al. One-Step Water-Assisted Synthesis of High-Quality Carbon Nanotubes Directly from Graphite [J]. J Am Chem Soc, 2003, 125(45): 13652-13653.
    [25] Liu J, Rinzler A G, Dai H J, et al. Fullerene Pipes [J]. Science, 1998, 280(5367): 1253-1256.
    [26] Liu J, Casavant M J, Cox M, et al. Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates, Chem Phys Lett, 1999, 303(1-2): 125-129.
    [27] Chen J, Hamon M A, Hu H, et al. Solution Properties of Single-Walled Carbon Nanotubes [J]. Science, 1998, 282 (5386): 95-98.
    [28] Pompeo F, Resasco D E. Water Solubilization of Single-Walled Carbon Nanotubes by Functionalization with Glucosamine [J]. Nano Lett, 2002, 2(4): 369-373.
    [29] Jiang M, Wang E B, Wei G, et al. A novel photochromic multilayer based on preyssler’sclustery [J]. New J Chem, 2003,27(9):1291-1293.
    [30] Jiang M, Wang E B, Wei G, et al. Photochromic inorganic-organic multilayer films based on polyoxometalates and poly(ethylenimine) [J]. J Colloid Interface Sci, 2004, 275(2): 596-600.
    [31] Muster J, Burghard M, Roth S, et al. Scanning force microscopy characterization of individual carbon nanotubes on electrode arrays [J]. J Vac Sci Technol B, 1998,16(5): 2796-2801.
    [32] Wu D D, Huang C H, Gan L B, et al. Photoelectric Response from Two Amphiphilic Nitrobenzene Dyes with Alkoxyl on a Monolayer-Modified ITO Electrode [J]. Langmuir, 1998,14(14): 3783-3787.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700