基于多模态脑电信号的脑机接口关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑机接口(Brain Computer Interface,BCI)旨在建立脑思维活动的意向与行为之间的关联,实现直接的人机信息交互和控制,在脑认知和生物反馈训练等有着广阔的发展应用前景。EEG(Electroencephalogram)具有非线性、非平稳性且易受外界干扰等特点,是综合反映大脑组织电活动及大脑的功能状态的载体,具有较高的时间分辨率和响应实时性。
     脑思维具有高度复杂性,目前典型单模态BCI是基于单一类别EEG信号,只能在简单思维活动层面识别不同类别任务,识别效率低、系统通用性差。旨在通过多种途径分析思维任务的多模态BCI系统,基于多种形式EEG信号之间的互补性,通过融合和综合利用多类型EEG信号,提供多类型多任务意识识别,并提高系统通用性和识别正确率,已经成为BCI发展的趋势。如何快速有效地从多模态EEG信号中识别表征意识任务的特征量,区分不同的意识任务,产生反映大脑意识的控制命令,是基于多模态EEG信号的多模态BCI系统的核心问题,预处理、特征提取和分类识别算法是其中的关键技术。
     以实现左、右手和左、右脚的四分类意识指令识别的多模态BCI系统为目标;以稳态视觉诱发(Steady State Visual Evoked Potential, SSVEP)和运动想象(Motor Imagery, MI)的多模态EEG信号处理关键算法作为核心,以提高多模态BCI系统识别正确率和速度为切入点,构建基于多模态EEG信号的BCI系统框架,设计多模态BCI系统的实验范式,采集多模态EEG信号,设计预处理、特征提取和分类识别等关键算法,实现四分类的BCI控制。实验结果表明,系统具有高识别准确率和速度。主要研究结果包括:
     1)对比研究了典型基于EEG信号的BCI系统,针对单模态的EEG信号易受主观影响,特征信息单一,传输速度受制约等问题,提出融合运动想象MI和视觉稳态诱发SSVEP构建多模态EEG信号,为实现BCI系统的左、右手和左、右脚的最佳分类控制提供了研究基础;
     2)围绕多模态EEG信号的BCI系统的核心算法,以实现左、右手和左、右脚的四分类BCI系统为目标,设计了特定的实验范式,采集大样本被试的多模态EEG信号;确定了C3、C4、FC3、FC4和Cz等12个采集通道,选取了相干平均预处理算法,通过比较AR模型、WT、WPT和HHT等特征提取算法,以及Fisher和SVM分类识别算法的大样本被试基础上的实验结果,设计了AR+HHT的特征提取和SVM分类识别的组合算法;
     3)针对实现多模态BCI系统中的问题,基于上述核心算法,构建了识别大脑的左、右手和左、右脚的不同躯体部位的运动想象的BCI系统框架,并编程实现了上述系统框架,设计并进行了大样本对比实验,验证算法和系统框架的有效性,实验结果表明,基于多模态EEG信号的BCI系统达到了高识别准确率和速度。
The Brain Computer Interface(BCI) system aims at establishing the correlation between the intention of brain thinking and the behavior, and finally achieving the direct human-computer interaction and control. BCI has a broad development and application prospect in brain cognition and biofeedback training, etc.. Electroencephalogram(EEG) signal has the characteristics of nonlinearity, nonstationarity and susceptivity to external interference. Having high time resolution and real-time response, EEG is the carrier that can comprehensively reflect the electric activity of brain tissue and the functional state of brain.
     Brain thinking is highly complex. At present, the typical single-mode BCI based on single category of EEG signals can only identify tasks on the level of simple thinking activity with low recognition rate and poor versatility. Aiming at analyzing the thinking tasks from multiple channels, the multi-mode BCI system based on complementarity of the various EEG signals can provide multi-type and multi-task of conscious recognitions and improve the recognition accuracy and versatility of system through appropriate fusion and comprehensive utilization of multi-modal EEG signals. The multi-modal BCI system has become the trend of BCI development. How to rapidly and effectively select the characteristic parameters that can symbolize the conscious task from the complex EEG signals, distinguish different conscious tasks and produce the corresponding control commands is the core for the multi-modal BCI system based on multi-mode EEG signals, and the algorithms for pretreatment, feature extraction and classification are its key technologies.
     In order to realize the identification of four kinds of conscious commands(left and right hand, left and right foot) in multi-modal BCI system, taking the key algorithms for processing the multi-modal EEG signals based on Steady State Visual Evoked Potential(SSVEP) and Motor Imagery(MI) as the core, improving the recognition accuracy and speed of multi-modal BCI system as the breakthrough point, this thesis constructed a BCI system framework based on multi-modal EEG signals, designed an experimental paradigm for multi-modal BCI system, collected multi-modal EEG signals, designed the key algorithms for pretreatment, feature extraction and classification&recognition and achieved the BCI control of four kinds of conscious commands. The experimental results demonstrated that this system has high recognition accuracy and speed. The main findings include:
     1) The typical BCI systems based on EEG signal were comparatively studied. The single-mode EEG signal is easily influenced by the subjective factors and has other problems like singleness of feature information and low speed of transmission. In accordance with these problems, the multi-modal EEG signal based on MI and SSVEP was put forward, providing basis for realizing the best classification control of left and right hand, left and right foot in BCI system;
     2) With identification of four kinds of conscious commands (left and right hand, left and right foot) as the objective, I designed a novel experimental paradigm using the core algorithms for the BCI system based on multi-modal EEG signals. The multi-modal EEG signals of large samples were collected. Twelve acquisition channels including C3, C4, FC3, FC4and Cz were determined. The coherent averaging preprocessing algorithm was selected. After comparison of the feature extraction algorithms of AR model, WT, WPT and HHT, classification identification algorithms of Fisher and SVM, a combined algorithm of AR+HHT feature extraction and SVM classification&identification was designed;
     3) Targeting at the problems in realizing the multi-modal BCI system, this thesis constructed a BCI system framework that can identify the MI of left and right hand, left and right foot based on the above algorithms, and this framework was realized by programming. A large sample contrast test was designed to verify the validity of the algorithms and system framework. The experimental results demonstrated that the BCI system based on multi-modal EEG signal has high recognition accuracy and speed.
引文
[1]. Mason S.G, Bashashati A., Fatourechi M.s et al. A comprehensive survey of brain interface technology designs [J]. Ann Biomed Eng,2007,35:137-169
    [2]. Bashashati A., Fatourechi M., Ward R.K., et al. TOPICAL REVIEW:A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals [J]. Journal of Neural Engineering,2007, (4):32-57
    [3]. Allison B. Z.. Trends in BCI research:Progress today, backlash tomorrow, ACM XRDS. 2011,18(1):18-22
    [4]. Edlinger G, Krausz G, Groenegress C., et al. Brain-computer interfaces for virtual environment control. Proc.13th Int. Conf. Biomed. Eng.2009, (23):366-369
    [5]. Y. Liu, Z. Zhou, and D. Hu. Gaze independent brain-computer speller with covert visual search tasks. Clin. Neurophysiol.2011,122(6):1127-1136
    [6]. Millan J. d. R., Muller-Putz G R., Murray-Smith R., et al. Combining brain-computer interfaces and assistive technologies:state-of-the-art and challenges. Front. Neurosci. vol.4, art.161,2010
    [7]. Vaadia E., Birbaumer and Grand N. Challenges of brain computer interfaces in the years to come. Front. Neurosci.2009, (3):151-154
    [8]. Marrinez-Montes E. et al. Concurrent EEG/fMRI Analysis by Multiway Partial Least. Squares. Neurolmage.2004, (22):1023-1034
    [9]. Ahlfors S.P., SimPson G.V. Geometrical Interpretation off MRI-guided MEG/EEG Inverse Estimates. Neuro. Image.2004, (22):323-332
    [10].Negishi M., Abildgaard M., Nixon T., et al. Removal of Tim-varying Gradient Artifaets from EEG Data Aequired during Continuous fMRI. Clinical Neurophysiology.2004,115(9): 2181-2192
    [11].Li Yuanqing, Long Jinyi, Yu Tianyou, et al. An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans Biomed Eng,2010, 57(10):2495-2505
    [12].Gu Y, Dremstrup K., Farina D. Single-trial discrimination of type and speed of wrist movements from EEG recordings [J]. Clinical Neurophysiology,2009,120:1596-1600
    [13].Bear M.F., Connors B.W., Paradiso M.A. Neuroscience:exploring the brain.2nd ed. Baltimore:Williams and Wilkins,2001
    [14].陈国起,曹起龙,简明神经电生理诊断学,1998,北京,人民卫生出版社
    [15]. Allison B. Z., Wolpaw E.W. and Wolpaw J R. Brain-computer interface systems:progress and prospects, Expert Rev. Med.2007, (4):463-474
    [16].Scherer R., Lee F., Schlogl A.et al. Towards self-paced brain-computer communication: navigation through virtual worlds. IEEE Transactions on Biomedical Engineering,2008, 55(2):675-682
    [17].Pfurtscheller G et al.15 years of BCI research at Graz University of Technology:current projects IEEE Trans. Neural Syst. Rehabil. Eng.2006, (14):205-210
    [18].Pfurtscheller G, Muller-Putz G., Scherer R and Neuper C. Rehabilitation with brain-computer interface systems. Computer.2008, (41):58-65
    [19].Rubler A. and Muller K-R. Dornhedge G, et al. An introduction to brain-computer interfacing Toward Brain-Computer Interfacing (Cambridge, MA:MIT Press) 2007,1-25
    [20]. Sellers E. W., Kubler A. and Donchin E. Brain-computer interface research at the University of South Florida cognitive psychophysiology laboratory:the P300 speller IEEE Trans. Neural Syst., Rehabil. Eng.2006, (14):221-224
    [21].Allison B.Z., McFarland D.J., Schalk G, et al, Towards an independent brain-computer interface using steady state visual evoked potentials Clin. Neurophysiol.2008, (119): 399-408
    [22].Sutter EE, The brain response interface:communication through visually-induced electrical brain responses, Journal of Microcomputer Applications,1992,15:31~45
    [23].Farwell LA, Donchin E, Talking off the top of your head:A mental prosthesis utilizing event-related brain potentials, Electroenceph. Clin. Neurophysiol.1988,70(6):510~523
    [24].Donchin E, Spencer KM, Wijesinghe R. The mental prosthesis:Assessing the speed of a P300-based brain-computer interface. IEEE Transactions OnRehabilitation Engineering, 2000,8(2):174~179
    [25].何庆华,基于视觉诱发电位的脑机接口实验研究,博士学位论文,重庆大学,2003
    [26].薛建中,基于自发脑电的脑-计算机接口研究,博士学位论文,西安交通大学,2003
    [27].陈香,基于节律同化效应的思维脑电信号分类研究,博士学位论文,中国科学技术大学,2004
    [28].Haselsteiner E. and Pfortseheller G, Using time-dependant neural networks for EEG classification, IEEE Trans. Rehabil. Eng,2000, (8):457-463
    [29].Gareia G. N., Ebrahimi T. and Vesin J. M., Support vector EEG classification in the Fourier and time-frequency correlation domains, Conference Proe. Lst Int. IEEE EMBS Conf. on Neural Engineering,2003
    [30].Townsend G., Graimann B., Pfurtseheller G. Continuous EEG classification during motor imagery-simulation of anasynehronous BCI, IEEE Trans Neural Syst Rehabil Eng,12(2): 258-265
    [31].Tsui Chun Sing Louis.Gan John Q, Asyncronous BCI control of a robot simulator with supervised online training, IDEAL,2007:125-130
    [32].Kaleher J., Flotzinger D., NeuPer C, et al. Graz brain-computer interface Ⅱ:towards communication between humans and computers based ononline classification of three different EEG Patterns, Med. Biol. Eng. Comput.1996, (34):383-388
    [33].Valerie Morash, Ou Bai, Stephen Furlani, et al. Classifying EEG signals preceding right hand, lefthand, tongue and right foot movements and motor imageries, Clinical Neurophysiology,2008, (119):2570-2578
    [34]. Clemens Brunner, Muharnlnad Naeem, RobertLeeb, et al. Spatial filtering and selection of optimized components in four class motor imagery EEG data using independent components analysis, Pattern Recognition Letters,2007, (28):957-964
    [35].Obermaier B., NeuPer C, et al. Information transfer rate in a five-classes brain-computer interface, IEEE Trans. Neural Syst. Rehabil. Eng.2000, (9):283-288
    [36].Pfurtscheller G, Solis-Escalante T., Ortner R.et al. Self-paced operation of an ssvep-based orthosis with and without an imagery-based brain switch:A feasibility study towards a hybrid bci, IEEE Transactions on Neural Systems and Rehabilitation Engineering,2010, 18(4):409-414
    [37]. Y. Li, J. Long, T. Yu, et al. An EEG-based BCI System for 2-D Cursor Control by Combining Mu/Beta Rhythm and P300 Potential, IEEE Trans. Biomed. Eng.2010,57(10):2495-2505
    [38].Leuthardt E.C., Schalk G, Wolpaw J.R., et al. A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng.2004,1:63-71
    [39].黄远桂,吴声伶编著,临床脑电图学,1998,北京:人民卫生出版社,1-9
    [40].谭玉玲编著,临床脑电图与脑电地形图学,1999,北京,人民卫生出版社,16
    [41].Fisch B. J., Fisch and Spehlmann's EEG Primer,3rd Edition, Elsevier Science,1999
    [42].Sheikh H., McFarland D.J., Sarnacki W.A., et al. Electroencephalographic(EEG)-based communication:EEG control versus system performance in humans.Neuroscience letters, 2003,345(2):89-92
    [43]. Arroyo S., Lesser R P, Gordon B, et al. Functional significance of the mu rhythm of human cortex:an electrophysiologic study with subdural electrodes [J]. Electroencephalogr Clin Neurophysiol,1993,87:76-87
    [44].Wolpaw J.R., McFarland D.J., Vaughan T.M., et al. The Wadsworth Center brain-computer interface (BCI) research and development program. IEEE Trans. Neural Syst Rehabil Eng. 2003,11(2):204-207
    [45].Sheikh H., McFarland D.J., Sarnacki W.A., et al. Electroencephalographic(EEG)-based communication:EEG control versus system performance in humans.Neuroscience letters, 2003,345(2):89-92
    [46].Rockstroh B., Elbert T., Canavan A., et al. Slow cortical potentials and behavior.2nd ed. Baltimore:Urban and Schwarzenberg,1989
    [47].Hinterberger T, Schmidt S., Neumann N, et al. Brain-computer communication and slow cortical potentials [J], IEEE Trans, on Biomed. Eng.,2004,51(6):1011-1018
    [48].Birbaumer H., Hinterberger T., Kiibler A., et al. The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome [J], IEEE Trans, on Neural Systems and Rehab. Eng.,2003,11(2):120-123
    [49].Ortner R., Allison B.Z., Korisek G, et al. An SSVEP BCI to Control a Hand Orthosis for Persons With Tetraplegia. IEEE Trans Neural Syst Rehab Eng,2011,19(1):1-5
    [50].程明,高上凯,张琳.基于脑电信号的脑-计算机接口[J],北京生物医学工程,2000,19(2):113-118
    [51].Cheng M, Gao X, Gao S, et al. Design and implementation of a brain-computer interface with high transfer rates [J], IEEE Trans. Biomed. Eng.,2002,49(10):1181-1186
    [52].Leeb R., Sagha H., Chavarriaga R.et al. Multimodal Fusion of Muscle and Brain Signals for a Hybrid-BCI. in 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'10),2010
    [53].Wolpaw J.R., McFarland D.J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad.2004, (101): 17849-17854
    [54].王毅军.基于节律调制的脑-机接口系统——从离线到在线的跨越[博士学位论文].北京:清华大学医学院,2007
    [55].Muller-Putz GR., Scherer R., Pfurtscheller G, et al. EEG-based neuroprosthesis control:a step towards clinical practice.Neuroscience Letters.2005,382(1-2):169-174
    [56].Blankertz B., Muller K. R., Krusienski D. J., et al. Validating Alternative Approaches to Actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng.2006,14(2):153-159
    [57].Postelnicu C.C., Talaba D. P300-Based Brain-Neuronal Computer Interaction for Spelling Applications. IEEE Trans. Bio. Eng.,2013,60(2):534-543
    [58].WolPaw J.R., Birbaumer N., McFarland D.J., et al. Brain-Computer Interfaces for Communication and Control. Clin. Neurophysiol.2002, (113):767-791
    [59].Finke A., Lenhardt A. and Ritter H. Special issue:The mindgame:A p300-based brain-computer interface game. Neural Netw.2009, (22):1329-1333
    [60].Pfurtscheller G, Solis-Escalante T, Ortner R, et al. Self-paced operation of an SSVEP-based orthosis with and without an imagery-based "brain switch":a feasibility study towards a hybrid BCI. IEEE Trans Neural Syst Rehab Eng.2010, (18):409-414
    [61].Edlinger G, Holzner C, Guger C. A hybrid brain-computer interface for smart home control. in Proc.14th Int. Conf. Human-Comput. Inter.2011,417-426.
    [62].Millan J.R., Rupp, Muller-Putz GR. et al. Combining brain-computer interfaces and assistive technologies:state-of-the-art and challenges, Frontiers in Neuroscience,2010, (4):1-15
    [63].Robert Leeb, Hesam Sagha, Ricardo Chavarriaga, et al. A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities. J. Neural Eng,2011
    [64]. Y. Yang, S. Chevallier, J. Wiart et al. A self-paced hybrid BCI based on EEG and EOG,3rd TOBI workshop-Bringinh BCIs to end-users:facing the challenge, Wurzburg, Germany, 2012,33-34
    [65].Egorouchkina K.., Braecklein, Martin, Pang, L., et al. Comparison of two different methods for coherent averaging in online ECG analysis. Computers in Cardiology,2005,32:463-466
    [66].王力,张雄.小波滤波与AR模型在脑电信号处理的应用.电子器件.2012,35(4):461-464
    [67].张毅,罗明伟,罗元.脑电信号的小波变换和样本熵特征提取方法.智能系统学报.2012,7(4):339-344
    [68].E.B. Lin, X.P. Shen. Wavelet analysis of EEG signals. Aerospace and Electronics. IEEE National Conference-NAECON.2011,105-110
    [69].王登,苗夺谦,王睿智.一种新的基于小波包分解的EEG特征抽取与识别方法研究.电子学报,2013,41(1):193-198
    [70].Mellone, Sabato. Hilbert-Huang-Based Tremor Removal to Assess Postural Properties From Accelerometers. IEEE Trans. Bio. Eng.2011,58(6):1752-1761
    [71]. S. Liu, Q. He, R.X.Gao, et al. Empirical mode decomposition applied to tissue artifact removal from respiratory signal. In Proc. Conf. IEEE Eng. Med. Biol. Soc.2008,3624-627
    [72].Mahanta, Mohammad Shahin, Aghaei, et al. A Bayes optimal matrix-variate LDA for extraction of spatio-spectral features from EEG signals. EMBC,2012 Annual International Conference of the IEEE.2012,3955-3958
    [73].Siuly, Li Yan. Improving the Separability of Motor Imagery EEG Signals Using a Cross Correlation-Based Least Square Support Vector Machine for Brain-Computer Interface. Neural Systems and Rehabilitation Eng. IEEE Trans.2012,20(4):526-538
    [74].Middendorf M., McMillan G., Calhoun G., et al. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng,2000,8:211-214
    [75].Niedermeyer E., Lopes da Silva FH. Electroencephalography:basic principles, clinical applications and related fields.2005
    [76].Eimer M., van Velzen J., Driver J.. Cross-modal interactions between audition, touch, and vision in endogenous spatial attention:ERP evidence on preparatory states and sensory modulations. J Cognitive Neurosci,2002, (14):254-271
    [77].Shomstein S., Yantis S. Control of attention shifts between vision and audition in human cortex. J Neurosci,2004, (24):10702-10706
    [78].Do Nascimento O.F., Nielsen K.D., Voigt M.. Relationship between plantar-flexor torque generation and the magnitude of the movement-related potentials[J]. Experimental Brain Research,2005,160:154-165
    [79].Do Nascimento O.F., Farina D.. Movement-Related Cortical Potentials Allow Discrimination of Rate of Torque Development in Imaginary Isometric Plantar Flexion[J]. IEEE Transactions on Biomedical Engineering,2008,55(11):2675-2678

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700