砂土中桩基础沉降机理宏细观研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩基础的沉降计算问题是目前岩土工程研究的热点问题之一,特别是桩-土—台共同分但上部荷载的问题,是国内外土木工程界十分关切而又非常复杂的问题。在以沉降为控制的桩基设计理念日益为学术界及工程界所接受的背景下,明确桩土界面处的荷载传递机理以及桩端阻力随桩端刺入变形发挥的规律,合理计算桩基础的沉降,是优化沉降控制桩基设计理论中一个迫切需要解决的关键问题。本文围绕这一课题,采用宏、细观相结合的方法对砂土中单桩和群桩的沉降机理以及荷载分布特性做了系统的研究,研究内容和成果如下:
     (1)提出一种基于板壳理论的桩基础试验方法,通过在钢管桩内壁贴设应变片,并经过一套成熟的数值分析方法来反算钢管桩在压入、静载过程中的摩阻力、端阻力以及侧压力的变化情况,该方法在郑州某工地上应用成功。将该试验方法应用于室内细观模型试验,对不同密实度砂土中的单桩和群桩进行模型试验。试验中利用显微数码摄像可视化跟踪技术与数值图像变形量测设备采集宏细观图像数据,对沉桩及静载过程中的土体位移场、应力场等宏观表现进行了分析。
     (2)建立单桩和群桩的颗粒流细观分析模型,主要分析单桩在压入、静载过程中摩阻力、端阻力以及桩周土位移场的细观变化情况;对于群桩则主要从细观角度分析由于桩间距以及承台刚度的改变对群桩工作性状的影响。
     (3)通过室内试验和颗粒流模拟结果以及前人的研究成果,总结了砂土中单桩的沉降模式,提出了一种可以考虑砂土状态的单桩非线性传递函数,该传递函数考虑了桩周土的近场和远场效应,可以用来分析不同密实度的砂土与桩的相互作用关系,并且使用室内试验和颗粒流模拟结果对该方法进行了验证。
     (4)使用所建立的传递函数,建立单桩的刚度矩阵,用来对砂土中的单桩进行非线性分析,研究了砂土中单桩的沉降规律、荷载分布情况以及不同的密实度对单桩工作性状的影响,并为以后的群桩分析作准备。
     (5)在单桩分析的基础上建立群桩的刚度矩阵,然后建立土单元、板单元的刚度矩阵,最后形成桩—土—台整体刚度矩阵,最后由静力平衡条件求解群桩沉降及承台反力。
     (6)利用国内外发表的群桩试验结果和室内模型试验对所建立的群桩计算方法进行了验证,在此基础上分析了群桩的沉降机理,并比较了群桩沉降与单桩沉降的异同,最后分析了由于桩间距、桩的长径比、承台刚度等因素的改变对群桩工作性状的影响。
The calculation of the pile foundation settlement problem is a hot issue of geotechnical engineering studies, especially the question of the total applied load carried by pile-soil-cap. It's a very complex problem that has been paid attention to by internal and international civil engineers. Under the background of settlement-control composite pile design theory being widely accepted by academics and the engineering, research on the load transfer mechanism at the pile and soil interface and the development of the tip resistance with the pile tip penetration displacement, and how to calculate the settlement of pile foundation, which is the key to optimize settlement-controlled composite pile design theory. According to this subject, this paper does systematic researches on settlement mechanism and load distribution of single pile and pile groups by combinating macro and meso methods. The results are as follows:
     (1) Based on the plate-shell theory, a pile testing method is established. through affixing the strain gauge on the inside wall of steel tube pile, a perfect numerical analysis method to back-calculate the tip resistance, skin pressure, lateral pressure during the pile driving and static loading process is discussed. Finally it is applicated successfully in Zhengzhou. This method is also used to simulate the single pile and pile group with different density sands in lab meso-scale model test. Microscopic digitization technique for tracing and digital photography deformation measure system is introduced to collect the macro and meso images during each test. The Macro phenomenon of the soil displacement field and stress change field are analyzed during driving and static loading process.
     (2) The particles flow code analysis models of the single pile and pile group are established, which are introduced to analysis the meso phenomenon of the soil displacement field, friction resistance, tip resistance changing during the single pile driving and static loading process. Finally the influence of pile group behaviors when the distance of pile-pile and the stiffness of cap changing from the micros level are analysised.
     (3) Based on laboratory tests, particles flow code simulation results and the previous study conclusions, the settlement form of the single Pile in sands is aggregated. Then one nonlinear transfer function of the single pile which can consider the state of sands is proposed. The soil near-field and far field effects are considered in the transfer function, which can be introduced to analysis the relationship of the different density sands and piles interaction. At last the transfer function is verificated by laboratory tests.
     (4) Stiffness matrix of single pile is established to research the settlement law by introducing the transfer function. After the method being certificated, the load distribution of single pile, the behavior of single pile in different density sands are studied.
     (5) Based on the analysis of single pile, the stiffness matrixs of pile groups, soils and plate are introduced. Then, the total stiffness matrix of pile-soil-cap is established. The settlement of pile groups and contact pressure of the cap can be solved by the static equilibrium using the total stiffness matrix in the end.
     (6) Certificated the settlement calculation method of pile groups by laboratory tests results and the previous study conclusions, the settlement mechanism is analyzed of pile group. The different forms between the settlement of single pile and pile group are discussed. Finally the influence of pile group behaviors while the changing of the distance of pile-pile, length-diameter ratio, stiffness of the cap are analyzed.
引文
[1]Terzaghi,K.V.& Peck,R.B.Theoretical soil mechanics[M].New York:John Wiley and sons.1948.
    [2]Poulos,H.G.& Davis,E.H.Pile behavior-theory and applications[J].Randkin Lecture,Geotechnique.1989,34(3):365-415.
    [3]Meyerhof.G.G.Compaction of sands and bearing capacity of piles[J].J Soil Mech Found Eng Div.ASCE.1959,85(6):1-29.
    [4]Meyerhof.G.G.Bearing capacity and settlement of pile foundation[J].J Soil Mech Found Eng Div.ASCE.1976,102(3):196-228.
    [5]Forcht,J.A.Discussion to paper by Coyle and Reese[J].J Soil Mech Found Eng Div.ASCE.1967,93(1):133-138.
    [6]Poulos,H.G.& Matters,N.S.Settlement methods for pile groups and pile rafts[J].Aust.Geomechs.Int.G1.1971,1:18-28.
    [7]Butterfield,R.& Banerjee,P.K.,The problem of pile group pile cap interaction[J].Geotechnique,1971,21(2):135-142.
    [8]费勤发,马海龙.分层总和法在有承台单桩非线性分析中的应用—变形总和法[J].上海力学.1995,16(3):206-212.
    [9]费勤发,马海龙.分层总和法应用于带台单桩分析的验证[J].结构工程师.1995,3:206-212.
    [10]费勤发,马海龙.分层总和法在群桩非线性分析中的应用—变形总和法[J].上海力学.1997,18(7):78-83.
    [11]黄绍铭.减少沉降量桩基的设计与初步实践[A].第六届全国土力学及基础工程学术会议论文集.1991.
    [12]黄绍铭,王迪民.按沉降量控制的复合桩基设计方法[J].工业建筑.1992,8:41-44.
    [13]Seed,H.B.& Reese,L.C.The action of soft clay along friction piles[A].Transactions Proceedings,ASCE.1957,122:731-754.
    [14]Coly,H.M.& Reese,L.C.Load transfer for axially loaded piles in clay[J].J Soil Mech Found Eng Div.ASCE.1966,92(2):111-126.
    [15]Coly,H.M.& Sulaiman,I.H.Load transfer for axially loaded piles in clay[J].J Soil Mech Found Eng Div.ASCE.1967,93(6):261-278.
    [16]O'Neill,M.W.,Ghazzaly,O.I.& Ha,H.A.Analysis of three dimensional pile groups with nonlinear soil response and pile-soil-pile interaction[A].Proc.9th Ann.Offshore Technology Conf.,Houston.1977:245-256.
    [17]Randolph M.F.,C.P.Wroth,An analysis of the vertical deformation of pile groups[J].Geotechnique,1979,29(4):423-439.
    [18]Hirayama H.Load-settlement analysis for bored piles using hyperbolic transfer functions[J].Soils and Foundations,1990,30(1):55-64.
    [19]Ellison,R.D.Load-deformation mechanism for bored pile.J Soil Mech Found Eng Div.ASCE.1966,92(2):110-123.
    [20]Desai,C.S.Numerical design-analysis for piles in sand[J].J.Geotech.Eng Div.ASCE.1974,100(6):613-635.
    [21]Esu,F.& Ottaviani,M.Discussion to paper by Desai,C.S.[J].Proc.Geot.Eng.Div.ASCE.1975, 101(7):693-695.
    [22]Vallabhan,C.V.& Mustafa.G.A new model for the analysis of settlement of drilled piles[J].International J.for numerical and analytical methods in geomechanics.1996,20:143-152.
    [23]Balaam,N.P.& Poulos,H.G.Analysis of granular pile behavior using finite elements[J].Geotechnical Engineering.1975,6(1):33-48.
    [24]Poulos,H.G.& Hewitt,C.M.Axial interaction between dissimilar piles in a group[M].School of Civil and Mining Engineering,University of Sydney,Research report.1985,512.
    [25]Poulos,H.G.& Mattes,N.S.Technical noes:settlement of pile groups beating on stiffer strata[J].J Soil Mech Found Eng Div.ASCE.1974,100(2):185-190.
    [26]Poulos,H.G.& Chen,L.T.Pile response due to excavation-induced lateral soil movement[J].J Soil Mech Found Eng Div.ASCE.1997,123(2):94-100.
    [27]Poulos,H.G.& Davis,E.H.Pile foundation analysis and design[M].New York:John Wiley and sons.1980.
    [28]Butterfield,R.& Banerjee,P.K.,The problem of pile group pile cap interaction[J].Geotechnique,1971,21(2):135-142.
    [29]Banerjee,P.K.& Butterfield,R.(1981).Boundary element method in engineering science[M].McGraw-Hill,1981.
    [30]Skempton,A.W.Cast in-situ bored piles in London clay[J].Geotechnique,1959,9(4):135-142.
    [31]Kaniraj,S.R.A semi-empirical equation for settlement ratio of pile foundations in sand[J].Soils and Foundation.1993,33(2):82-90.
    [32]Poulos,H.G.Load-settlement prediction for piled and piers[J].J Soil Mech Found Eng Div.ASCE.1972,98(9):879-897.
    [33]Peck,Hanson,Thornbum.Foundation enginnering[M].Walter E.Hanson.1974.
    [34]Poulos,H.G.Analysis of the settlement of pile groups[J].Geotechnique,1968,18(4):449-471.
    [35]Cooke R.W.,Piled raft foundation on stiff clays-a contribution to design philosophy[J].Geotechnique,1986,36(2):169-203.
    [36]Poulos,H.G.Piled raft foundation:design and applications[J].Geotechnique.2001,(2):95-113.
    [37]刘利民,舒翔,熊巨华编著.桩基工程的理论进展与工程实践[M].北京:中国建材工业出版社.2002.
    [38]Xiao,Z.R.Pile foundations settlement analysis and its application for practice[M].Zhengzhou:Yellow river water conservancy press.2002.
    [39]Ghosh,N.A model Scale inverstigation of the working load Sriffness of single piles and groups of piles in clay[D].Ph.D.thesis,university of sounthampton.1995.
    [40]Cheung,Y.K.,Tham,L.G.& Guo.D.J.Analysis of pile group by infinite layer method[J].Geotechnique,1988,38(3):415-431.
    [41]Ottaviani,M.Three-dimensional finite element analysis of vertical loaded pile[J].Geotechnic,1975,(2):159-174.
    [42]Desai,C.S.& Kuppumsay.Pile-cap-pile Group-soil interaction[J].J,of the Strut.Engrg.Div.ASCE.1981,107(5):817-843.
    [43]Hooper,J.A.Observations on the behavior of a piled-raft foundation on London clay[A].Pro.Institute of civil einginieers.1983,55(12):855-877.
    [44]Liu,W.& Novak,M.Soil-Pile-Cap static interaction analysis by finite and infmite elements[J].Can Geotech J,1963,1(1):16-26.
    [45]Cundall P A.A Computer Model for Simulating Progressive Large Scale Movements in blocky Systems Proceedings of the Symposium of the International Society of Rock Mechanics[A].Nancy,France.1971.(1):2-8.
    [46]Cundall,P.A.,Strack,O.D.L.A discrete numerical model for granular assemblies,eotechnique.1979,29:47-65.
    [47]Cundall,P.A.,and R.Hart.Numerical Modeling of Discontinua[J].J.Engr.comp.,1992,101-103.
    [48]刘祖德.显微镜位移跟踪法在土工模型试验中的应用[J].岩土工程学报.1989,11(3):1-10.
    [49]Han,C.& Vardoulakis,I.G.Plane-strain compression experiments on water-saturated fine grained sand[J].Geotechnique.1991,41(1):49-78.
    [50]Oda,M.& Kazama,H.Microstructure of sheear bands and its relations to the mechanisms of dilatancy and failure of dense granular soils[J].Geotechnique.1998,48(4):65-481.
    [51]Oda,M.,Takemura,T.& Takahashi,M.Microstructure in shear band observed by microfocus X-ray computed tomography[J].Geotechnique.2005,55(4):333-335.
    [52]Jang & Deh-Jeng.Use of image analysis to study the microstructure of a sand specimen[J].Canadian Geotechnical Journal.2000,37(5):1141-1149.
    [53]李元海,朱合华等.基于图象相关分析的砂土模型试验变形场量测[J].岩土工程学报.2004,26(1):36-41.
    [54]Huang,A B,Ma M Y.An analytical study of cone penetration test in granular material[J].Can Geotech J.1994,31:91-103.
    [55]周健等.粘性土室内平面应变试验的颗粒流模拟[J].水利学报.2002,(12):11-17.
    [56]胡寅.砂土振冲细观土动力学研究PFC2D[D].上海:同济大学硕士学位论.2003.
    [57]刘文白,周健.上拔荷载作用下桩的颗粒流数值模拟[J].岩土工程学报.2004,26(4):516-521.
    [58]王浩.桩端刺入变形与桩—土—承台共同作用的机理与分析方法研究[D].上海:同济大学博士学位论.2003.
    [59]叶建忠.砂土中桩端刺入破坏模式的模型试验与颗粒流数值模拟[D].上海:同济大学博士学位论.2006.
    [1]Seed,H.B.& Reese,L.C.The action of soft clay along friction piles[J].Transactions,ASCE,1955,122:731-754.
    [2]Kens,F.D.Analysis of loaded piles in sands[A].Proceedings of the 6th Annual Offshore Technology Conference,Houston,TX;1974.
    [3]White,D.J.& Bolton,M.D.Soil deformation around a displacement pile in sand[A].Physical modeling in geotechics,Netherlands.2002:649-654.
    [4]Bond,A.J.& Jardine,R.J.Effects of installing displacement piles in a high OCR clay[J].Geotecnique.1995.45(1):13-23.
    [5]周健,王浩.砂土中桩端阻力随位移发挥的内在机理研究.岩土工程学报.2006,28(5):587-593.
    [6]刘祖德.显微镜位移跟踪法在土工模型试验中的应用[J].岩土工程学报.1989,11(3):1-10.
    [7]Jardine,R.J.& Bond,A.J.Shaft capacity of displacement piles in a hign OCR clay.Geotecnique 1991.41(3):341-363.
    [8]Price,G.& Wardle,I.F.A comparison between cone penetration test result and the performance of small diameter instrumented piles in stiff clay[J].Proc.2nd Eur.Symp.Penetration Testing,Amsterdam,1982(2):775-780.
    [9]Kitching,D.N.A study into the microfabic of clay adjacent to jacked piles[J].MSc dissertation,Imperial College,1983.
    [10]Coop,M.R.& Wroth,C.P.Field studies of an instrumented model pile in clay[J].Geotecnique.39(4):679-696.
    [11]Choi,S.S.,Lee,S.B.,Kim,D.H.,Liu,Y.,Zhang,S.,and Lee,B.H.Development of optical fiber grating sensor system for civil engineering structures[A].Ministry of Construction and Transportation,Seoul,Korea.1999:1-9.
    [12]Woojin Lee,Won-Je Lee,Sang-Bae Lee,and Rodrigo Salgado.Measurement of pile load transfer using the Fiber Bragg Grating sensor system[J].Can.Geotech.2004,41:1222-1232.
    [13]J.F.Chen,J.Y.Ooi,A rigorous statistical technique for inferring circular silo wall pressures from wall strain measurements.Deparment of Civil Engineering,University of Edinburgh,Edinburgh EH9 3JN,UK 1995.
    [14]杨敏.控制沉降的基础设计—减少沉降桩基础[J].上海建筑科技.1998(5):16-17.
    [15]宰金珉.桩基础非线性设计理论与应用—第十届全国结构工程学术会议特邀报告[A].工程力学.2001(A01):156-173.
    [16]沈珠江.现代土力学的基本问题[J].力学与实践.1998,20(6):1-6.
    [17]余荣传.砂土液化的实验设计与图像处理[M].上海:同济大学硕士学位论文.2006.
    [1]Cundall, P. A & Hart, R. Formulation of a Three-dimensional Distinct Element Model[J].Int J Rock Mech, Min Sci & Geomech. 1988,25(3): 117-128.
    
    [2]Potyondy,D.Crack propagation modeling[J].Math.Models Methods Appl.Sci.. 1994,4:179-202.
    [3]Thornton,C.& Adams, M.J. Numerical Simulation of the impact fracture and fragmentation of agglomerates[J].J Phys D:Phys. 1996,29:424-435.
    [4]Jiang, M.J., Leroueil, S. & Konrad, J.M. Insight into shear strength functions of unsaturated granulates by DEM analyses[J]. Computers and Geotechnics. 2004,31(6):473-489.
    [5]Jiang, M. J., Harris, D. & Yu, H. S. A novel approach to examining double-shearing type models for granular materials[J]. Granular Matter. 2005,7(2-3):157-168.
    [6]Ting, J.M. & Crawley, E. F. Characterization of damping of materials and structures from nanostrain levels to one thousand microstrain[J]. AIAA Journal. 1992,30(7): 1856-1863.
    [7] PFC2D User'Guide[M].Itasca Consulting Group, Inc.2004.
    [1]Poulos,H.G.& Davis,E.H.Pile foundation analysis and design[M].Chichester:Wiley.1980.
    [2]Randolph,M.F,Dolwin,J.and Beck,R.Design of driven piles in sand[J].Geotechnique.1994,44(3):427-448.
    [3]Poulos,H.G.Modified calculation of pile group settlement interaction[J].J.Geotech.Eng.1988,114(6):697-706.
    [4]Kezdi A.The beating capacity of pile and pile groups[A].Proc 4~(th)Int Conf Soil Mech Found Eng.1975,2:46-51.
    [5]Kraft,L.M.Theoretical t~z Curves[J].J Geotech Eng Div.1981,107(11):43-61.
    [6]Poulos,H.G.& Hewitt,C.M.Axial interaction between dissimilar piles in a group[M].School of Civil and Mining Engineering,University of Sydney,Research report No.R512.1985.
    [7]Coly,H.M.& Reese,L.C.Load transfer for axially loaded piles in clay[J].J Soil Mech Found Eng Div.ASCE.1966,92(2):1-126.
    [8]Coly,H.M.& Castello,R.R.New design correlations for piles in sand[J].J.Geotech.Eng Div.ASCE.1981,107(7):965-985.
    [9]Xiao,H.M.Tang J,Li QS,Luo QZ.Prediction of Load-Settlement relationship for piles[J].Sruct Des Tall.2002,11(4):295-308.
    [10]Duncan,J.M.& Chang,C.Y.Nonlinear Analysis of stress and strain in soils[J].J Soil Mech Found Eng Div.ASCE.1970,96(5):1629-1652.
    [11]O'Neil,M.W.Load transfer mechanism in piles and pile groups[J].J.Geotech.Eng Div.ASCE.1982,108(12):1605-1623.
    [12]Southcott,P.H.& Small,J.C.Finite layer analysis of vertical loaded piles and piles groups[J].Computer Geotech.1996,18(1):47-63.
    [13]Toolan,F.E.,Lings,M.L.,and Mira,U.A.An appraisal of API RP2A recommendations for determining skin friction of piles in sand[A].Proc.,22~(nd)offshore tech.Conf.,Richardson,Tex.,1990:33-42.
    [14]Briaud,J.L.& Tucher,L.M.Measured an predicted axial response of 98 piles[J].J.Geotech.Eng Div.ASCE.1991,114(9):984-1001.
    [15]Bolton,M.D.The strength and dilatancy of sands[J].Geotechnique.1986,36(1):65-78.
    [16]Bolton,M.D.Basic features of soil stricture interface behavior[J].Computers and Geotechnics.1989,7:115-131.
    [17]Lehane,B.M.Jardin,R.J.Bond,A.J.Mechanisms of shaft frictions in sand from instrumented pile tests[J].J.Geotech.Eng Div.ASCE.1993,119(1):19-35.
    [18]Xiao,ZR.Pile foundations settlement analysis and its application for practice[M].Beijing:Yellow river water conservancy press.2002.
    [19]肖昭然.单桩非线性分析的半解析半数值方法[J].岩土工程学报.2002,24(9):640-643.
    [20]宰金珉.复合桩基理论与应用[M].北京:知识产权出版社、中国水利水电出版社.2004.
    [21]Caputo,V.& Viggiani,C.Pile foundation analysis:a simple approach to no linearity effects[J].Rivista Italiana di Geotecnica,1984,18(2):32-51.
    [22]Chow,Y.K.Analysis of vertically loaded pile groups[J].Int.J.Number.and Anay.Mechods in geomechanics.1986,10(1):59-72.
    [23]Gedds,J.D.Stress in foundation soil due to vertical loading[J],Geotechnique.1966,16(3):1465-1488.
    [24]Cook,R.W.Jacked pile in London Clay:a study of load transfer and settlement under working condition[J].Geotechnique.1979,39(2):59-72.
    [25]Cook,R.W.Jacked pile in London Clay:Interaction and groups behavior under working conditions[J],Geotechnique.1980,30(2):365-415.
    [26]施鸣升.沉入粘性土中桩的挤土效应探讨.建筑结构学报[J].1983,1.
    [27]API Recommended practice for planning,Design and construction fixed offshore platform[A].11~(th)Ed.Jan.1980.
    [28]Randolph,M.F.& Worth,C.P.An analysis of vertical deformation of pile groups[J].Geotechnique.1979,29(6):18-28.
    [29]Jardin,R.J.,potts,D.M.,Fourie,A.B.,and Burland,J.B.Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction[J].Geotechnique.1986,36(3):377-396.
    [30]Trochanis,A.M.,Bielak,J.,and Christiano,P.Three-dimensional nonlinear study of pile[J].J.Geotech.Eng Div.ASCE.1991,117(3):429-447.
    [31]Jardin,R.J.,Everton,S.J.,and Lehane,B.M.Friction coefficients for piles in eohesionless material[A].Offshore site investigations and foundations behavior,Proc.,SUT.International Conference,Kluwer,Dordercht,661-680.
    [32]Poulos,H.G.& Matters,N.S.Settlement methods for pile groups and pile rafts[J].Aust.Geomechs.Int.G1.1971,1:18-28.
    [33]Randolph,M.F.Design methods for pile groups and pile rafts[A].Proc.Of 13~(th)ICSMFE,New Delhi.1994:61-82.
    [34]曹汉志.桩的轴向荷载传递及荷载—沉降曲线的数值计算方法[J].岩土工程学报.1986,8(6):23-26.
    [35]刘开明,余静.不同材料间接触面特性的研究[A].第四届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社.
    [36]黄绍明.软土地基沉降估算[A].第四届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社.
    [37]孙更生,郑大同等主编.软土地基与地下工程[M].上海:同济大学出版社.1986.
    [38]候学渊,杨敏.软土地基变形控制理论和工程实践[M].上海:同济大学出版社.1996.
    [39]刘利民.桩基工程的理论进展与工程实践[M].北京:中国建筑工业出版社.2002.
    [40]刘云云.砂土中静压单桩的模型试验与分析[D].上海:同济大学博士学位论文.1999.
    [41]Boulon,P.& Foray,P.Physical and numerical simulation of shaft friction along offshore piles in sand[J].computer and geotechnics.1989(7):115-131.
    [42]Lehane,B.M.Jardin,R.J,Bond,A.J.and Frank,R.Mechanisms of shaft frictions in sand from insrumented pile tests[J].J.Geotech.Eng Div.ASCE.1991,119(1):19-35.
    [43]Vesic,A.S.Test on instrumented piles,ogeechee river site[J].Journal of soil mechanics and foundations diveision.1970(3):561-584.
    [44]Discussioned by VasantN,Viyayvergiya.Test on instrumented piles,ogeechee river site[J].Journal of soil mechanics and foundations diveision.1970(4):252-256.
    [45]Jardin,R.J.& Bond,A.J.Effects of installing displacement piles in a high OCR clay[J].Geotechnique.1991,41(3):341-363.
    [46]Clough,W.& Duncan,J.M.Finite element analysis of retaining wall behavior[J].Journal of soil mechanics and foundations diveision.1971,97(12):1657-1673.
    [47]Janbu,N.Soil compressibility as determined by oedometer and triaxial tests[A],Proc.Eur.Conf.On SMFE,Wiesbaden,German.1963(1):45-71.
    [48]Reddy,K.R.,Kosgi,S.and Motan,S.Interface shear behavior of landfill composite liner systems:a finite element analysis[J].Geosynthetic International.1996,3(2):247-275.
    [49]Chow,F.C.Investigations into displacement pile behavior for offshore foundation[D].London Imperial College.1997.
    [50]Jardin,R.J.& Overy,R.F.Axial capacity of offshore piles in dense North sea sands[J].J.Geotech.and Geoenviron Eng Div.ASCE.1998,(1):171-178.
    [51]Salgado,R.& Mitchell,J.K.Cavity expansion and penetration resisitance in sand[J].J.Geotech.and Geoenviron Eng Div.ASCE.1997,(4):344-354.
    [52]黄赣萍.确定砂性土中桩基承载力的方法及现场验证[J].公路与汽运.2005(05):10-15.
    [53]Robinsky,E.I.& Morrison,C.F.Sand displacement and compaction around model friction piles[J].Canadian Geotechnical Journal.1964,1(2):81-93.
    [54]Beringen,F.L.,Windle,D.& Van Hooydonk,W.R.Result of loading tests on driven piles in sand[A].Recent development in the design and construction of piles.London:insistitute of civil engineering.1979:213-225.
    [55]Briaud,J.L.Tucher,J.L.& Ng,E.Axially loaded 5 piles group and single pile in sands[A].Proc.12~(th)Int.conf soil Mech,.1989(2):1121-1124.
    [56]Gregersen,O.S.& Dibagio,E.Load tests on friction piles in sand[A].Proc.8~(th)Int.Conf,Soil Mech.,Moscow.1993(2):109-117.
    [57]Gurtowski,T.M.& Wu,M..J.Compression load test on concrete piles in sand[A].Analysis and design of pile foundations.ASCE.1984:138-153.
    [58]Fulouka,M.Large cast-in-place piles in Japan[A].Proc,1~(st)International geotechnical seminar on deep foundations on bored and auger piles.1988:95-106.
    [59]Giroud,J.P.,Darrasse,J.,and Bachus,R.C.Hyperbolic expression for soil-geosynthetic or geosynthetic-geosynthetic interface shear strength[J].Geotextiles and Geomembranes,199312(3):275-286.
    [60]Esterhuizen,J.J.B.Progressive failure of slopes in lined waste impoundments[D].Virginia Tech,Blacksburg,Va.1997.
    [61]Jones,D.R.& Dixon,N.Shear strength properties of geomembrane geotextile interfaces[J].Geotextiles and Geomembranes.1998(16):45-71.
    [62]Randolph,M.F.& Wroth,C.P.Analysis of deformation of vertical loaded piles[J].J.Geotech.Eng Div.ASCE.1978,104(21):1465-1488.
    [63]Yu F.Behavior of large capacity jacked piles[D].Hong Kong:Univ of Hong Kong.2004.
    [64]Vesic A S,Clough G W.Behavior of granular materials under high stresses[J].J Soil Mech Founds Di,1968,94(SM3):661-688.
    [65]Meyerhof G G.Some recent research on the bearing capacity of foundations[J].Can Geotech J,1963,1(1):16-26.
    [66]Vesic A S.Expansion of cavities in infinite soil mass[J].J Soil Mech Founds Div,1972,98:265-290.
    [67]Baligh M M.Strain path method[J].J Geotech Engrg,1985,111(9):1108-1136.
    [68]Jardine R J,Potts D M,Fourie A B,Burland J B.Studies of the influence of non-linear stress strain characteristics in soil-structure interaction[J].Geotechnique,1986,36(3):377-396.
    [69] Poulos H G Pile behaviour-theory and application [J]. Geotechnique, 1989,39(3): 365-415.
    
    [70] Nicola, A. D. & Randolph, M. F. Centrifuge modelling of pipe piles in sand under axial loads[J].Geotechnique,1999,49(3):295-318.
    [71] Yasufukun. Pile end-bearing capacity of sand related to soil compressibility [J]. Soils and Foundations, 2001,41(4):59-71.
    [72] Gupta R C. Finite strain analysis for deep cone penetration [J]. J Geotech Engrg, 1991,117 (10): 1610-1630.
    [1] Desai, C.S. Numerical deign-analysis for piles in sand[J]. J.Geotech. Eng Div. ASCE. 1974, 100(6):613-635.
    [2] Ismael N.F. Axial load tests on bored piles and pile groups in sands[J]. J.Geotech. and Geoenviron Eng Div.ASCE.2001,127 (9):766-773.
    [3] Mansur, C. I. & Hunter, A. H. Pile tests - Arkansas River Project[J]. J Soil Mech Founds Div, ASCE. 1970, 96(5): 1545-1582.
    [4] Vesic, A. S. Tests on instrumented piles, Ogeechee River site[J]. Journal of the Soil Mechanics and Foundation Division, ASCE. 1970, 96(2): 561-584.
    [5] Gregersen, O.S., Aas, G, and Dibagio, E. Load tests on friction piles in loose sand[A]. In Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, 1973.2: 109-117.
    [6] Tavenas, RA. 1971. Load tests on friction piles in sand[J]. Canadian Geotechnical Journal. 1971,8:7-22.
    [7] Coyle, H.M. & Castello, R.R. New design correlations for piles in sand[J]. J.Geotech. Eng Div. ASCE. 1981,107(7): 965-986.
    [8] Altaee, A., Fellenius, B.H., and Evgin, E. Axial load transfer for piles in sand. I. Tests on an instrumented precast pile[J]. Canadian Geotechnical Journal, 1992.29:12-20.
    [9] Lehane, B.M., Jardine, R.J., Bond, A.J., and Frank, R. Mechanisms of shaft friction in sand from instrumented pile tests [J]. J.Geotech. Eng Div. ASCE.1993. 119(1): 19-35.
    [10]Gurtowski, T.M. & Wu, M.J. Compression load tests on concrete piles in alluvium. In Proceedings of the Symposium on the Analysis and Design of Pile Foundations,ASCE, San Francisco, Calif., 1984: 138-153.
    [1]宰金珉.复合桩基设计理论与工程应用[A].98上海科技论坛:以沉降量为控制指标的复合桩基设计研讨会论文集.上海土木T程学会,上海建筑设计研究院.1998:32-39.
    [2]林天健,熊厚金,王利群.桩基础设计指南[M].北京:中国建筑工业出版社.1999:326-353.
    [3]董建国,赵锡宏.高层建筑桩筏和桩箱基础沉降计算的简易理论法[J].上海高层建筑桩筏与桩箱基础设计理论.1989:179-194.
    [4]杨敏.高层建筑(框、剪及筒结构)与筏和桩基础共同作用的理论与试验研究[D].上海:同济大学博士学位论文.1988.
    [5]Poulos H G & Davis E H.Pile Foundation Analysis and Design[M].New York:Wiley,1980.
    [6]Rajapakse R.K.Response of an Axially Loaded Elastic Pile in a Gibson Soil[J].Geotechnique,1990,40(2):237-249.
    [7]洪毓康,楼晓明,陈强华.高层建筑下桩-箱基础共同作用研究[J].岩土工程学报.1997,19(2):62-68.
    [8]刘前曦,侯学渊,章旭昌.筏-桩-土共同作用分析方法[J].同济大学学报.1996,24(6):625-630.
    [9]杨敏,王树娟,王伯钧,周融华.考虑极限承载力下的桩筏基础相互作用分析[J].岩土工程学报.1998,19(2):82-86.
    [10]Randolph,M.F.& Wroth,C.P.An Analysis of the Vertical Deformation of Pile Groups.Geotechnique.1979,29(4):423-439.
    [11]Mylonakis,G.& Gazetas G.Setlement and Additional Internal Forces of Piles in Layered soils.Geotechnique.1998,48(1):55-72.
    [12]陈明中.群桩沉降计算理论及桩筏基础优化设计研究[D].杭州:浙江大学博士学位论文.2000.
    [13]Chow,Y.K.Interactive analysis of pile-soil-pile interaction.Geotechnique,1987,37(3):321-333.
    [14]Clancy,P.& Randolph,M.F.An approximate analysis procedure for piled raft foundations[J].Int.J.Number.and Anay.Mechods in geomechanics.1993,17(2):849-869.
    [15]何锡兴.桩-土-承台作用的非线性分析[D].上海:同济大学硕士学位论文.1991.
    [16]Butterfield,R.& Banerjee,P.K.The Elastic Analysis of Compressible Piles and Pile Groups[J].Geotechpique,1971,21(1):43-60.
    [17]Ottaviani,M.Three-dimensional Finite Element Analysis of Vertically Loaded Pile Groups[J].Geotechpique,1975,25(2):159-17.
    [18]吴永红,顾晓鲁.桩台共同作用研究评述[J].工程勘察.1992,3:15-20.
    [19]黄昌利,谢肖礼.桩与土相互作用非线性有限元分析[J].广西大学学报.2002,27(2):175-178.
    [20]张明义,邓安福,干腾君.静力压桩数值模拟的位移贯入法[J].岩土力学.2003.24(1):113-117.
    [21]唐世栋,李阳.基于ANSYS软件模拟桩的挤入过程[J].岩土力学.2006,27(6):973-976.
    [22]吴鹏,龚维明,梁书亭,朱建民.考虑桩土滑移和整体刚度动态调整的群桩分析方法[J].岩土工程学报.2007,29(2):225-230.
    [23]倪新华.一种桩土共同作用计算方法[J].岩土工程师.1991,3(3):60-62.
    [24]Guo,W.D.& Randolph,M.F.An efficient approach for settlement prediction of pile groups [J].Geotechpique,1999,49(2):161-179.
    [25]王文,顾晓鲁.桩—土—筏片体系的数值与半数值三维非线性分析模型[J].土木工程学报.1998,31(3):30-40.
    [26]刘绪普.单桩及群桩沉降特性研究[D].杭州:浙江大学硕士学位论文.1992.
    [27]肖昭然.桩基础沉降分析及其工程应用[M].郑州:黄河水利出版社.2002.
    [28]Caputo,V.& Viggiani,C.Pile foundation analysis:A simple approach to non linearity effects [J].Rivista Italiana di Geotecnica.1984,18(2):32-51.
    [29]Lee,C.Y.Axial response analysis of axially loaded piles and pile groups[J].Computers and Geotechnics.1991,11(4):295-313.
    [30]付宝连.弹性力学中的能量原理及其应用[M].北京:科学出版社.2004.
    [1]洪毓康,陈强华译.俞调梅校.桩与土体系中的荷载传递(美:A.S.vesic)[M].北京:中国筑工业出版社.1982.
    [2]《桩基工程手册》编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1997.
    [3]Coop,M.R.& Wroth,C.P.Field studies of an instrumented model pile in clay[J].Geotechnique.1989,39(4):679-696.
    [4]Cunha,R.P.,Poulos,H.G.,and Small,J.C.Investigation of design alternatives for a piled raft case history[J].J.Geotech.and Geoenvir.Engrg.2001,127(8):637-641.
    [5]Briaud,J.L.& Tuchker,L.M.Axially loaded 5 pile group and single pile in sand[A].Proceedings of the International Conference on Soil Mechanics and Foundation Engineering.1989,2:1121-1124.
    [6]Mandolini,A.& Viggiani,C.Settlement of piled foundations[J].Geoteehnique.1997,47(4):791-816.
    [7]Lee,Su-Hyung.& Chung,Choong-Ki.An experimental study of the interaction of vertically loaded pile groups in sand[J].Canadian Geotechnical Journal.2005,42(5):1485-1493.
    [8]Randolph,M.F.& Wroth,C.P.Analysis of the vertical deformation of pile groups[J].Geotechnique.1979,29(4):423-439.
    [9]Chow,Y.K.& Teh,C.I.Pile-cap-pile-group interaction in nonhomogeneous soil[J].J.Geotech.and Geoenvir.Engrg.1991,117(11):1655-1668.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700