适用于溶液法制备器件的小分子蒽衍生物蓝光材料的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计并合成了一系列蒽衍生物小分子蓝光材料,其中五种化合物在有机溶剂中具有较大溶解度,可以满足用溶液法制备器件对材料溶解性的要求。我们详细研究了各种化合物的光物理、热物理和电化学性质以及部分化合物的电致发光器件性能。具体内容如下:
     (1)合成了一种易溶性蒽衍生物小分子蓝光材料TBPPA,该化合物具有高的荧光量子效率和热稳定性(Tg=207℃)。用该化合物作为蓝光发光和蓝光主体材料,通过旋涂法成功制备了有机小分子单层和双层电致发光器件,双层器件最大发光亮度和效率分别达到了1690cd/m2和0.54 cd/A。
     (2)合成了一系列蒽衍生物小分子蓝光材料TBMFA、TBPFA和TBBFA,其中后两个化合物在有机溶剂中溶解度较大,重点对比研究了这两个化合物的性质。理论计算显示,这两个化合物都存在trans和cis两种稳定构象。分子中烷基链的长短对化合物的光物理性质和电化学性质影响很小,但对化合物的热稳定性影响较大。用TBPFA作为蓝光发光和蓝光主体材料,通过旋涂法成功制备了有机小分子单层电致发光器件。
     (3)合成了一系列的蒽衍生物小分子蓝光材料TBMFPA、TBPFPA和TBBFPA,其中后两个化合物在有机溶剂中溶解度较大,重点对比研究了这两个化合物的性质。对TBPFPA的单晶结构分析表明,这类材料在固态时分子间作用力较弱。TBPFPA和TBBFPA都具有较高的荧光量子效率,较高的热稳定性和电化学可逆性。TBPFPA可以通过旋涂法制备出高质量无定形薄膜,将其作为蓝光发光和蓝光主体材料用旋涂法和旋涂与蒸镀相结合的方法制备的器件取得了较好的结果,最大发光亮度和效率分别达到了4220 cd/m2和1.05cd/A。
     (4)合成了一种蒽衍生物蓝光材料TBDNPA,对比TBMFA和TBMFPA研究了它们的性质。它们都具有较高的荧光量子效率,较高的热稳定性和电化学可逆性。三个化合物的HOMO和LUMO轨道能级都很接近,而且带隙较大,有希望作为蓝光发光和蓝光主体材料应用于电致发光器件。
We designed and synthesized a series of blue-light emitting anthracene derivatives, in which five compounds have enough high solubility for fabricating OLEDs by solution process. The photophysical properties, thermal properties, electrochemical properties of all compounds and electroluminescence properties of some compounds were investigated detailedly.
     The main contents of the thesis are summarized as follows:
     (1) A new soluble small molecular anthracene derivative TBPPA was synthesized, which has high fluorescence quantum efficiency, high thermal stability and reversible oxidation potential. By spin-coating process, we fabricated OLEDs successfully using TBPPA as blue-light emitting or blue host material. The devices maximum brightness and efficiency are 1690cd/m2 and 0.54 cd/A respectively.
     (2) A series of small molecular anthracene derivatives TBMFA, TBPFA and TBBFA were synthesized, in which TBPFA and TBBFA were investigated in parallel because of their high solubilities in organic solvents. Theoretical calculations on the three-dimensional structures of TBPFA and TBBFA showed that the two compounds both have stable trans and cis two conformations. The alkyl groups have little effect on photophysical properties and oxidation potentials, but have biggish effect to thermal properties. By spin-coating process, we fabricated blue-light emitting OLEDs successfully using TBPFA as emission layer.
     (3) A series of small molecular anthracene derivatives TBMFPA, TBPFPA and TBBFPA were synthesized, in which TBPFPA and TBBFPA were investigated in parallel for their high solubilities in organic solvents. The single crystal X-ray diffraction of TBPFPA shows the intermolecular interactions are very weak. TBPFPA and TBBFPA both have high fluorescence quantum efficiencies, high thermal stabilities and reversible oxidation potentials. TBPFPA can form high quality amorphous film by spin-coating process. Using TBPFPA as blue-light emitting or blue host materials, the blue-light emitting devices were fabricated by spin-coating process in combination with vacuum deposition process. The devices maximum brightness and efficiency are 4220cd/m2 and 1.05cd/A respectively.
     (4) A new small molecular anthracene derivative TBDNPA was synthesized and the properties of TBDNPA, TBMFA and TBMFPA were studied in detail. The three compounds all have high fluorescence quantum efficiencies and thermal stabilities. They have approximate HOMO and LUMO energy levels, which can be used as blue-light emitting and blue host materials in OLEDs for their large bandgaps.
引文
[1] 黄春辉,李富友,黄维,有机电致发光材料与器件导论,上海,复旦大学出版 社,2005。
    [2] 樊美公,王利祥,景遐斌,王佛松等, 光化学基本原理与光子学材料科学,北京, 科学出版社, 2001。
    [3] M. Pope, H. P. Kallmann, P. Magnante, Electroluminescence in organic crystals, J. Chem. Phys., 1963, 38(8), 2042-2043.
    [4] W. Helfrich, W. G. Schneider, Recombination radiation in anthracene crystals, Phys. Rev. Lett., 1965, 14, 229-231.
    [5] Robert E. Visco, Edwin A. Chandross, Electroluminescence in Solutions of Aromatic Hydrocarbons, J. Am. Chem. Soc., 1964, 86, 5350-5351.
    [6] Roberts G G, Mcrinnity M, Briloow W A, Vincett P S, Electroluminescence, photoluminescence and electroabsorption of a lightly substituted anthracene langmuir film, Solid State Communications, 1979, 32, 683-686.
    [7] P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Roberts, Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films, Thin Solid Films, 1982, 94, 171-183.
    [8] Chiang C K, Fincher C R, Park Y W, Hegger A J, Shiraawa H, Louis E J, Gau S C, Macdiarmjol G, Electrical Conductivity in Doped Polyacetylene, Phys. Rev. Lett., 1977, 39, 1098-1101.
    [9] C. W. Tang, S. A. VanSlyke, Organic electroluminescent diodes, Appl. Phys. Lett., 1987, 51, 913-915.
    [10] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Electroluminescent device with a three-layer structure, Jpn. J. Appl. Phys., 1988, 27, L713-715.
    [11] J. R. Sheats, H. Antoniadis, M. Hueschen et al., Organic electroluminescent devices, Science, 1996, 273, 884-886.
    [12] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, Light-emitting diodes based onconjugated polymers, Nature, 1990, 347, 539-541.
    [13] D. Braun, A. J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett., 1991, 58(18), 1982-1984.
    [14] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 1998, 395, 151-154
    [15] C. H. Chen, J. Shi, C. W. Tang, Recent developments in molecular organic electroluminescent materials, Macromol. Symp., 1997, 125, 1-48.
    [16] 黄春辉,李富友,黄岩谊,光电功能超薄膜,北京,北京大学出版社,2001。
    [17] M. A. Baldo, D. F. O’Brien, M. E. Thompson, and S. R. Forrest, Excitonic singlet-triplet ration in a semiconducting organic thin film, Phys. Rev. B., 1999, 60, 14422-14428.
    [18] C. W. Tang, S. A. VanSlyke, C. H. Chen, Electroluminescence of doped organic thin films, J. Appl. Phys., 1989, 65, 3610-3616.
    [19] Gong, J.-R., Wan, L.-J., Lei, S.-B., Bai, C.-L., Zhang, X.-H., Lee, S.-T, Direct Evidence of Molecular Aggregation and Degradation Mechanism of OrganicLight-Emitting Diodes under Joule Heating: an STM and Photoluminescence Study, J. Phys. Chem. B., 2005; 109; 1675-1682.
    [20] G. Y. Zhong, J. He, S. T. Zhang, Z. Xu, Z. H. Xiong, H. Z. Shi, X. M. Ding , W. Huang, X. Y. Hou, In situ photoluminescence investigation of doped Alq, Appl. Phys. Lett., 2002. 80, 4846-4848.
    [21] 色彩学编写组, 色彩学, 北京, 科学出版社,2001.
    [22] J. R. Sheats, H. Antoniadis, M. Hueschen et al “Organic electroluminescent devices” Science, 1996, 273, 884-888.
    [23] S. A. VanSlyke, C. H. Chen, and C. W. Tang,Organic electroluminescent devices with improved stability, Appl. Phys. Lett., 1996, 69, 2160-2162.
    [24] Yasuhiko Shirota, Yoshiyuki Kuwabara, Hiroshi Inada, Takeo Wakimoto, et al., Multilayered organic electroluminescent device using a novel starburst molecule, 4,4,4-tris(3-methylphenylphenylamino)triphenylamine as a hole transport material, Appl. Phys. Lett., 1994, 65, 807-809.
    [25] T. M. Brown, J. S. Kim, R. H. Friend, and F. Cacialli, R. Daik and W. J. Feast,Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly (3, 4-ethylene dioxythiophene) hole injection layer, Appl. Phys. Lett., 1999, 75, 1679-1681.
    [26] D. B. Romero, M. Schaer, L. Zuppiroli ,B. Cesar, B. Fran?ois, Effects of doping in polymer light-emitting diodes, Appl. Phys. Lett., 1995, 67, 1659-1661.
    [27] F. Huang and A. G. MacDiarmid B. R. Hsieh , An iodine-doped polymer light-emitting diode, Appl. Phys. Lett., 1997, 71, 2415-2417.
    [28] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material, Appl. Phys. Lett., 1998, 73, 729-731.
    [29] Asuka Yamamori, Chihaya Adachi, Toshiki Koyama, and Yoshio Taniguchi, Doped organic light emitting diodes having a 650-nm-thick hole transport layer, Appl. Phys. Lett., 1998, 72, 2147-2149.
    [30] Cui J., Huang Q., Veinot J. C. G., Yan H., Wang Q., Hutchison G. R., Richter A. G., Evmenenko G., Dutta P., Marks T. J., Anode Interfacial Engineering Approaches to Enhancing Anode/Hole Transport Layer Interfacial Stability and Charge Injection Efficiency in Organic Light-Emitting Diodes, Langmuir, 2002, 18(25), 9958-9970.
    [31] Huang Q., Evmenenko G., Dutta P., Marks T. J., Molecularly "Engineered" Anode Adsorbates for Probing OLED Interfacial Structure-Charge Injection/Luminance Relationships: Large, Structure-Dependent Effects, J. Am. Chem. Soc., 2003, 125, 14704-14705.
    [32] Yan H., Lee P., Armstrong N. R., Graham A., Evmenenko G. A., Dutta P., Marks T. J., High-Performance Hole-Transport Layers for Polymer Light-Emitting Diodes. Implementation of Organosiloxane Cross-Linking Chemistry in Polymeric Electroluminescent Devices, J. Am. Chem. Soc., 2005, 127, 3172-3183.
    [33] Jonathan G. C. Veinot, Andtobin J. Marks, Toward the Ideal Organic Light-Emitting Diode. The Versatility and Utility of Interfacial Tailoring by Cross-Linked Siloxane Interlayers, Acc. Chem. Res., 2005, 38, 632-643.
    [34] Chen C. H., Shi J., Tang C W. Macromol. Symp., 1997, 125, 1.
    [35] Chihaya Adachi, Kazukiyo Nagai, and Nozomu Tamoto, Molecular design of hole transport materials for obtaining high durability in organic electroluminescentdiodes, Appl. Phys. Lett., 1995, 66, 2679-2681.
    [36] Y. Shirota, K. Okumoto, H. Inada, Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials, Synth. Metals., 2000, 111, 387-391.
    [37] Yasuhiko Shirota, Organic materials for electronic and optoelectronic devices, J. Mater. Chem., 2000, 10, 1-25.
    [38] Mukundan Thelakkat, Christoph Schmitz, Christoph Hohle, Peter Strohriegl, Hans-Werner Schmidt, Uwe Hofmann, et al., Novel functional materials based on triarylamines–synthesis and application in electroluminescent devices and photorefractive systems, Phys. Chem. Chem. Phys., 1999,41,1693-1698.
    [39] M. Van der Auweraer, F. C. De Schryver, P. M. Borsenberger, J. J. Fitzgerald, Hole transport in 5'-[4-[bis(4-ethylphenyl)amino]phenyl]-N,N,N',N'-tetrakis(4-ethylphen yl)-1,1':3',1''-terphenyl-4,4''-diamine, J. Phys. Chem., 1993,97, 8808-8811.
    [40] Hiroshi Inada, Yasuhiko Shirota, et al., 1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its methyl-substituted derivatives as a novel class of amorphous molecular materials,J. Mater. Chem., 1993, 319-320.
    [41] J. Salbeck, N. Yu, J. Bauer, F. Weiss?rtel and H. Bestgen, Low molecular organic glasses for blue electroluminescence, Synth. Met., 1997, 91, 209-215.
    [42] Ullrich Mitschke and Peter B?uerle, The electroluminescence of organic materials, J. Mater. Chem., 2000, 10, 1471-1508.
    [43] Hongda Zhao, Christine Tanjutco, et al., Design and synthesis of stable triarylamines for hole-transport applications, Tetrahedron Letters, 2001, 42, 4421-4424.
    [44] Katsuhiko Katsuma, Yasuhiko Shirota, A Novel Class of -Electron Dendrimers for Thermally and Morphologically Stable Amorphous Molecular Materials, Adv.Mater., 1998,10, 223-226.
    [45] S. Grigalevicius, G. Blazys, J. Ostrauskaite, J. V. Grazulevicius, V. Gaidelis, V. Jankauskas and E. Montrimas, 3,6-Di(N-diphenylamino)-9-phenylcarbazole and its methyl-substituted derivative as novel hole-transporting amorphous molecular materials, Synthetic Metals, 2002,128,127-131.
    [46] Ren, X.; Alleyne, B. D.; Djurovich, P. I.; Adachi, C.; Tsyba, I.; Bau, R.; Thompson, M. E., Organometallic Complexes as Hole-Transporting Materials in OrganicLight-Emitting Diodes, Inorg. Chem., 2004, 43, 1697-1707.
    [47] Anderson J. D., McDonald E. M., Lee P. A., Anderson M. L., et al., Electrochemistry and Electrogenerated Chemiluminescence Processes of the Components of Aluminum Quinolate/Triarylamine, and Related Organic Light-Emitting Diodes, J. Am. Chem. Soc., 1998, 120, 9646-9655.
    [48] Brinkmann M., Gadret G., Muccini M., Taliani C., et al, Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III), J. Am. Chem. Soc., 2000, 122, 5147-5157.
    [49] Zugang Liu, Joa?o Pinto, Jorge Soares, Estela Pereira, Efficient multilayer organic light emitting diode, Synthetic Metals, 2001, 122, 177-179.
    [50] Chihaya Adachi, Tetsuo Tsutsui, and Shogo Saito Organic electroluminescent devicehaving a hole conductor as an emitting layer, Appl. Phys. Lett., 1989, 55,1489-1491.
    [51] D. O'Brien, A. Bleyer, D. G. Lidzey, et al., Efficient multilayer electroluminescence devices with poly(m-phenylenevinylene-co-2,5- dioctyloxy-p-phenylenevinylene) as the emissive layer, J. Appl. Phys., 1997, 82, 2662-2670.
    [52] Nicklas Johansson, Josef Salbeck, Jacqueline Bauer, Frank Weiss?rtel, Per Br?ms, Annica Andersson, William R. Salaneck, Solid-State Amplified Spontaneous Emission in Some Spiro-Type Molecules: A New Concept for the Design of Solid-State Lasing Molecules, Adv. Mater., 1998, 10, 1137-1141.
    [53] Tamoto N., Adachi C., Nagai K., Electroluminescence of 1,3,4-Oxadiazole and Triphenylamine-Containing Molecules as an Emitter in Organic Multilayer Light Emitting Diodes, Chem. Mater., 1997, 9, 1077-1085.
    [54] J?rg Bettenhausen, Peter Strohriegl, Efficient synthesis of starburst oxadiazole compounds, Advanced Materials, 1996, 8, 507-510.
    [55] Zhiqiang Gao, C. S. Lee, I. Bello, S. T. Lee, Ruey-Ming Chen, Tien-Yau Luh, J. Shi and C. W. Tang, Bright-blue electroluminescence from a silyl-substituted ter-(phenylene–vinylene) derivative, Appl. Phys. Lett., 1999, 74, 865-867.
    [56] Wong K T, Hung T S, Lin Y, Wu C C, Lee G H, Peng S M, Chou C H, Suzuki Coupling Approach for the Synthesis of Phenylene-Pyrimidine Alternating Oligomers forBlue Light-Emitting Material Org. Lett., 2002, 4, 513 – 516.
    [57] Türksoy F, Hughes G, Batsanov A S, Bryce M R., Phenylene–2,5-dimethylpyrazine co-oligomers: synthesis by Suzuki couplings, X-ray structures of neutral and diprotonated teraryl species and efficient blue emission, J. Mater. Chem., 2003, 13, 1554 – 1557.
    [58] Jandke M, Peter Strohriegl, Stefan Berleb, Ekkehard Werner, and Wolfgang Brütting, Phenylquinoxaline Polymers and Low Molar Mass Glasses as Electron-Transport Materials in Organic Light-Emitting Diodes, Macromolecules, 1998, 31, 6434 – 6443.
    [59] Jun Pang, Ye Tao, Stephan Freiberg, Xiao-Ping Yang, Marie D'Iorio and Suning Wang, Syntheses, structures, and electroluminescence of new blue luminescent star-shaped compounds based on 1,3,5-triazine and 1,3,5-trisubstituted benzene, J. Mater. Chem., 2002, 12, 206-212.
    [60] Tamao K., Uchida M., Izumizawa T., Furukawa K., Yamaguchi S., Silole, Derivatives as Efficient Electron Transporting Materials, J. Am. Chem. Soc., 1996, 118, 11974-11975.
    [61] Ohshita J., Kai H., Takata A., Iida T., Kunai A., et al., Effects of Conjugated Substituents on the Optical, Electrochemical, and Electron-Transporting Properties of Dithienosiloles, Organometallics, 2001, 20, 4800-4805.
    [62] Shirota Y., Kinoshita M., Noda T., Okumoto K., Ohara T., A Novel Class of Emitting Amorphous Molecular Materials as Bipolar Radical Formants: 2-{4-[Bis(4-methylphenyl)amino]phenyl}- 5-(dimesitylboryl)thiophene and 2-{4-[Bis(9,9-dimethylfluorenyl)amino]phenyl}- 5-(dimesitylboryl)thiophene, J. Am. Chem. Soc., 2000, 122, 11021-11022.
    [63] Sakamoto Y., Suzuki T., Miura A., Fujikawa H., Tokito S., Taga Y., Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers, J. Am. Chem. Soc., 2000, 122, 1832-1833.
    [64] Heidenhain S. B., Sakamoto Y., Suzuki T., Miura A., et al., Perfluorinated Oligo(p-Phenylene)s: Efficient n-Type Semiconductors for Organic Light-Emitting Diodes, J. Am. Chem. Soc., 2000, 122, 10240-10241.
    [65] Giovanna Barbarella, Laura Favaretto, Massimo Zambianchi, Olga Pudova, CatiaArbizzani, Alessandro Bongini, Marina Mastragostino, From Easily Oxidized to Easily Reduced Thiophene-Based Materials, Adv. Mater., 1998, 10, 551-554.
    [66] M. Mazzeo, V. Vitale, F. Della Sala, D. Pisignano, M. Anni, G. Barbarella, L. Favaretto, et al., New Branched Thiophene-Based Oligomers for Bright Organic Light-Emitting Devices, Adv. Mater., 2003, 15, 2060-2063.
    [67] Fox J. L., Chen C. H., Benzopyrano[6,7,8-i,j]quinolizine-11-one lasing dyes and intermediates for their preparation, U. S. Patent, 1998, 4736032.
    [68] Yu M.-X., Duan, J.-P., Lin C.-H., Cheng C.-H., Tao Y.-T., Diaminoanthracene Derivatives as High-Performance Green Host Electroluminescent Materials, Chem. Mater., 2002, 14, 3958-3963.
    [69] C. H. Chen, C. W. Tang, J. Shi and K. P. Klubek, Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence, Thin Solid Films, 2000, 363, 327-331.
    [70] Yuji Hamada, Hiroshi Kanno, Tsuyoshi Tsujioka, Hisakazu Takahashi, and Tatsuro Usuki, Red organic light-emitting diodes using an emitting assist dopant, Appl. Phys. Lett., 1999, 75, 1682-1684.
    [71] Satoru Toguchi, Yukiko Morioka, Hitoshi Ishikawa, Atsushi Oda and Etsuo Hasegawa, Novel red organic electroluminescent materials including perylene moiety, Synth. Metal., 2000, 111-112, 57-61.
    [72] Dong Uk Kim, Seoung Hey Paik, Sung-Hoon Kim and Tetsuo Tsutsui, Design and synthesis of a novel red electroluminescent dye, Synth. Metal., 2001, 123, 43-46.
    [73] Hsiu-Chih Yeh, Shi-Jay Yeh and Chin-Ti Chen, Readily synthesised arylamino fumaronitrile for non-doped red organic light-emitting diodes, Chem. Commun., 2003, 2632-2633.
    [74] K. R. Justin Thomas, J. T. Lin, et al., Color Tuning in Benzo[1,2,5]thiadiazole Based Small Molecules by Amino Conjugation/Deconjugation: Bright Red-Light-Emitting Diodes, Adv. Funct. Mater., 2004, 14, 83-90.
    [75] VanSlyke S. A., Blue emitting internal junction organic electroluminescent device, U. S. Patent, 1992, 5151629.
    [76] B. X. Mi, Z. Q. Gao, C. S. Lee, S. T. Lee, et al., Wong, Reduction of molecular aggregation and its application to the high-performance blue perylene-dopedorganic electroluminescent device, Appl. Phys. Lett., 1999, 75, 4055-4057.
    [77] Jianmin Shi, Ching W. Tang, Anthracene derivatives for stable blue-emitting organic electroluminescence devices, Appl. Phys. Lett., 2002, 80, 3201-3203.
    [78] W.–J Shen, B. Banumathy, H.-H. Chen, and C. H. Chen, Proceedings of the international display manufacturing conference and FPD expo, Taipei, ROC, 18-21 February 2003, p. 741.
    [79] E. M. Han, L. M. Do, N. Yamamoto, and M. Fujihira, Crystallization of organic thin films for electroluminescent devices, Thin Solid Films, 1996, 273, 202-208.
    [80] Meng-Ting Lee, Hsian-Hung Chen, Chi-Hung Liao, Chih-Hung Tsai, Chin H. Chen, Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9,10-di(2-naphthyl)anthracene, Appl. Phys. Lett., 2004, 85, 3301-3303.
    [81] Ying Kan, Liduo Wang, Lian Duan, Yuanchuan Hu, Guoshi Wu, and Yong Qiu, Highly-efficient blue electroluminescence based on two emitter isomers, Appl. Phys. Lett., 2004, 84, 1513-1515.
    [82] Chi-Hung Liao, Meng-Ting Lee, and Chih-Hung Tsai, Chin H. Chen, Highly efficient blue organic light-emitting devices incorporating a composite hole transport layer, Appl. Phys. Lett., 2005, 86, 203507(1-3).
    [83] Silu Tao, Ziruo Hong, Zhaokuai Peng, Weigang Ju, Xiaohong Zhang, Pengfei Wang, Shikang Wu, Shuitong Lee, Anthracene derivative for a non-doped blue-emitting organic electroluminescence device with both excellent color purity and high efficiency, Chem. Phys. Lett., 2004, 397, 1-4.
    [84] Yu-Hua Niu, Baoquan Chen, Tae-Dong Kim, Michelle S. Liu, Alex K.-Y. Jen, Efficient and stable blue light-emitting diodes based on an anthracene derivative doped poly (N-vinylcarbazole), Appl. Phys. Lett., 2004, 85, 5433-5435.
    [85] Yun-Hi Kim, Hyun-Cheol Jeong, Sung-Han Kim, Kiyull Yang, Soon-Ki Kwon, High-Purity-Blue and High-Efficiency Electroluminescent Devices Based on Anthracene, Adv. Funct. Mater., 2005, 15, 1799-1805.
    [86] Y. H. Kim, D. C. Shin, S.-H. Kim, C.-H. Ko, et al., Novel Blue Emitting Material with High Color Purity, Adv. Mater., 2001, 13, 1690-1693.
    [87] Shen W.-J., Dodda R., Wu C.-C., Wu F.-I., et al., Spirobifluorene-Linked Bisanthracene: An Efficient Blue Emitter with Pronounced Thermal Stability, Chem.Mater., 2004, 16, 930-934.
    [88] Chung-Chih Wu, Yu-Ting Lin, Ken-Tsung Wong, et al., Efficient Organic Blue-Light-Emitting Devices with Double Confinement on Terfluorenes with Ambipolar Carrier Transport Properties, Adv. Mater., 2004, 16, 61-65.
    [89] Ken-Tsung Wong, Yuh-Yih Chien, et al., Ter(9,9-diarylfluorene)s: Highly Efficient Blue Emitter with Promising Electrochemical and Thermal Stability, J. Am. Chem. Soc., 2002, 124, 11576-11577.
    [90] C. C. Wu, Y. T. Lin, H. H. Chiang, T. Y. Cho, and C. W. Chen, K. T. Wong, et al., Highly bright blue organic light-emitting devices using spirobifluorene-cored conjugated compounds, Appl. Phys. Lett., 2002, 81, 577-579.
    [91] Wu C.-c., Liu T.-L., Hung W.-Y., et al., Unusual Nondispersive Ambipolar Carrier Transport and High Electron Mobility in Amorphous Ter(9,9-diarylfluorene)s, J. Am. Chem. Soc., 2003, 125, 3710-3711.
    [92] T.-C. Chao, Y.-T. Lin, C.-Y. Yang, T. S. Hung, H.-C. Chou, C.-C. Wu, K.-T. Wong, Highly Efficient UV Organic Light-Emitting Devices Based on Bi (9, 9-diarylfluorene) s, Adv. Mater., 2005, 17, 992-996.
    [93] Jonathan P. J. Markham, Ebinazar B. Namdas, Gary J. Richards, Paul L. Burn, Tuning of emission color for blue dendrimer blend light-emitting diodes, Appl. Phys. Lett., 2004, 85, 1463-1465.
    [94] John A. Mikroyannidis, Larysa Fenenko, Chihaya Adachi, Synthesis and photophysical characteristics of 2,7-fluorenevinylene-based trimers and their electroluminescence, J. Phys. Chem. B, 2006, in press.
    [95] Chishio Hosokawa, Hisahiro Higashi, Hiroaki Nakamura, and Tadashi Kusumoto, Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant, Appl. Phys. Lett., 1995, 67, 3853-3855.
    [96] Chishio Hosokawa, Hiroshi Tokailin, Hisahiro Higashi, and Tadashi Kusumoto, Efficient electroluminescence of distyrylarylene with hole transporting ability, J. Appl. Phys., 1995, 78, 5831-5833.
    [97] Chen C.-T., Chiang C.-L., Lin Y.-C., Chan L.-H., et al, Ortho-Substituent Effect on Fluorescence and Electroluminescence of Arylamino-Substituted Coumarin and Stilbene, Org. Lett., 2003, 5, 1261-1264.
    [98] Huang C., Zhen C.-G., Su S. P., Loh K. P., Chen Z.-K., Solution-Processable Polyphenylphenyl Dendron Bearing Molecules for Highly Efficient Blue Light-Emitting Diodes, Org. Lett., 2005, 7, 391-394.
    [99] Danel K., Huang T.-H., Lin J. T., Tao Y.-T., Chuen C.-H., Blue-Emitting Anthracenes with End-Capping Diarylamines, Chem. Mater., 2002, 14, 3860-3865.
    [100] H.-T. Shih, C.-H. Lin, H.-H. Shih, C.-H. Cheng, High-Performance Blue Electroluminescent Devices Based on a Biaryl, Adv. Mater., 2002, 14, 1409-1412.
    [101] Chen C.-T., Chiang C.-L., Lin Y.-C., Chan L.-H., et al., Ortho-Substituent Effect on Fluorescence and Electroluminescence of Arylamino-Substituted Coumarin and Stilbene Org.Lett., 2003,5,1261-1264.
    [102] Y. T. Tao, E. Balasubramaniam, A. Danel, A. Wisla and P. Tomasik, Pyrazoloquinoline derivatives as efficient blue electroluminescent materials, J. Mater. Chem., 2001, 11, 768-772.
    [103] Abhishek P. Kulkarni, Angela P. Gifford, Christopher J. Tonzola, Samson A., Jenekhe, Efficient blue organic light-emitting diodes based on an oligoquinoline, Appl. Phys. Lett., 2005, 86, 061106(1-3).
    [104] R.-Y. Wang, W.-L. Jia, H. Aziz, G. Vamvounis, S. Wang, N.-X. Hu, 1-Methyl-2-(anthryl)-imidazo[4,5-f][1,10]-phenanthroline: A Highly Efficient Electron-Transport Compound and a Bright Blue-Light Emitter for Electroluminescent Devices, Adv. Funct. Mater., 2005, 15, 1483-1487.
    [105] L.-H. Chan, H.-C. Yeh, C.-T. Chen, et al., Blue Light-Emitting Devices Based on Molecular Glass Materials of Tetraphenylsilane Compounds, Adv. Mater., 2001, 13, 1637-1641.
    [106] Frank Garten, Alain Hilberer, Franco Cacialli, Eddy Esselink, Yvonne van Dam, et al., Efficient blue LEDs from a partially conjugated Si-containing PPV copolymer in a double-layer configuration, Adv. Mater., 1997, 9, 127-131.
    [107] Doi H., Kinoshita M., Okumoto K., Novel Class of Emitting Amorphous Molecular Materials with Bipolar Character for Electroluminescence, Chem. Mater., 2003, 15, 1080-1089. 第二章 参考文献
    [1] Yu-Hua Niu, Baoquan Chen, Tae-Dong Kim, Michelle S. Liu, and Alex K.-Y. Jena,Efficient and stable blue light-emitting diodes based on an anthracene derivative doped poly(N-vinylcarbazole), Appl. Phys. Lett., 2004, 85,5433-5435.
    [2] Xue-Yin Jiang, Zhi-Lin Zhang, Xin-You Zheng, et al, A blue organic emitting diode from anthracene derivative, Thin Solid Film, 2001, 401, 251- 254.
    [3] YunHi Kim, HyunCheol Jeong, SungHan Kim, Kiyull Yang, SoonKi Kwon, High-purity-blue and high-efficieny electroluminescent devices based on anthracene, Adv. Funct. Mater., 2005, 15, 1799-1805.
    [4] Salbeck J, Yu N, et al. Low molecular glasses for blue electroluminescence Synth. Met., 1997, 91(1-3), 209.
    [5] 藤嶋召,相泽益男 著,陈震,姚建年 译,电化学测量方法,北京,北京大学出版社,2005
    [6] Yasuhiko Shirota, Organic materials for electronic and optoelectronic devices, J. Mater. Chem., 2000, 10, 1-25. 第三章 参考文献
    [1] JungAn Cheng, ChinH Chen, ChiHung Liao, Solution procssible small molecular organic light diode materal and devices based on the substituted Aluminum Quinolate, Chem. Mater., 2004,16,2862-2868.
    [2] Jonathan P. J. Markham, Ebinazar B. Namdas, Thomas D. Anthopoulos, D.W. Samuel, Tuning of emission color for blue dendrimer blend light emitting diodes, Appl. Phys. Lett., 2004, 85, 1463-1465.
    [3] Chun Huang, ChangGua Zhen, SiewPing Su, KianPing Loh, ZhiKuan Chen, Solution processible polyphenylphenyl dendron bearing molecules for highly efficient blue light emitting diodes, Org. Lett., 2005,7,391-394.
    [4] John A Mikroyannidis, Larysa Fenenko, Chihaya Adachi, Synthesis and photophysical characteristics of 2,7-fluoreneevinylene-based trimers and their electroluminescence, J. Phys. Chem. B, 2006, in press.
    [5] A. Mishra, P. K. Nayak,D. Ray, M. P. Patankar, K. L. Narasimhan, N. Periasamy, Synthesis and characterization of spin-coatable tert-amine molecules for hole transport in organic light emitting diodes, Tetrahedron Letter, 2006, 47, 4715-4719.
    [6] D. Braun, A. J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett., 1991, 58, 1982-1984.
    [7] Ullrich Scherf, Emil J. W. List, Semiconducting polyfluorenes towards reliable structure property relationship, Adv. Mater., 2002, 14, 477-487.
    [8] Alexander L K, Rory B, et al., Synthesis and properties of monodisperse oligofluorene functionalized truxenes: highly fluorescent star-shaped architectures, J. Am. Chem. Soc., 2004, 1269, 13695.
    [9] YunHi Kim, HyunCheol Jeong, SungHan Kim, Kiyull Yang, SoonKi Kwon, High-purity-blue and high-efficieny electroluminescent devices based on anthracene, Adv. Funct. Mater., 2005, 15,1799-1805.
    [10] Salbeck J, Yu N, et al., Low molecular glasses for blue electroluminescence, Synth. Met., 1997,91(1-3), 209.
    [11] Yasuhiko Shirota, Organic materials for electronic and optoelectronic devices, J. Mater. Chem., 2000, 10, 1-25.
    [12] Wen-Jian Shen, Rajasekhar Dodda, Chang-Ching Wu, Fang-Iy Wu, et al., Spirobifluorene-Linked Bisanthracene: An Efficient Blue Emitter with Pronounced Thermal Stability, Chem. Mater., 2004, 16, 930-934.
    [13] G. H. Zhang, Y. L. Hua, M. C. Petty, K. W. Wu, F. J. Zhu, X. Niu, et al., Single emitting layer white organic light emitting device with high color stability to applied voltage, Displays, 2006, 27, 187-190. 第四章 参考文献
    [1] Yasuhiko Shirota, Organic materials for electronic and optoelectronic devices, J. Mater. Chem., 2000, 10, 1-25.
    [2] YunHi Kim, HyunCheol Jeong, SungHan Kim, Kiyull Yang, SoonKi Kwon, High-purity-blue and high-efficieny electroluminescent devices based on anthracene, Adv. Funct. Mater., 2005, 15, 1799-1805.
    [3] Alexander L K, Rory B, et al., Synthesis and properties of monodisperse oligofluorene functionalized truxenes: highly fluorescent star-shaped architectures, J. Am. Chem. Soc., 2004, 1269, 13695-13702.
    [4] Sheldrick G M. SHELXS-97, Program for X-ray Crystal Structure Solution, University of Gobttingen, 1997.
    [5] Sheldrick G M. SHELXL-97, Program for X-ray Crystal Structure Refinement, University of Gobttingen, 1997.
    [6] Salbeck J, Yu N, et al., Low molecular glasses for blue electroluminescence, Synth. Met., 1997, 91(1-3), 209.
    [7] Wen-Jian Shen, Rajasekhar Dodda, Chang-Ching Wu, Fang-Iy Wu, et al., Spirobifluorene-Linked Bisanthracene: An Efficient Blue Emitter with Pronounced Thermal Stability, Chem. Mater., 2004, 16, 930-934. 第五章 参考文献
    [1] C. W. Tang, S. A. Vanslyke, C. H. Chen. Electroluminescence of doped organic thin films, J. Appl. Phys. 1989, 65, 3610-3616.
    [2] YunHi Kim, HyunCheol Jeong, SungHan Kim, Kiyull Yang, SoonKi Kwon High-purity-blue and high-efficieny electroluminescent devices based on anthracene, Adv.Funct.Mater. 2005, 15,1799-1805.
    [3] Silu Tao, Shandong Xu, Xiaohong Zhang Efficient blue organic light-emitting devices based on novel anthracence derivatives with pronounced thermal stability and excellent film-forming property, Chem.Phys.Lett.2006,429,622-627.
    [4] Wen-Jian Shen, Rajasekhar Dodda, Chang-Ching Wu, et al., Spirobifluorene-Linked Bisanthracene: An Efficient Blue Emitter with Pronounced Thermal Stability, Chem. Mater., 2004, 16, 930-934.
    [5] G. H. Zhang, Y. L. Hua, M. C. Petty, K. W. Wu, F. J. Zhu, X. Niu, et al., Single emitting layer white organic light emitting device with high color stability to applied voltage, Displays, 2006, 27, 187-190.
    [6] Meng –Ting Lee, Hsian-Hung Chen, Chi-Hung Liao, Chih-Hung Tsai Chin H. Chen, Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9,10-di(2-naphthyl)anthracene, Appl. Phys. Lett., 2004, 85, 3301-3303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700