两种磁螺菌生理特征及mamXY操纵元在MSR-1菌株磁小体合成中的功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
趋磁细菌在自然界广泛存在,它们能在胞内合成链状排列的Fe3O4或者Fe3S4纳米磁性颗粒(磁小体),鉴于磁小体的特性及其潜在的应用前景,提高趋磁细菌培养水平始终是人们关注的热点问题。然而由于它们对溶氧和营养条件要求苛刻,目前只有少数几种获得纯培养,且培养水平远达不到生产要求。本研究以淡水磁螺菌Magnetospirillum gryphiswaldense MSR-1和海洋磁螺菌Marine magnetic spirillum QH-2为材料,探讨了二者在不同培养条件下细胞生理变化规律及其与磁小体合成的关系,分别提出了进一步提高淡水和海洋趋磁螺菌的优化培养措施。此外,针对供试菌株共有的mamXY操纵元中唯一的尚未揭示功能的mamX基因为目标,探讨了其与整个操纵元中其它基因在控制磁小体成熟过程中的功能特点。
     鉴于淡水趋磁螺菌MSR-1已经经过多年的人工驯化,可在发酵罐深层培养,实验中发现,培养8-20h是磁小体大量合成的阶段,此时控制溶氧在2-20ppb有利于磁小体合成。18-20h是细胞生理代谢的一个关键时间转折点,细胞消耗碳源速度加快,需通过手动补料策略添加额外补料培养基以维持细胞的正常生长。20-26h,碳源乳酸浓度应控制在0.016-0.1g/L最有利于细胞生长和磁小体的合成。20-40h是细胞生长对数期,控制溶氧在20-40ppb可确保细胞快速生长,是磁小体组装成链和成熟过程。由此揭示了细胞生理特点变化规律,提出了进一步提高培养水平的工艺路线。
     QH-2菌株是唯一来自海洋的可以纯培养的趋磁螺菌,本实验成功对其细胞进行了摇床培养,并优化了原培养基配方。确定了其细胞的最适碳源为琥珀酸盐,最适氮源为氯化铵,偏好柠檬酸铁作为铁源,培养温度为25-28℃。在优化条件下显著提高了QH-2细胞的培养水平:液体摇床培养48小时OD600值大于0.6,是优化前的4倍左右;代时为6h,比优化前缩短了10个小时。为该菌株的进一步驯化奠定了基础。由此可见,趋磁螺菌来源不同,培养条件各异,分析菌株的生理特点,有针对性地提出具体培养措施是最有效的选择。
     为完善磁小体岛mamXY操纵元的功能解析,本研究构建了MSR-1菌株mamX基因的缺失突变株和互补菌株,表型和生理、生化检测发现,突变株可正常生长,但只能形成不规则的Fe3O4超顺磁颗粒。序列分析发现MamX蛋白含有保守的类似于细胞色素c的结合血红素的Magnetochrome结构域,经体外实验证明该蛋白可以与血红素结合,推测在磁小体成熟过程中,MamX可以参于磁小体膜内的电子传递或者铁元素的氧化/还原过程。采用qPCR的方法,探讨mamXY操纵元mamY、mamX、mamZ和ftsZ-like四个基因的转录规律,证明在mamX突变株中,mamY和ftsZ-like基因显著上调,mamZ基因则下调。细菌双杂交实验证实mamXY操纵元编码的四个蛋白之间存在明显互作关系,由此采用STRING工具描绘了以FtsZ-like为节点的蛋白互作网络图,推测这四个蛋白形成蛋白质复合体参与磁小体的成熟过程。实验结果完善了对磁小体岛上mamXY操纵元整体功能的解释,为进一步揭示趋磁螺菌的生物矿化机制提供了实验证据。
Magnetotactic bacteria (MTB) are widespread prokaryotes in nature environment that synthesize a unique organelle called the magnetosome, which are usually nano-sized chain-like magnetic iron crystals, composed of Fe3O4or Fe3S4. In consideration of the characteristics and application prospects of magnetosome, researchers have been focusing on the hot topics about improving the culture level of MTB. However, few axenic culture of MTB have been acquired because of their rigorous requirements on dissolved oxygen and nutrient elements. In addition, the cultivation levels of axenic MTB cultures are far from the production demand. The freshwater Magnetospirillum gryphiswaldense MSR-1and marine magnetic spirillum QH-2are chose as target strains, and some researches are performed on the relation between the changes in cellular physiology and magnetosome formation. The optimized methods to culture freshwater and marine magneto-spirillum are suggested on the basis of research results. Besides, the target strains have magnetosome-formation-associated conserved mamXY operon, on which most genes'functions have been elucidated except for mamX gene. Studies on the function features of mamX and mamXY operon in controlling the mature process of magnetosome are conducted.
     The freshwater M. gryphiswaldense MSR-1has been domesticated artificially for many years, hence it can have submerged culture on the fermentor. In the process of MSR-1submerged culture, It's found that:8-20h is the stage when a large quantity of magnetosomes are formed and the dissolved oxygen should be kept between2-20ppb.18-20h is a crucial turning point for cellular physiological metabolism while the carbon source consumption speeds up, some extra fed medium should be added by manual feeding strategy to preserve the regular cell growth. From20h to26h, the concentration of carbon source lactate should be maintained between0.016-0.1g/L, which is helpful for cell growth and magnetosome formation.20-40h is the log phase of cell growth and the phase for magnetosome chain formation and maturing, when should has a dissolved oxygen concentration as20-40ppb to ensure the rapid cell growth. Thus the changes in cellular physiological characteristics are revealed, and the process route for improving MTB culture is proposed.
     The QH-2strain is the only one marine magneto-spirillum that has axenic culture. In this study, the QH-2cells are cultured using shake cultivation successfully and the original medium is optimized. For QH-2cell, the optimal carbon source is tested to be succinate, optimal nitrogen source being sodium chloride, optimal iron source being ferric citrate, and optimal temperature being25-28℃. The cell culture level is evidently improved under optimized conditions:the OD600value can be over0.6after shake cultivation for48h in liquid medium, about four times higher than before; the generation time is6h,10hours less than before. These results lay foundation for QH-2's further domestication. Evidently, when the origin of magneto-spirillum differs, the culture condition differs. So it's the best choice to analyze the cellular physiological characteristics firstly and then find purposeful detail cultivation methods.
     In order to complete the function illumination of mamλY operon, a deletion mutant and a complemented strain for mamX are constructed. The mutant has normal growth, while synthesizes irregular superparamagnetic Fe3O4particles. Analysis of MamX protein sequence showing that it contains conserved heme-binding motif called Magnetochrome, similar to that of cytochrome c. The MamX protein can bind heme in vitro. Thus MamX is suspected to be involved in the electron transport inside magnetosome membrane, or in the oxidized/reduced process of iron, during magnetosome maturation. The qPCR tests show the transcription rules of the all four genes mamY, mamX, mamZ and ftsZ-like of mamXY operon:in the mamX mutant, mamY and ftsZ-like are up-regulated, while mamZ is down-regulated. The bacterial two hybrid assay shows evident interactions between the four MamXY proteins. Hence a protein association network is drew by STRING tool, indicating FtsZ-like as node. The four proteins are speculated to form protein complex and promote the magnetosome maturation. These results complement the interpretation of mamXY operon's function, and providing supplementary evidences for further revealing the biomineralization mechanism in magnetotactic bacteria.
引文
Abreu, F., Cantao, M.E., Nicolas, M.F., Barcellos, F.G., Morillo, V., Almeida, L.G., do Nascimento, F.F., Lefevre, C.T., Bazylinski, D.A., AT, R.d.V., et al. (2011). Common ancestry of iron oxide-and iron-sulfide-based biomineralization in magnetotactic bacteria. ISME J.5,1634-1640.
    Abreu, F., Lopes Martins, J., Souza Silveira, T., Neumann Keim, C., Lins De Barros, H.G.P., Gueiros, F.J., and Lins, U. (2007).'Candidatus Magnetoglobus multicellularis', a multicellular, magnetotactic prokaryote from a hypersallne environment. Int. J. Syst. Evol. Microbiol.57,1318-1322.
    Amoldi, M., Kacher, C.M., Bauerlein, E., Radmacher, M., and Fritz, M. (1998). Elastic properties of the cell wall of Magnetospirillum gryphiswaldense investigated by atomic force microscopy. Appl. Phys. A 66, S613-S617.
    Arakaki, A., Nakazawa, H., Nemoto, M., Mori, T., and Matsunaga, T. (2008). Formation of magnetite by bacteria and its application. J. R. Soc. Interface 5,977-999.
    Arakaki, A., Webb, J., and Matsunaga, T. (2003). A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem.278,8745-8750.
    Badger, M.R., and Bek, E.J. (2008). Multiple Rubisco forms in proteobacteria:their functional significance in relation to CO2 acquisition by the CBB cycle. J. Exp. Bot.59,1525-1541.
    Ban, J., Jiang, W., Li, Y., Zhang, Y., and Li, J. (2010). Functional analysis of hydrogenases and their effects on cell growth and magnetosome synthesis in Magnetospirillum gryphiswaldense. Chin. Sci. Bull.55, 1271-1277.
    Baumgartner, J., Morin, G., Menguy, N., Perez Gonzalez, T., Widdrat, M., Cosmidis, J., and Faivre, D. (2013). Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates. Proc. Natl. Acad. Sci. USA 110,14883-14888.
    Bazylinski, D.A., and Blakemore, R.P. (1983). Denitrification and assimilatory nitrate reduction in aquaspirillum-magnetotacticum. Appl. Environ. Microbiol.46,1118-1124.
    Bazylinski, D.A., Dean, A.J., Schuler, D., Phillips, E.J., and Lovley, D.R. (2000). N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ. Microbiol.2,266-273.
    Bazylinski, D.A., Dean, A.J., Williams, T.J., Long, L.K., Middleton, S.L., and Dubbels, B.L. (2004). Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch. Microbiol. 182,373-387.
    Bazylinski, D.A., and Frankel, R.B. (2003). Biologically Controlled Mineralization in Prokaryotes. Rev. Mineral. Geochem.54,217-247.
    Bazylinski, D.A., and Frankel, R.B. (2004). Magnetosome formation in prokaryotes. Nature Rev. Microbiol. 2,217-230.
    Bazylinski, D.A., Frankel, R.B., and Jannasch, H.W. (1988). Anaerobic Magnetite Production by a Marine, Magnetotactic Bacterium. Nature 334,518-519.
    Bazylinski, D.A., Williams, T.J., Lefevre, C.T., Berg, R.J., Zhang, C.L., Bowser, S.S., Dean, A.J., and Beveridge, T.J. (2013). Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int. J. Syst. Evol. Microbiol.63,801-808.
    Bibikov, S.I., Miller, A.C., Gosink, K.K., and Parkinson, J.S. (2004). Methylation-independent aerotaxis mediated by the Escherichia coli aer protein. J. Bacteriol.186,3730-3737.
    Blakemore, R. (1975). Magnetotactic bacteria. Science 190,377-379.
    Blakemore, R.P., Frankel, R.B., and Kalmijn, A.J. (1980). South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature 286,384-385.
    Blakemore, R.P., Maratea, D., and wolfe, R.S. (1979). Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol.140,720-729.
    Bonora, M., Patergnani, S., Rimessi, A., De Marchi, E., Suski, J.M., Bononi, A., Giorgi, C, Marchi, S., Missiroli, S., Poletti, F., et al. (2012). ATP synthesis and storage. Purinergic Signal.8,343-357.
    Butler, C.S., Debieux, C.M., Dridge, E.J., Splatt, P., and Wright, M. (2012). Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem. Soc. Trans.40,1239-1243.
    Cabiscol, E., Tamarit, J., and Ros, J. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol.3,3-8.
    Carillon, J., Rouanet, J.M., Cristol, J.P., and Brion, R. (2013). Superoxide dismutase administration, a potential therapy against oxidative stress related diseases:several routes of supplementation and proposal of an original mechanism of action. Pharm. Res.30,2718-2728.
    Carroll, J.A., Coleman, S.A., Smitherman, L.S., and Minnick, M.F. (2000). Hemin-binding surface protein from Bartonella quintana. Infect. Immun.68,6750-6757.
    Carvajal-Arroyo, J.M., Puyol, D., Li, G.B., Lucero-Acuna, A., Sierra-Alvarez, R., and Field, J.A. (2014). Pre-exposure to nitrite in the absence of ammonium strongly inhibits anammox. Water. Res.48,52-60.
    Casado, J., Fornaguera, J., and Galan, M.I. (2005). Mineralization of aromatics in water by sunlight-assisted electro-Fenton technology in a pilot reactor. Environ. Sci. Technol.39,1843-1847.
    Chu, B.C., Garcia-Herrero, A., Johanson, T.H., Krewulak, K.D., Lau, C.K., Peacock, R.S., Slavinskaya, Z., and Vogel, H.J. (2010). Siderophore uptake in bacteria and the battle for iron with the host; a bird's eye view. Biometals 23,601-611.
    Cornelis, P., Wei, Q., Andrews, S.C., and Vinckx, T. (2011). Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 5,540-549.
    Dajkovic, A., and Lutkenhaus, J. (2006). Z ring as executor of bacterial cell division. J. Mol. Microbiol. Biotechnol.11,140-151.
    Debieux, C.M., Dridge, E.J., Mueller, C.M., Splatt, P., Paszkiewicz, K., Knight, I., Florance, H., Love, J., Titball, R.W., Lewis, R.J., et al. (2011). A bacterial process for selenium nanosphere assembly. Proc. Natl. Acad. Sci. USA 108,13480-13485.
    Ding, Y., Li, J., Liu, J., Yang, J., Jiang, W., Tian, J., Li, Y, Pan, Y., and Li, J. (2010). Deletion of the ftsZ-like gene results in the production of superparamagnetic magnetite magnetosomes in Magnetospirillum gryphiswaldense. J. Bacteriol.192,1097-1105.
    Dobrindt, U., Hochhut, B., Hentschel, U., and Hacker, J. (2004). Genomic islands in pathogenic and environmental microorganisms. Nature Rev. Microbiol.2,414-424.
    Faivre, D., Bottger, L.H., Matzanke, B.F., and Schuler, D. (2007). Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(Ⅱ) species. Angew Chem. Int. Edit.46,8495-8499.
    Faivre, D., and Schuler, D. (2008). Magnetotactic bacteria and magnetosomes. Chem. Rev.108,4875-4898.
    Falini, G., and Fermani, S. (2013). The strategic role of adsorption phenomena in biomineralization. Cryst. Res. Technol.48,864-876.
    Feng, S., Wang, L., Palo, P., Liu, X., Mallapragada, S.K., and Nilsen-Hamilton, M. (2013). Integrated self-assembly of the Mms6 magnetosome protein to form an iron-responsive structure. Int. J. Mol. Sci. 14,14594-14606.
    Flies, C.B., Jonkers, H.M., de Beer, D., Bosselmann, K., Bottcher, M.E., and Schuler, D. (2005a). Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol. Ecol.52,185-195.
    Flies, C.B., Peplies, J., and Schuler, D. (2005b). Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. Appl. Environ. Microbiol.71,2723-2731.
    Frankel, R. (2009). The discovery of magnetotactic/magnetosensitive bacteria. Chin. J. Ocean. Limnol.27, 1-2.
    Frankel, R.B. (1984). Magnetic guidance of organisms. Annu. Rev. Biophys. Bio.13,85-103.
    Frankel, R.B., Bazylinski, D.A., Johnson, M.S., and Taylor, B.L. (1997). Magneto-aerotaxis in marine coccoid bacteria. Biophys. J.73,994-1000.
    Frankel, R.B., and Blakemore, R.P. (1984). Precipitation of Fe3O4 in magnetotactic bacteria. Philos. T. Roy. Soc. B.304,567-574.
    Freitas, F., Keim, C.N., Kachar, B., Farina, M., and Lins, U. (2003). Envelope ultrastructure of uncultured naturally occurring magnetotactic cocci. FEMS Microbiol. Lett.219,33-38.
    Galloway, J.M., Bramble, J.P., Rawlings, A.E., Burnell, G., Evans, S.D., and Staniland, S.S. (2011). Biotemplated magnetic manoparticle arrays. Small.8,204-208.
    Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S., et al. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol.2,577-583.
    Gao, Y, Wei, Z., Li, F., Yang, Z.M., Chen, Y.M., Zrinyi, M., and Osada, Y. (2014). Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection. Green Chem.16,1255-1261.
    Grunberg, K., Wawer, C., Tebo, B.M., and Schuler, D. (2001). A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol.67,4573-4582.
    Graumann, P.L. (2007). Cytoskeletal elements in bacteria. Annu. Rev. Microbiol.61,589-618.
    Grunberg, K., Muller, E.C., Otto, A., Reszka, R., Linder, D., Kube, M., Reinhardt, R., and Schuler, D. (2004). Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol.70,1040-1050.
    Guo, F.F., Yang, W., Jiang, W., Geng, S., Peng, T., and Li, J.L. (2012). Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1. Environ. Microbiol.14, 1722-1729.
    Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol.166,557-580.
    Hashim, A., Molcan, M., Kopcansky, P., Kovac, J., Gojzewski, H., Makowski, M., Skumiel, A., Jozefczak, A., Timko, M., and Ltd, T. (2011). Bacterial magnetite nanoparticles-Magnetospirillum magnetotacticum sp. AMB-1 magnetosomes. Paper presented at:Nanocon 2011 (Slezska:Tanger Ltd).
    Heyen, U., and Schuler, D. (2003). Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol.61,536-544.
    Huang, C., Wu, H., Liu, Q.P., Li, Y.Y., and Zong, M.H. (2011). Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. J. Agr. Food. Chem.59,4606-4613.
    Isambert, A., Menguy, N., Larquet, E., Guyot, F., and Valet, J.P. (2007). Transmission electron microscopy study of magnetites in a freshwater population of magnetotactic bacteria. Am. Mineral.92,621-630.
    Ji, B., Zhang, S.D., Arnoux, P., Rouy, Z., Alberto, F., Philippe, N., Murat, D., Zhang, W.J., Rioux, J.B., Ginet, N., et al. (2014). Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain. Environ. Microbiol.16,525-544.
    Jogler, C., and Schuler, D. (2009). Genomics, genetics, and cell biology of magnetosome formation. Annu. Rev. Microbiol.63,501-521.
    Jogler, C., Wanner, G., Kolinko, S., Niebler, M., Amann, R., Petersen, N., Kube, M., Reinhardt, R., and Schuler, D. (2011). Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira phylum. Proc. Natl. Acad. Sci. USA 108, 1134-1139.
    Jones, C.M., and Niederweis, M. (2010). Role of porins in iron uptake by Mycobacterium smegmatis. J. Bacteriol.192,6411-6417.
    Juhas, M., van der Meer, J.R., Gaillard, M., Harding, R.M., Hood, D.W., and Crook, D.W. (2009). Genomic islands:tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev.33,376-393.
    Kasama, T., Posfai, M., Chong, R.K.K., Finlayson, A.P., Buseck, P.R., Frankel, R.B., and Dunin-Borkowski, R.E. (2006). Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am. Mineral.91,1216-1229.
    Katzmann, E., Eibauer, M., Lin, W., Pan, Y, Plitzko, J.M., and Schuler, D. (2013). Analysis of magnetosome chains in magnetotactic bacteria by magnetic measurements and automated image analysis of electron micrographs. Appl. Environ. Microbiol.79,7755-7762.
    Katzmann, E., Scheffel, A., Gruska, M., Plitzko, J.M., and Schuler, D. (2010). Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol. Microbiol.77,208-224.
    Keen, N.T., Tamaki, S., Kobayashi, D., and Trollinger, D. (1988). Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70,191-197.
    Kirschvink, J.L., and Hagadorn, J.W. (2000). A grand unified theory of biomineralization. In Biomineralization, E. Bauerlein, ed. (Weinheim, Germany:Wiley-VCH Verlag GmbH), pp.139-149.
    Klaus, T., Joerger, R., Olsson, E., and Granqvist, C.G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA 96,13611-13614.
    Kolinko, I., Jogler, C., Katzmann, E., and Schuler, D. (2011). Frequent mutations within the genomic magnetosome island of Magnetospirillum gryphiswaldense are mediated by RecA. J. Bacteriol.193, 5328-5334.
    Kolinko, I., Lohsse, A., Borg, S., Raschdorf, O., Jogler, C., Tu, Q., Posfai, M., Tompa, E., Plitzko, J.M, Brachmann, A., et al. (2014). Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotechnol.9,193-197.
    Kolinko, S., Jogler, C., Katzmann, E., Wanner, G., Peplies, J., and Schuler, D. (2012). Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ. Microbiol.14,1709-1721.
    Komeili, A. (2007). Molecular mechanisms of magnetosome formation. Annu. Rev. Biochem.76,351-366.
    Komeili, A., Li, Z., Newman, D.K., and Jensen, G.J. (2006). Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311,242-245.
    Komeili, A., Vali, H., Beveridge, T.J., and Newman, D.K. (2004). Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc. Nat1. Acad. Sci. USA 101, 3839-3844.
    Krewulak, K.D., and Vogel, H.J. (2008). Structural biology of bacterial iron uptake. Biochim. Biophys. Acta 1778,1781-1804.
    Krieg, N.R., and Hoffman, P.S. (1986). Microaerophily and oxygen-toxicity. Annu. Rev. Microbiol.40, 107-130.
    Lang, C., and Schuler, D. (2008). Expression of green fluorescent protein fused to magnetosome proteins in microaerophilic magnetotactic bacteria. Appl. Environ. Microbiol.74,4944-4953.
    Lefevre, C.T., Abreu, F., Schmidt, M.L., Lins, U., Frankel, R.B., Hedlund, B.P., and Bazylinski, D.A. (2010). Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl. Environ. Microbiol. 76,3740-3743.
    Lefevre, C.T., and Bazylinski, D.A. (2013). Ecology, diversity, and evolution of magnetotactic bacteria. Microbio. Mol. Biol. Rev.77,497-526.
    Lefevre, C.T., Bernadac, A., Yu-Zhang, K., Pradel, N., and Wu, L.F. (2009b). Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ. Microbiol.11,1646-1657.
    Lefevre, C.T., Frankel, R.B., Posfai, M., Prozorov, T., and Bazylinski, D.A. (2011a). Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environ. Microbio].13, 2342-2350.
    Lefevre, C.T., Menguy, N., Abreu, F., Lins, U., Posfai, M., Prozorov, T., Pignol, D., Frankel, R.B., and Bazylinski, D.A. (2011b). A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science 334,1720-1723.
    Lefevre, C.T., Posfai, M., Abreu, F., Lins, U., Frankel, R.B., and Bazylinski, D.A. (2011c). Morphological features of elongated-anisotropic magnetosome crystals in magnetotactic bacteria of the Nitrospirae phylum and the Deltaproteobacteria class. Earth. Planet. Sci. Lett.312,194-200.
    Lefevre, C.T., Song, T., Yonnet, J.-P., and Wu, L.-F. (2009a). Characterization of bacterial magnetotactic behaviors by using a magnetospectrophotometry assay. Appl. Environ. Microbiol.75,3835-3841.
    Lefevre, C.T., Viloria, N., Schmidt, M.L., Posfai, M., Frankel, R.B., and Bazylinski, D.A. (2012). Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME J.6, 440-450.
    Lefevre, C.T., and Wu, L.F. (2013). Evolution of the bacterial organelle responsible for magnetotaxis. Trends Microbiol.21,534-543.
    Li, J., Pan, Y, Chen, G., Liu, Q., Tian, L., and Lin, W. (2009). Magnetite magnetosome and fragmental chain formation of Magnetospirillum magneticum AMB-1:transmission electron microscopy and magnetic observations. Geophys. J. Int.177,33-42.
    Li, J.H., Benzerara, K., Bernard, S., and Beyssac, O. (2013a). The link between biomineralization and fossilization of bacteria:insights from field and experimental studies. Chem. Geol.359,49-69.
    Li, J.H., and Pan, Y.X. (2012). Environmental factors affect magnetite magnetosome synthesis in Magnetospirillum magneticum AMB-1:implications for biologically controlled mineralization. Geomicrobiol. J.29,362-373.
    Li, M., Cheng, X., and Guo, H. (2013b). Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int. Biodeterior. Biodegrad.76,81-85.
    Li, Y.J., Katzmann, E., Borg, S., and Schuler, D. (2012). The periplasmic nitrate reductase Nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J. Bacteriol.194,4847-4856.
    Liang, A., Paulo, C., Zhu, Y., and Dittrich, M. (2013). CaCO3 biomineralization on cyanobacterial surfaces: insights from experiments with three Synechococcus strains. Colloids Surf., B111,600-608.
    Lin, W., Wang, Y.Z., Gorby, Y., Nealson, K., and Pan, Y.X. (2013). Integrating niche-based process and spatial process in biogeography of magnetotactic bacteria. Sci. Rep.3,1-9.
    Lin, W., Wang, Y.Z., Li, B., and Pan, YX. (2012). A biogeographic distribution of magnetotactic bacteria influenced by salinity. ISME J.6,475-479.
    Liu, J.N., Ding, Y., Jiang, W., Tian, J.S., Li, Y., and Li, J.L. (2008). A mutation upstream of an ATPase gene significantly increases inagnetosome production in Magnetospirillum gryphiswaldense. Appl. Microbiol. Biotechnol.81,551-558.
    Liu, Y., Li, G.R., Guo, F.F., Jiang, W., Li, Y., and Li, L.J. (2010). Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microb. Cell Fact.9,1-8.
    Lohsse, A., Ullrich, S., Katzmann, E., Borg, S., Wanner, G., Richter, M., Voigt, B., Schweder, T., and Schuler, D. (2011). Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense:the mamAB operon is sufficient for magnetite biomineralization. PloS one 6, e25561.
    Lower, B.H., and Bazylinski, D.A. (2013). The bacterial magnetosome:a unique prokaryotic organelle. J. Mol. Microbiol. Biotechnol.23,63-80.
    Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y, Geer, R.C., Gonzales, N.R., et al. (2011). CDD:a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res.39, D225-229.
    Margolin, W. (2005). FtsZ and the division of prokaryotic cells and organelles. Nature Rev. Mol. Cell Biol.6, 862-871.
    Martins, J.L., Silveira, T.S., Abreu, F., de Almeida, F.P., Rosado, A.S., and Lins, U. (2012). Spatiotemporal distribution of the magnetotactic multicellular prokaryote Candidatus Magnetoglobus multicellularis in a Brazilian hypersaline lagoon and in microcosms. Int. Microbiol.15,141-149.
    Matsunaga, T., Nemoto, M., Arakaki, A., and Tanaka, M. (2009). Proteomic analysis of irregular, bullet-shaped magnetosomes in the sulphate-reducing magnetotactic bacterium Desulfovibrio magneticus RS-I. Proteomics 9,3341-3352.
    Matsunaga, T., Okamura, Y., Fukuda, Y., Wahyudi, A.T., Murase, Y, and Takeyama, H. (2005). Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1.DNA Res.12,157-166.
    Matsunaga, T., Suzuki, T., Tanaka, M., and Arakaki, A. (2007). Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechnol. 25,182-188.
    Matsunaga, T., Togo, H., Kikuchi, T., and Tanaka, T. (2000). Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp. AMB-1. Biotechnol. Bioeng.70,704-709.
    Moisescu, C., Bonneville, S., Staniland, S., Ardelean, I., and Benning, L.G. (2011). Iron uptake kinetics and magnetosome formation by Magnetospirillum gryphiswaldense as a function of pH, temperature and dissolved iron availability. Geomicrobiol. J.28,590-600.
    Morillo, V., Abreu, F., Araujo, A.C., Almeida, L.G.P.d., Prast, A.E., Farina, M., Vasconcelos, A.T.R.d., Bazylinski, D.A., and Lins, U. (2014). Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of South-seeking magnetotactic cocci within the Alphaproteobacteria. Front. Microbiol.5.
    Murat, D., Falahati, V., Bertinetti, L., Csencsits, R., Kornig, A., Downing, K., Faivre, D., and Komeili, A. (2012). The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1. Mol. Microbiol.85,684-699.
    Murat, D., Quinlan, A., Vali, H., and Komeili, A. (2010). Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc. Natl. Acad. Sci. USA 107,5593-5598.
    Nakamura, C., Kikuchi, T., Burgess, J.G., and Matsunaga, T. (1995). Iron-regulated expression and membrane localization of the magA protein in Magnetospirillum sp. strain AMB-1. J. Biochem.118, 23-27.
    Nakazawa, H., Arakaki, A., Narita-Yamada, S., Yashiro, I., Jinno, K., Aoki, N., Tsuruyama, A., Okamura, Y, Tanikawa, S., Fujita, N., et al. (2009). Whole genome sequence of Deulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res.19,1801-1808.
    Noguchi, Y, Fujiwara, T., Yoshimatsu, K., and Fukumori, Y (1999). Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum. J. Bacteriol.181,2142-2147.
    Nudelman, H., and Zarivach, R. (2014). Structure prediction of magnetosome-associated proteins. Front.Microbiol.5,9.
    Okuda, Y, Denda, K., and Fukumori, Y (1996). Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene 171,99-102.
    Perez, J.M., Arenas, F.A., Pradenas, G.A., Sandoval, J.M., and Vasquez, C.C. (2008). Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J. Biol. Chem.283,7346-7353.
    Park, S., and Imlay, J.A. (2003). High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J. Bacteriol.185,1942-1950.
    Perry, R.S., McLoughlin, N., Lynne, B.Y, Sephton, M.A., Oliver, J.D., Perry, C.C., Campbell, K., Engel, M.H., Farmer, J.D., Brasier, M.D., et al. (2007). Defining biominerals and organominerals:direct and indirect indicators of life. Sediment. Geol.201,157-179.
    Peter, B.J., Kent, H.M., Mills, I.G., Vallis, Y, Butler, P.J.G., Evans, P.R., and McMahon, H.T. (2004). BAR domains as sensors of membrane curvature:the amphiphysin BAR Structure. Science 303,495-499.
    Philippe, N., and Wu, L.-F. (2010). An MCP-like protein interacts with the MamK cytoskeleton and is involved in magnetotaxis in Magnetospirillum magneticum AMB-1. J. Mol. Biol.400,309-322.
    Pieterse, B., Leer, R.J., Schuren, F.H., and van der Werf, M.J. (2005). Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151,3881-3894.
    Pollanen, M.T., Overman, D.O., and Salonen, J.I. (1997). Bacterial metabolites sodium butyrate and propionate inhibit epithelial cell growth in vitro. J. Periodontal. Res.32,326-334.
    Pradel, N., Santini, C.L., Bernadac, A., Fukumori, Y, and Wu, L.F. (2006). Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles. Proc. Natl. Acad. Sci. USA 103,17485-17489.
    Prozorov, T., Mallapragada, S.K., Narasimhan, B., Wang, L., Palo, P., Nilsen-Hamilton, M., Williams, T.J., Bazylinski, D.A., Prozorov, R., and Canfield, P.C. (2007). Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv. Funct. Mater.17,951-957.
    Quinlan, A., Murat, D., Vali, H., and Komeili, A. (2011). The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol. Microbiol.80,1075-1087.
    Rahn-Lee, L., and Komeili, A. (2013). The magnetosome model:insights into the mechanisms of bacterial biomineralization. Front. Microbiol.4.
    Raschdorf, O., Muller, F.D., Posfai, M., Plitzko, J.M., and Schuler, D. (2013). The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Mol. Microbiol.89,872-886.
    Reufer, M., Besseling, R., Schwarz-Linek, J., Martinez, V.A., Morozov, A.N., Arlt, J., Trubitsyn, D., Ward, F.B., and Poon, W.C. (2014). Switching of swimming modes in Magnetospirillium gryphiswaldense. Biophys. J.106,37-46.
    Richter, M., Kube, M., Bazylinski, D.A., Lombardot, T., Glockner, F.O., Reinhardt, R., and Schuler, D. (2007). Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J. Bacteriol.189, 4899-4910.
    Rioux, J.B., Philippe, N., Pereira, S., Pignol, D., Wu, L.F., and Ginet, N. (2010). A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island. PloS one 5, e9151.
    Rock, J.L., and Nelson, D.R. (2006). Identification and characterization of a hemolysin gene cluster in Vibrio anguillarum. Infect. Immun.74,2777-2786.
    Roe, A.J., O'Byrne, C., McLaggan, D., and Booth, I.R. (2002). Inhibition of Escherichia coli growth by acetic acid:a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148, 2215-2222.
    Rong, C., Huang, Y., Zhang, W., Jiang, W., Li, Y., and Li, J. (2008). Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res. Microbiol.159,530-536.
    Rong, C., Zhang, C., Zhang, Y., Qi, L., Yang, J., Guan, G., Li, Y., and Li, J. (2012). FeoB2 Functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1. J. Bacteriol.194,3972-3976.
    Sahni, A. (2013). Biomineralization:some complex crystallite-oriented skeletal structures. J. Biosci.38, 925-935.
    Sakaguchi, T., Arakaki, A., and Matsunaga, T. (2002). Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int. J. Syst. Evol. Microbiol.52,215-221.
    Sakaguchi, T., Burgess, J.G., and Matsunaga, T. (1993). Magnetite formation by a sulfate-reducing bacterium. Nature 365,47-49.
    Schuler, D., Uhl, R., and Bauerlein, E. (1995). A simple light scattering method to assay magnetism in Magnetospirillum gryphiswaldense. FEMS Microbiol. Lett.132,139-145.
    Scheffel, A., Gardes, A., Grunberg, K., Wanner, G., and Schuler, D. (2008). The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals. J. Bacteriol.190,377-386.
    Scheffel, A., Gruska, M., Faivre, D., Linaroudis, A., Plitzko, J.M., and Schuler, D. (2006). An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440,110-114.
    Scheffel, A., and Schuler, D. (2007). The acidic repetitive domain of the Magnetospirillum gryphiswaldense MamJ protein displays hypervariability but is not required for magnetosome chain assembly. J. Bacteriol.189,6437-6446.
    Schmidt, W.J. (1924). Die bausteine des tierkorpers (F. Cohen Verlag, Bonn).
    Schubbe, S., Kube, M., Scheffel, A., Wawer, C., Heyen, U., Meyerdierks, A., Madkour, M.H., Mayer, F., Reinhardt, R., and Schuler, D. (2003). Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J. Bacteriol.185,5779-5790.
    Schubbe, S., Williams, T.J., Xie, G., Kiss, H.E., Brettin, T.S., Martinez, D., Ross, C.A., Schuler, D., Cox, B.L., Nealson, K.H., et al. (2009). Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl. Environ. Microbiol.75,4835-4852.
    Schubbe, S., Wurdemann, C., Peplies, J., Heyen, U., Wawer, C., Glockner, F.O., and Schuler, D. (2006). Transcriptional organization and regulation of magnetosome operons in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol.72,5757-5765.
    Schuler, D. (1999). Formation of magnetosomes in magnetotactic bacteria. J. Mol. Microbiol. Biotechnol./, 79-86.
    Schuler, D. (2004). Molecular analysis of a subcellular compartment:the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch. Microbiol.181,1-7.
    Schuler, D. (2008). Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol. Rev.32,654-672.
    Schuler, D., and Baeuerlein, E. (1996). Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch. Microbiol.166,301-307.
    Schuler, D., and Frankel, R.B. (1999). Bacterial magnetosomes:microbiology, biomineralization and biotechnological applications. Appl. Microbiol. Biotechnol.52,464-473.
    Schultheiss, D., Handrick, R., Jendrossek, D., Hanzlik, M., and Schuler, D. (2005). The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense. J. Bacteriol.187,2416-2425.
    Schweizer, H.D. (1993). Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15,831-834.
    Shapiro, O.H., Hatzenpichler, R., Buckley, D.H., Zinder, S.H., and Orphan, V.J. (2011). Multicellular photo-magnetotactic bacteria. Environ. Microbiol. Rep.3,233-238.
    Si, F.W., Busiek, K., Margolin, W., and Sun, S.X. (2013). Organization of FtsZ filaments in the bacterial division ring measured from polarized fluorescence microscopy. Biophys. J.105,1976-1986.
    Simmons, S.L., Bazylinski, D.A., and Edwards, K.J. (2006). South-seeking magnetotactic bacteria in the Northern Hemisphere. Science 311,371-374.
    Simmons, S.L., Bazylinski, D.A., and Edwards, K.J. (2007). Population dynamics of marine magnetotactic bacteria in a meromictic salt pond described with qPCR. Environ. Microbiol.9,2162-2174.
    Simmons, S.L., and Edwards, K.J. (2007). Geobiology of magnetotactic bacteria. In Magnetoreception and magnetosomes in bacteria, D. Schuler, ed. (Berlin, Germany:Springer), pp.77-102.
    Simmons, S.L., Sievert, S.M., Frankel, R.B., Bazylinski, D.A., and Edwards, K.J. (2004). Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl. Environ. Microbiol.70,6230-6239.
    Simon, R., Priefer, U., and Puhler, A. (1983). A broad host range mobilization system for in vivo genetic engineering:transposon mutagenesis in Gram negative bacteria. Nat. Biotech.1,784-791.
    Siponen, M.I., Adryanczyk, G., Ginet, N., Arnoux, P., and Pignol, D. (2012). Magnetochrome:a c-type cytochrome domain specific to magnetotatic bacteria. Biochem. Soc. Trans.40,1319-1323.
    Siponen, M.I., Legrand, P., Widdrat, M., Jones, S.R., Zhang, W.J., Chang, M.C., Faivre, D., Arnoux, P., and Pignol, D. (2013). Structural insight into magnetochrome-mediated magnetite biomineralization. Nature 502,681-684.
    Slabinski, L., Jaroszewski, L., Rychlewski, L., Wilson, I.A., Lesley, S.A., and Godzik, A. (2007). XtalPred:a web server for prediction of protein crystallizability. Bioinformatics 23,3403-3405.
    Sonkaria, S., Fuentes, G., Verma, C., Narang, R., Khare, V., Fischer, A., and Faivre, D. (2012). Insight into the assembly properties and functional organisation of the magnetotactic bacterial actin-like homolog, MamK. PloS one 7, e34189.
    Spring, S., Amann, R., Ludwig, W., Schleifer, K.H., Vangemerden, H., and Petersen, N. (1993). Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a fresh-Water sediment. Appl. Environ. Microbiol.59,2397-2403.
    Sun, J.B., Zhao, F., Tang, T., Jiang, W., Tian, J.S., Li, Y, and Li, J.L. (2008). High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Appl. Microbiol. Biotechnol.79,389-397.
    Takayama, Y., Kobayashi, Y., Yahata, N., Saitoh, T., Hori, H., Ikegami, T., and Akutsu, H. (2006). Specific binding of CO to tetraheme cytochrome c3. Biochemistry 45,3163-3169.
    Tanaka, M., Arakaki, A., and Matsunaga, T. (2010). Identification and functional characterization of liposome tubulation protein from magnetotactic bacteria. Mol. Microbiol.76,480-488.
    Tanaka, M., Okamura, Y., Arakaki, A., Tanaka, T., Takeyama, H., and Matsunaga, T. (2006). Origin of magnetosome membrane:proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6,5234-5247.
    Taoka, A., Umeyama, C., and Fukumori, Y. (2009). Identification of iron transporters expressed in the magnetotactic bacterium Magnetospirillum magnetotacticum. Curr. Microbiol.58,177-181.
    Thomas, D.S., and Rose, A.H. (1979). Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasma-membrane lipid-composition. Arch. Microbiol.122, 49-55.
    Uebe, R., Voigt, B., Schweder, T., Albrecht, D., Katzmann, E., Lang, C., Bottger, L., Matzanke, B., and Schuler, D. (2010). Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J. Bacteriol.192,4192-4204.
    Ullrich, S., Kube, M., Schubbe, S., Reinhardt, R., and Schuler, D. (2005). A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J. Bacteriol.187,7176-7184.
    Weiner, S., and Dove, P.M. (2003). An overview of biomineralization processes and the problem of the vital effect. Rev. Mineral. Geochem.54,1-29.
    Wenter, R., Wanner, G., Schuler, D., and Overmann, J. (2009). Ultrastructure, tactic behaviour and potential for sulfate reduction of a novel multicellular magnetotactic prokaryote from North Sea sediments. Environ. Microbiol.11,1493-1505.
    Williams, T.J., Lefevre, C.T., Zhao, W.D., Beveridge, T.J., and Bazylinski, D.A. (2012). Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int. J. Syst. Evol. Microbiol.62,2443-2450.
    Williams, T.J., Zhang, C.L., Scott, J.H., and Bazylinski, D.A. (2006). Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl. Environ. Microbiol.72, 1322-1329.
    Wright, D., and Oren, A. (2005). Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiol. J.22,21-53.
    Yan, K., Pearce, K.H., and Payne, D.J. (2000). A conserved residue at the extreme C-terminus of FtsZ is critical for the FtsA-FtsZ interaction in Staphylococcus aureus. Biochem. Biophys. Res. Commun. 270,387-392.
    Yang, C., Takeyama, H., Tanaka, T., and Matsunaga, T. (2001). Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme Microb. Technol.29,13-19.
    Yang, J., Li, S., Huang, X., Li, J., Li, L., Pan, Y., and Li, Y. (2013a). MamX encoded by the mamXYoperon is involved in control of magnetosome maturation in Magnetospirillum gryphiswaldense MSR-1. BMC Microbiol.13,203.
    Yang, J., Li, S., Huang, X., Tang, T, Jiang, W., Zhang, T., and Li, Y. (2013b). A key time point for cell growth and magnetosome synthesis of Magnetospirillum gryphiswaldense based on real-time analysis of physiological factors. Front. Microbiol.4,210.
    Yang, W., Li, R., Peng, T., Zhang, Y., Jiang, W., Li, Y., and Li, J. (2010). mamO and mamE genes are essential for magnetosome crystal biomineralization in Magnetospirillum gryphiswaldense MSR-1. Res. Microbiol.161,701-705.
    Yijun, H., Weijia, Z., Wei, J., Chengbo, R., and Ying, L. (2007). Disruption of a fur-like gene inhibits magnetosome formation in Magnetospirillum gryphiswaldense MSR-1. Biochemistry (Moscow) 72, 1247-1253.
    Yu, D.B., Yong, D.M., and Dong, S.J. (2013). Toxicity detection of sodium nitrite, borax and aluminum potassium sulfate using electrochemical method. J. Environ. Sci.25,785-790.
    Zaidi, S., Hassan, M.I., Islam, A., and Ahmad, F. (2014). The role of key residues in structure, function, and stability of cytochrome-c. Cell. Mol. Life Sci.71,229-255.
    Zhan, G.Q., Li, D.P., and Zhang, L. (2012). Aerobic bioreduction of nickel(Ⅱ) to elemental nickel with concomitant biomineralization. Appl. Microbiol. Biotechnol.96,273-281.
    Zhang, C., Meng, X., Li, N.X., Wang, W, Sun, Y, Jiang, W., Guan, G.H., and Li, Y. (2013). Two bifunctional enzymes with ferric reduction ability play complementary roles during magnetosome synthesis in Magnetospirillum gryphiswaldense MSR-1. J. Bacteriol.195,876-885.
    Zhang, W.J., Chen, C., Li, Y., Song, T., and Wu, L.F. (2010). Configuration of redox gradient determines magnetotactic polarity of the marine bacteria MO-1. Environ. Microbiol. Rep.2,646-650.
    Zhang, Y, Zhang, X., Jiang, W., Li, Y., and Li, J. (2011). Semicontinuous culture of Magnetospirillum gryphiswaldense MSR-1 cells in an autofermentor by nutrient-balanced and isosmotic feeding strategies. Appl. Environ. Microbiol.77,5851-5856.
    Zhao, L., Wu, D., Wu, L.F., and Song, T. (2007). A simple and accurate method for quantification of magnetosomes in magnetotactic bacteria by common spectrophotometer. J. Biochem. Biophys. Methods 70,377-383.
    Zhu, K., Pan, H., Li, J., Yu-Zhang, K., Zhang, S.D., Zhang, W.Y., Zhou, K., Yue, H., Pan, Y, Xiao, T, et al. (2010). Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res. Microbiol.161,276-283.
    姜伟(2003).姜伟博士学位论文(北京:中国农业大学).
    李颖,孙建波,姜伟,田杰生,王珍芳,and李季伦(2011).一种培养磁细菌生产磁小体的最适溶氧控制方法(ZL200710177453.1).
    刘江宁(2008).刘江宁博士学位论文(北京:中国农业大学).
    齐蕾(2013).齐蕾博士学位论文(北京:中国农业大学).
    杨靖,张同伟,黄修良,李舒祺,and李颖(2011).趋磁细菌磁小体合成机制研究进展.微生物学通报38,1262-1269.
    张同伟(2012).张同伟硕士学位论文(北京:中国农业大学).
    张扬(2012).张扬博士学位论文(北京:中国农业大学).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700