用户名: 密码: 验证码:
微阵列生物芯片分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物芯片技术在最近十几年发展迅速,已经广泛应用于基因表达、功能基因组、蛋白质组等前沿领域。尤其在近几年,所涉及的领域从研究型场合迅速扩展至应用型场合,在临床检验、疾病诊断、药物筛选等方面发挥了越来越重要的作用。用生物芯片进行检测和分析的一大特点是需要处理大量数据,实现多通道、高通量、全自动化的数据处理。
     生物芯片分析是生物芯片技术的研究热点,包括靶点阵列定位、靶点分割、数据提取和表达分析等子过程。它不是单一的算法或方法,而是涵盖生物芯片分析全过程的系列算法的集合。目前生物芯片分析方法的研究更多的局限于某个分析环节。要真正实现高效、全自动的生物芯片分析,必须从两方面着手:首先,需要对分析的全过程进行研究,解决每个分析环节中存在的问题;其次,需要在各个分析环节之间建立有效的联系。随着生物芯片技术逐步应用于临床领域,能否在各个分析环节形成公认有效的分析算法,如何建立连续的分析流程,提高分析的自动化程度将显得越来越重要。
     论文对生物芯片分析方法中所包含的各个分析子过程进行了深入的研究,在每个分析子过程建立了高性能的分析算法,并进行了实验分析验证。主要的工作包括:
     提出了基于投影的生物芯片网格阵列自动定位算法,通过引入网格阵列的分布参数,实现对靶点阵列的自动定位。
     利用图像投影的能量谱密度,实现对倾斜图像的自动校正,并通过多尺度快速校正算法进行性能优化。
     在分析并比较了现有生物芯片图像分割方法的基础上,采用结合邻域搜索的自适应圆形分割算法,实现了对生物芯片图像的分割。
     以临床检验生物芯片为主要研究对象,建立了面向临床应用的差异表达分析模型,关键算法包括:基于变异系数逼近的数据筛选策略,可调控的低表达水平信号分析模型等。该分析模型在丙型肝炎病毒检测芯片分析中进行了验证,提高了检测结果的一致率,降低了假阳性、假阴性率。
     面向临床应用,开展了生物芯片自动分析平台的研发工作,包括:激光共聚焦荧光分析仪的研制,生物芯片自动分析工作站,生物芯片数据库的构建等。
     分别用80例丙型肝炎病毒检测芯片标准品、256例乙型肝炎病毒前C区变异基因芯片临床样本和63例过敏原检测芯片临床样本进行了实验和分析,验证了论文方法的准确性和可靠性。
     实验和分析表明,论文所提出的一系列分析算法和方法能对微阵列生物芯片进行全自动分析,通过算法间的有效联系,实现了网格定位、靶点分割和表达分析等过程的自动串联:临床应用的结果表明,论文所建立的生物芯片自动分析平台,为生物芯片研制、开发和应用提供了有效的方法和技术。
With the advance in recent 10 to 20 years, microarray has been widely developed in gene expression, functional genome, proteome and other research areas. Especially in recent years, it has been involved from the research fields to the clinical fields with the more and more important effect in clinical inspection, diagnosis, drug filtration etc. An issue of microarray experiment is to process large-scale of data with multi-channel, high through pass and automation.
     Microarray analysis is an important aspect of microarray technology. It has several processes including gddding, segmentation, data extraction and expression. Instead of a certain algorithm or method, it is a set of methods which cover the whole procedure of microarray experiment, but most of the current research works focus on certain analysis step. For the realization of high performance and automatic microarray analysis, the study of whole analysis procedure should be considered, not only solve the issues in each step, but also research on the relationship between them. With micorarray technology's wide implementation in clinical area, the breakthrough of microarray analysis becomes a desire.
     This thesis focuses on the methodology study of microarray analysis. A set of algorithms and methods which relate to each step of micorarray experiment were presented and validated by a great deal of experiments. The main contributions of this thesis are followings:
     An automatic gridding algorithm of biochip image based on projection is presented.
     For microarray image rotated correction, an automatic and power spectrum-based rotated correction algorithm is presented. For improving the performance, the optimization with multi-scale searching method is introduced.
     Based on the comparison of existed microarray image segmentation methods, the adaptive circle segmentation algorithm combined with the neighborhood searching algorithm is realized.
     The microarray data differential expression model is realized for clinical inspection. The key algorithms include: data filtration strategy based on coefficient variant, adjustable model for low level expression sample etc. This model is implemented for hepatitis C virus detection microarray. The analysis result showed a high consistence rate.
     Aiming at clinical implementation, a microarray analysis platform is researched and developed, including the development of laser confocal microarray scanner, microarray automatic analysis workstation, microarray database etc.
     A great deal of experiments were done to evaluate the performance of our algorithms and methods, including 80 samples of hepatitis C virus detection microarray, 256 samples of mutation detection microarray for hepatitis B virus the precore region, 63 samples of allergen detection microarray.
     Experiments and analysis show that the algorithms and methods presented in this thesis can be used for automatic microarray analysis. With an effective interaction between every analyzing step, gridding, segmentation and data expression can be processed in series. The result of clinical implementation also shows that the microarray analysis platform provides effective and feasible methods and technologies for microarray research, development and implementation.
引文
[1] Jain E. Current trends in bioinformatics. Trends in Biotechnology, 2002, 20(8): 317-319.
    [2] Eisen MB, Brown PO. DNA arrays for analysis of gene expression. Methods Enzymol, 1999, 303: 179-205.
    [3] 马立人,蒋中华.生物芯片(第二版).北京:化学工业出版社,2002.
    [4] 王东,宋立斌等.生物芯片微阵列制备方法研究.高技术通讯,2002,12(8):60-63.
    [5] 王立强,陆祖康,林斌.生物芯片及其荧光信号检测.光学仪器,2002,24(5):59-65.
    [6] 许屏.荧光和免疫荧光染色技术及应用(第二版),北京:人民卫生出版社,2000:57-59.
    [7] Davidovits P, Egger MD. Scanning Laser Microscope for Biological Investigations. Appl. Opt, 1971, 10(7): 1615-1619.
    [8] Sheppard CJR, Choudhury A. Image formation in the scanning microscope. Optia. Acta, 1977, 24(10): 1051-1073.
    [9] Wilson T, Sheppard CJR. Theory and Practice of Scanning Optical Microscopy. London: Academic Press, 1984: 1-9.
    [10] Schena M. Microarray Analysis. Eaton publishing, 2000: 77-94, 367-386.
    [11] http://www.ncbi.nlm.nih.gov/geo, 2007.
    [12] http://www.ebi.ac.uk/arrayexpress, 2007.
    [13] http://genome-www5.stanford.edu, 2007.
    [14] Bragna A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet, 2001, 29(4): 365-371.
    [15] Yiang C. C, Chen Y. cDNA Microarray Technology and its Applications. Biotechnol Advance 2000, 18: 35-46.
    [16] M. B. Eisen, P. O. Brown. DNA array or analysis of gene expression. Methods in Enzymology, 303, 1999.
    [17] Duggan DJ, Bittner M, et al. Expression profiling using cDNh microarray. Nature Genetics. 1998, 20(1): 19-23.
    [18] Jouenne Vincent Y. Critical issues in the processing of cDNA microarray images. Blacksburg, Virginia Polytechnic Institute and State University, 2001. 1-84.
    [19] Damian Verdnik. Guide to Microarray Analysis. (http://www. axon. com/gn_GenePix4000. html), 2004.
    [20] Zhang W, Huang J, et al. Protein chip for detection of different HCV antibodies: preparation, quality control, and clinical evaluation. Mol Diagn. 2005:9(2):81-87.
    [21] Y.Chen, et al. Ratio-based decisions and the quantitative analysis of cDNA microarray images. Journal of Biomedical Optics. 1997, 2:364-374.
    [22] D. H. Ballard, C. M. Brown. Generalizing the Hough Transform to detect arbitrary shapes. Pattern Recogn. 1981, Vol. 13, 111-122.
    [23] R. O. Duda, et al. Use of the Hough Transformation to detect lines and curves in pictures. Comm. of the ACM. 1972, Vol. 15, 11-15.
    [24] M. Ceccarelli, A. Petrosino. The Orientation Matching Approach to Circular Object Detection. Proceedings of IEEE International Conference on Image Processing 2001, 712-715.
    [25] G. Antoniol, M. Ceccarelli. A Markov Random Field Approach to Microarray Image Gridding. Proceedings of the 17th International Conference on Pattern Recognition. 2004, 550-553.
    [26] Anil KJ, Yu Zhong, et al. Object Matching Using Deformable Templates. IEEE Trans Pattern Analysis and Machine Intelligence. 1996, 18(3):267-278.
    [27] M. Ceccarelli, G. Antoniol. A Deformable Grid Matching Approach for Microarray Images. Technical report at the Research Center on Software Technologies (RCOST), 2005.
    [28] H. J. Roberto, B. Junior, et al. Microarray Gridding by Mathematical Morphology. Proceedings of the 14th Brazilian Symposium on Computer Graphics and Image Processing. 2001:112-119.
    [29] R. Fabbi, L.F.Costa, J. Barrera. Towards Non-Parametric Gridding of Microarray Images. 14th International Conference on Digital Signal Processing, 2002, 2: 623-626.
    [30] P. Soille. Morphological Image Analysis: Principles and Applications. Springer, 1999.
    [31] YH. Yang, MJ. Buckley, et al. Comparison of Methods for Image Analysis on cDNA Microarray Data. Journal of Computational and Graphical Statistics, Vol. 11, 2002, 108-136.
    [32] J. Buhler, T. Ideker, et al. Dapple: Improved Techiques for Finding Spots on DNA Microarrays. Technical Report UWTR 2000-08-05, University of Washington, 2000.
    [33] S. Beucher, F.Meyer. The morphological approach to segmentation: the watershed transformation. In Mathematical morphology in image processing, volume 34 of Optical Engineering, chapter 12, page 433-481. Marcel Dekker, New York, 1993.
    [34] Rolf A, Leanne B. Seeded Region Growing. IEEE Transactions on pattern analysis and machine intelligence, 1994, 16(6):641-647.
    [35] Andrew Mehnert, Paul Jackway. An improved seeded region growing algorithm. Pattern Recognition Letters, Vol.18, 1997:1065-1071.
    
    [36] GSI Lumonics. QuantArray Analysis Software, Operator's Manual, 1999.
    [37] Kim. J. H. et al. A novel method using edge detection for signal extraction form cDNA microarray image analysis. Exp. Mol. Med., 2001 33, 83-88.
    [38] Hirata. R, et al. Segmentation of microarray images by mathematical morphology. Real-Time Imaging. 2002, 8, 491-505.
    [39] Angulo. J, Serra, J. Automatic analysis of DNA microarray images using mathematical morphology. Bioinformatics, 2003, 19, 553-562.
    [40] Antonio. P. G. D, L. Zhao, AC. Carvalho. A dynamical model with adaptive pixel moving for microarray images segmentation. Real-Time Imaging. 2004, 10: 189-195.
    [41] Brandle. N, et al. Robust DNA microarray image analysis. Machine Vision Appl. 2003, 15, 11-28.
    [42] Q.Li, et al. Donuts, scratches and blanks: robust model-based segmentation of microarray images. Bioinformatics. 2005, Vol. 21(12), 2875-2882.
    [43] Alvis Brazma, et al. Gene expression data analysis. Microbes and Infection, 2001, 3: 823-829.
    [44] Brandle.N, Chen. H.Y, et al. Robust parametric and semi-parametric spot fitting for spot array images. ISMB, 2000, 46-56.
    [45] P. Arena, L. Fortuna, L. Occhipinti. A CNN algorithm for real time analysis of DNA microarrays. IEEE Trans on Circuits and Systems I: Fundamental Theory and Applications. 2002, Vol. 49(3), 335-340.
    [46] Y.Liang, E.O.George, A. Kelemen. Bayesian Neural Network for Microarray Data. Proceedings of the IEEE International Joint Conference on Neural Networks. 2002, Vol. 1, 193-197.
    [47] T. S. Furey, N. Cristianini, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. 2000, Vol. 16(10): 906-914.
    [48] D. NguyenV, et al. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics. 2002, 18(1): 39-50.
    [49] B.Li, JF. Peng et al. Construction of a genechip method for detection of hepatitis B virus DNA, basal cole promoter and Pre-C mutants. Chinese Journal of Experimental and Clinical Virology. 2004, Vol.18(2): 190-193.
    [50] JP. Tamayo, et al. Interpreting Patterns of Gene Expression with Self-Organizing Maps: Methods and Application to Hematopoietic Differentiation. Proc. Natl. Acad. Sci. 1999, 96: 2901-2912.
    [51] U. Alon, N. Barkai, et al. Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide arrays. Proc. Natl. Acad. Sci. 1999, 96: 6745-6750.
    [52] Szcsepanski M K, Smolka B, Plataniotis K N et al. Enhancement of the DNA Microarray Chip Images. 14th International Conference of Digital Signal Processing. 2002, 1: 395-398.
    [53] RLukac, et al. cDNA microarray image processing using fuzzy vector filtering framework. Fuzzy Sets and Systems. 2005, 152: 17-35.
    [54] Deng N, Duan HL. The Automatic Gridding Algorithm Based on Projection for Microarray Image. In: Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation. Chengdu: IEEE Robotics and Automation Society, 2004: 254-257.
    [55] Christopher B, Richard B, Stephanie B. Automated Analysis Of Gene-Microarray Images. Electrical and Computer Engineering, IEEE CCECE, Canadian Conference, 2002, 2: 1140-1144.
    [56] 张文,周枚芬,陈立炎等.丙型肝炎病毒分片段抗体检测蛋白质芯片质控参比的建立及质量验证.生物技术通讯,2004,15(3):248-250.
    [57] Saito S, OtaS, YamadaE, et al. Allele frequencies and haplotypic associations defined by allelic cDNA typing, at HLA class Ⅰ and class Ⅱ loci in the Japanese population. Tissue Antigens, 2000, 56(6): 522.
    [58] 郑君里,杨为理,应启衍.信号与系统.北京:高等教育出版社,1981:523-529.
    [59] 宋慧营,王文生,王洪尊等.相关探测中目标旋转、比例变化的研究.长春理工大学学报,2003,26(1):39-41.
    [60] K.R.Castleman著,朱治刚等译.数字图像处理.北京:电子工业出版社,1998:146-174.
    [61] 向世明.Visual C++数字图像与图形处理.北京:电子工业出版社,2002:294-301。
    [62] Deng N, Duan HL. An Automatic and Power Spectra-based Rotate Correcting Algorithm for Microarray Image. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. Shangehai: IEEE EMBS, 2005: 898-901.
    [63] http://www.cs.colostate.edu/cameron/applications.html, 2004.
    [64] Rafael C.Gonzalez著,阮秋骑等译.数字图像处理(第二版).北京:电子工业出版社,2003:460-514.
    [65] C. S. Brown, P. C. Goodwin, P. K. Sorger. Image metrics in the statistical analysis of DNA microarray data. Proc. of the National Academy of Sciences USA, 2001, 98: 8944-8949.
    [66] Hacia J G, Brody L C, Chee M S, et al. Detection of heterozygous mutations in BRCAI using high density oligonucleotide arrays and two-color fluorescence analysis. Nat Genet, 1996, 14(4): 441-447.
    [67] Tseng GC, Oh MK, Rohlin L, et al. Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects Nucleic Acids Res., 2001, 29(12): 2549-2557.
    [68] IJ Blader, ID Manger, JC Boothroyd. Microarray Analysis Reveals Previously Unknown Changes in Toxoplasma gondii-infected Human Cells. Journal of Biological Chemistry, 2001, 276(26): 24223-24231.
    [69] 丁亚平,陈立炎,张文等.同时检测血清中多种抗体的蛋白微阵列的研究.生物化学与生物物 理进展,2002,29(4):640-644.
    [70] 郝飞,余宙耀.丙型肝炎基础与临床.北京:人民卫生出版社,1999:241-269.
    [71] 刘锡光.病毒性肝炎实验诊断学(第二版).北京:人民卫生出版社,1999:450-475.
    [72] 齐名,甄国亮,熊华等.HCV基因型检测芯片的设计与研制初报.临床检验杂志,2002,20(6):333-336.
    [73] 黄建生,任大明主编.丙型肝炎.北京:人民军医出版社,2000:56-66.
    [74] Yang YP, Jiang YZ, Bi SL et al. cDNA chimeric fusion and prokaryotic expression of nucleocapsid and NS3 regions of hepatitis C virus genome and analysis of antigen. Chinese Journal of Virology. 1994, 10(3): 229-234.
    [75] Chao C, Shi CB, Li P et al. Cloning, expression and application of quadrivalent chimeric antigen of hepatitis C(HCV), Chinese Journal of Virology. 1996, 12(3): 199-206.
    [76] 张文,周枚芬,陈立炎等.丙型肝炎病毒分片段抗体检测蛋白质芯片的制备及临床评价.生物化学与生物物理进展,2003,30(6):935-939.
    [77] Berrero J, Al-Shahrour F, Diaz-Uriarte R, et al. GEPAS: A web-based resource for microarray gene expression data analysis. Nucleic Acids Res., 2003, 31(13): 3461-3467.
    [?8] AB Goryachev, PF MacGregor, AM Edwards. Unfolding of microarray data. J. Comp. Biol, 2001, 8: 443-461.
    [79] C Kooperberg, TG Fazzio, T Tsukiyama. Improved background correction for spotted DNA microarrays. J. Comp. Biol, 2002, 9: 55-66.
    [80] Bilban M, Buehler L K, Bead S et al.. Normalizing DNA microarray data. Curt Issues Mol Bio, 2002, 4(2): 57-64.
    [81] GK Smyth, YH Yang, TP Speed. Statistical issues in cDNA microarray data analysis. In Brownstein, M. J. and Khodursky, A. B(eds). Functional Genomics: Methods and Protocols. Humana Press, 2002, Totowa.
    [82] D. Edwards. Non-linear normalization and background correction in one-channel cDNA microarray studies. Bioinformatics, 2003, 19(7): 825-833.
    [83] YY Cao, YB Cao, X Zheng et al. cDNA Microarray Analysis of Differential Gene Expression in Candida albicans Biofilm Exposed to Farnesol. Antimicrobial Agents and Chemotherapy. 2005, 49(2): 584-589.
    [84] KF Ding, LF Sun, WT Ge et al. Effect of NS398 on metastasis-associated gene expression in a human colon cancer cell line. World Journal of Gastroenterology, 2005, 11(36): 5651-5654.
    [85] 张兴明.生物芯片扫描分析系统-嵌入式系统软件设计,浙江大学硕士学位论文,2003.
    [86] Wayne W. What is Embedded Computing. Embedded Computing, 2002, 1: 106-137.
    [87] 陈碧.生物芯片扫描分析系统的DSP软件设计.浙江大学硕士学位论文,2003.
    [88] Comisky, D. Agarwala, S. Fuoco, C. A scalable high-performance DMA architecture for DSP applications. Proceedings of Computer Design, 2000: 414-419.
    [89] 曹宁,冯忠义.基于客户/服务器模式的Socket网络编程.计算机工程.1999,25(2):72-74.
    [90] 肖家全,谭建明,李成涛等.HLA-DRB1基因芯片与PCR-SSP分型的比较.复旦学报(医学版),2003,30(1):67-69.
    [91] R Kothapalli, SJ Yoder, S Mane et al. Microarray results: how accurate are they. BMC Bioinformatics, 2002, 3: 22.
    [92] SD Jenson, RS Robetorye, SD Bohling et al. Validation of cDNA microarray gene expression data obtained from linearly amplified RNA. Mol Pathol, 2003, 56(6): 307-312.
    [93] H van Bakel, FCP Holstege. In control: systematic assessment of microarray performance. EMBO Rep., 2004, 5(10): 964-969.
    [94] PT Spellman, M Miller, J Stewart et al. Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol, 2002, 3(9): 0046. 1-9.
    [95] A Brazma, P Hingamp, J Quackenbush et al. Minimum information about a microarray experiment (MIhME)-toward standards for microarray data. Nat. Genet., 2001, 29: 365-371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700