泡球蚴感染中期小鼠纤维化肝组织中TGF-β1/Smad信号通路的表达和意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨泡球蚴(Em)感染中期BALB/c小鼠致纤维化肝组织中α-SMA、I型胶原、Ⅲ型胶原、Ⅳ型胶原、TGF-β1、TβRI、Smad2、Smad3、Smad4和Smad7的表达状况及泡球蚴致肝纤维化的发病机制。方法:建立Em感染疾病动物模型,将BALB/c小鼠随机分为两组:实验组,以泡状棘球蚴原头蚴混悬液0.1ml/只经开腹肉眼直视下肝叶内注射接种小鼠。对照组,以同样方法注入0.1ml 0.9%生理盐水/只。于造模后12wk处死小鼠,取肝组织和病灶组织。部分肝组织10%福尔马林固定、石蜡包埋,4μm连续切片,HE和Masson染色,光镜下泡球蚴感染病灶周围病理改变和纤维化程度。一部分装入干净Ep管冻存-80℃,提取RNA,进行实时荧光定量检测。采用实时荧光定量PCR (qRT-PCR)检测肝组织α-SMA、Ⅰ型胶原、Ⅲ型胶原和Ⅳ型胶原以及TGF-β1和Smad7mRNA表达水平;免疫组织化学技术检测肝组织上述各指标在肝组织内的表达及定位;HE和Masson染色,光镜下观察肝组织病理改变和肝组织纤维化程度。结果:实验组小鼠病灶周围以形成典型的大小和形状各异的囊泡为主要特征,囊泡外周纤维结缔组织增生明显,存在不同程度的纤维化。免疫组化结果显示:α-SMA、Ⅰ型胶原、Ⅲ型胶原、Ⅳ型胶原、TGF-β1、TβR1、Smad2、Smad3、Smad4和Smad7在囊泡外围肉芽肿和对照组的显色指数分别为(6.43±0.59 VS 1.48±0.33)、(4.43±0.57 VS1.12±0.28)、(4.83±0.42 VS 0.84±0.26)、(3.95±0.33 VS 0.72±0.18)、(3.90±1.39VS0.28±0.17)、(3.98±0.95 VS 0.32±0.18)、(3.60±±0.93 VS 0.20±0.14)、(3.95±0.40 VS0.32±0.18)、(4.23±0.35 VS 0.36±0.17),差异均有显著地统计学意义(P<0.01)。在mRNA水平,Ⅰ型胶原、Ⅲ型胶原、TGF-(β1、Smad2、Smad3、Smad4在实验组的表达明显高于对照组,分别为:(3.60±2.51 VS 1.0±0.43)、(14.07±6.73 VS 1.00±0.34)、(2.19±0.13 VS 1.00±0.25)、(4.43±1.32 VS 1.00±0.28)、(1.92±0.38 VS 1.00±0.18),差异具有明显统计学意义(P<0.05)。结论:泡球蚴感染中期小鼠肝组织纤维化的主要胶原成分为Ⅰ型胶原、Ⅲ型胶原。在囊泡外围组织纤维化严重的区域,TGF-β1、TβRI、Smad2、Smad3、Smad4和Smad7的表达明显,提示TGF-β1/Smad信号通路参与泡球蚴感染小鼠病灶纤维化过程。
Objective:To investigate the expression of a-SMA, collagen type I, collagen type III, collagen type IV, transforming growth factor-β1, TPRI, p-Smad2/3, Smad4 and Smad7in BALB/c mouse's fibrotic liver infected by Echinococcus multilocularis (Em) during the middle stage of infection (12wk), and to explore the Echinococcus multilocularis-fibrogenic molecular mechanism. Methods:Building Animal models, BALB/c mouse were randomly allocated into two groups:a model group, and a normal group.The E.multilocularis infected mice were injected 0.1mL pooled metacestode lesions into the left liver lobe under opening abdomen, and control mice were injected 0.1mL saline using the same surgical procedure. The mouse of experiment group were killed and to get the tissue of liver the at the end of 12weeks. Some liver pieces were fixed in 10%buffered formalin for histology assay to detect the degree of liver fibrosis by the immunohistochemistry assay. Other liver pieces were snap-frozen in fluid nitrogen immediately, and then conserved in the-80℃refrigerator. The mRNA of liver's a-SMA, collagen typeⅠ, collagen typeⅢ, TGF-β1 TβRI Smad2、Smad3、Smad4、Smad7 were analysed by Quantitative Real-time Reverse Transcription PCR (qRT-PCR). The protein expression and location of a-SMA, collagen type I, collagen type III, collagen type IV, TGF-β1, TβRI, Smad2, Smad3, Smad4, Smad7 were analysed by immuhistochemistry. The variable pathology and the level of liver fibrosis were analysed by Heand Massion and observed by lightmicroscope. Results:The experimental group had lesions characterized by many metacestode vesicles with different sizes and shapes. Hyperplasia of fibro connective tissue with different degrees of fibrosis was apparent around metacestode vesicles.The immunohistochemically result showed that:the expression ofα-SMA, collagen typeⅠ, collagen typeⅢ, collagen typeⅣ, TGF-β1, TβRI, Smad2, Smad3, Smad4 and Smad7 (6.43±0.59 VS 1.48±0.33), (4.43±0.57 VS 1.12±0.28), (4.83±0.42 VS 0.84±0.26), (3.95±0.33 VS 0.72±0.18), (3.90±1.39 VS 0.28±0.17), (3.98±0.95 VS 0.32±0.18),(3.60±0.93 VS 0.20±0.14), (3.95±0.40 VS 0.32±0.18), (4.23±0.35 VS 0.36±0.17). was higher in periparastic granulomas in comparison to the control group. The Quantitative Real-time Reverse Transcription PCR result showed as follows:the mRNA level expression of collagen typeⅠ, collagen typeⅢ, TGF-(31, Smad2, Smad3, Smad4 was (3.60±2.51 VS 1.00±0.43), (14.07±6.73 VS 1.00±0.34), (2.19±0.13 VS 1.00±0.25), (4.43±1.32 VS 1.00±0.28), (1.92±0.38 VS 1.00±0.18), was higher than than in control group. Conclusion:The major collagen in hepatic fibrosis of mice during the middle stage of infection in mice infected by Echinococcus multilocularis were collagen typeⅠand collagen typeⅢ. Pathological injury, fibrosis, and upregulation of TGF-β1, TβRI, Smad2, Smad3, Smad4, Smad7 expression occurred in the mouse live as a result of E. multilocularis infection, which may indicate that TGF-β/Smad pathway was involved in parasite induced hepatic fibrosis in mice.
引文
[1]王鸿,李文桂.泡型包虫病免疫发病机制研究进展[J].地方病通报,2006,21(1):98-100.
    [2]温浩,徐明谦.实用包虫病学[M].北京:科学出版社,2007.
    [3]Sylviane G,Dominique AV, Martine L, et al. Echinococcus multilocular is:relationship between susceptibility/resistance and liver brogenesis in experimental mice. J Parasitol Res,1998,84:657-67.
    [4]温浩.包虫病学教程(试用)[M].乌鲁木齐:新疆人民出版社,2009.
    [5]朱佑明,李文桂.细粒棘球绦虫分子生物学研究进展[J].中国寄生虫病防治杂志,2005,18(3):217-220.
    [6]潘卫庆,汤林华.分子寄生虫学[M.]上海科学技术出版社,2004.
    [7]Attisan L, Wrana JL. Signal transduction by the TGF-beta super family[J] Science, 2002,296(5573):1646-1647.
    [8]Gressner AM, Weiskirchen G, Breitkopf K, et al. Roles of TGF-beta in hepatic fibrosis. FrontBiosci,2002,7:d793-d807.
    [9]Dooley S, Delvoux B, Streckert M, et al. Transforming growth factor beta signal transduction in hepatic stellate cells via Smad2/3 phosphorylation, a pathway that is abrogated during in vitro progression to myofibroblasts. TGFbeta signal transducti-onduring transdifferetiation of hepatic stellate cells. FEBS Lett 2001;502:4-10.
    [10]Border WA, Ruoslahti E. Transforming grwth factor-beta in disease:the dark side of tissue repair. J Clin Invest 1992;90:1-7.
    [11]陈峰,郑敏,陈智Smad2和Smad3在TGF-β1信号转导通路中的作用.国际流行病学传染病学杂志[J].2006,33(3):187-189.
    [12]Massague J., Wotton D. Transcriptional control by the TGF-beta/smad signaling systerm. EMBO J,2000,19(8):1745-1754.
    [13]Schiffer M, von Gersdorff G, Bitzer M, et al. Smad proteins and transforming growth factor-beta signaling. Kidney Iny Suppl,2000,77:s45-s52.
    [14]李瑶,刘辉,卢晓梅等.泡球蚴感染Blab/c小鼠肝脏TGF-βl表达的动态变化研究[J].中国病原生物学杂志,2009,4(12):901-903.
    [15]Saluii M. Experimental hydatid disease of liver. Eur J Clin Invest,1997; 27(6): 537-538.
    [16]19. Yang Y, Cai W, Jin G. Dynamic changes in hepatic myofibroblast of rabbits with Schistosoma japonicum. Zhonghua Yi Xue Za Zhi 1999;79:870-873.
    [17]Mattern J, Koomagi R. Volm M. Association of vascular endothelial growth factor expression with intratumoral microvessel density and rumor cell proliferation in human epidermoid lung carcinoma[J]Br J Cancer,1996,73:931-4.
    [18]Bruno Gottstein, Andrew Hemphill. Echinococcus multilocularis:The parasite-host interplay[J]Experimental Parasitology,2008,119:447-52.
    [19]温浩,丁兆勋.包虫病图谱[M]第2版.北京:科学出版社,2008.
    [20]Wynn TA. Common and unique mechanisms regulate fibrosis in various fibrop-roliferative diseases[J] Clin Invest,2007,117(3):524-9.
    [21]Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling[J] Nat Rev Mol Cell Biol,2002,3(5):349-63.
    [22]Friedman SL. Mechanisms of disease:mechanisms of hepatic fibrosis and therapeutic implications[J]Nat Clin Pract GastroenterolHepatol,2004, 1(2):98-105.
    [23]董玲,孙剑勇,杜施霖,等,基因芯片研究甘草酸对大鼠肝星状细胞转化生长因子-β信号通路的影响[J].中华消化杂志,2006,26:594-97.
    [24]Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signaling[J].Nature,2003,425:577-84.
    [25]Calabrese F, Valente M, Giacometti C, et al. Parenchymal transforming growth factor beta-1:its type Ⅱ receptor and smad signaling pathway correlate with inflammation and fibrosis in chronic liver disease of viral etiology[J]Gastroenterol Hepatol,2003, 18:1302-8.
    [26]Sanderson N, Factor V, Nagy P, et al. Hepatic expression of mature transforming growth factorβ1 in transgenic mice results in multiple tissue lesions. Proc NatlAcad Sci USA 1995;92:2572-2576.
    [27]吴义春,吴强,杨雁,等.大鼠中晚期纤维化肝组织NF-ΚB,TGF-β1及Ⅰ型受体表达的改变[J].安徽医科大学学报,2004;39:329-332.
    [28]]宋仕玲,龚作炯,张全荣.实验性大鼠肝纤维化TGF-β1及其受体mRNA与Smad3,7的表达[J].世界华人消化杂志,2004;12:676-679.
    [29]孙樱,宣世英,辛永宁,等.慢性乙型肝炎患者血清TGF-pi与肝组织纤维化及肝功能相关性的研究[J].中华肝脏病杂志,2002;10:221-222.
    [30]吴强,宋少刚,杨枫,等.大鼠肝纤维化中PDGF和TGF-β1的动态改变[J].安徽医科大学学报2003;38:340-342.
    [31]熊章鄂,但自力,唐望先,等.中药肝炎平对CCl4诱导的肝纤维化大鼠TGF-β1/Smad信号通路的影响[J].世界华人消化杂志2006;14:152-157.
    [32]Wang XF, Lin HY, Ng-Easton E, et al. Expression cloning and characterization of the TGF-βtype Ⅲ receptor. Cell 1991;67:797-805.
    [33]Cheifetz S, Bellon T, Cales C, et al. Endoglin is a component of the transforming growth factor-Predeptor system in human endothelial cells. J Biol Chem. 1992;267:19027-19030.
    [34]Lopez-Casillas F, Wrana JL, MassagueJ. Betaglycan presents ligand to the TGF-βsignaling receptor. Cell 1993;73:1435-1444.
    [35]Mori Y, Chen SJ, Varga J. Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. Arthritis Rheum 2003;48:1964-1978
    [36]吴晓玲,曾维政,蒋明德,等.肝纤维化的信号转导通路[J].世界华人消化杂志,2006;14:2223-2228.
    [37]潘国宗,主编.现代胃肠病学下册[M]北京:北京科学技术出版社1998.1500-1523.
    [38]Vuitton D A, Guerret S, Breeson-Hadin et al.1991. Are fat-storing cells involved in the hepaticfibrosis of human alveolar echinococcosis. Clinic and Experimantal Immunology,78:67-74.
    [39]吴向未,陈雪玲,彭新宇,等.Ⅰ、Ⅲ、Ⅳ型胶原在肝包虫囊肿周围人体纤维囊壁中的特异分层表达,中国人兽共患病杂志,2004,20(10):876-879.
    [40]Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med 2006;10:76-99.
    [41]Urtasun R, Nieto N. [Hepatic stellate cells and oxidative stress]Rev Esp Enferrm Dig 2007;99:223-230.
    [42]Gressner OA, Weiskirchen R, Gressner AM. Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options. Comp Hepatol 2007;6:7.
    [43]Vuitton DA, Gottstein B:Echinococcus multilocularis and its intermediate host:a model of parasite-host interplay. J Biomed Biotechnol 2010,923193.
    [44]Zhang S, Hue S, Sene D, Penfornis A, Bresson-Hadni S, Kantelip B, Caillat-Zucman S, Vuitton DA:Expression of major histocompatibility complexclass Ⅰ chain-related molecule A, NKG2 D, and transforming growth factor-beta in the liver of humans with alveolar echinococcosis:new actors in the tolerance to parasites? J Infect Dis 2008,197:1341-1349.
    [45]Hrckova G, Velebny S, Solar P:Dynamics of hepatic stellate cells, collagen types I and Ⅲ synthesis and gene expression of selected cytokines during hepatic fibrogenesis following Mesocestoides vogae(Cestoda) infection in mice. Int J Parasitol 40:163-174.
    [46]D. A. Vuitton, S. Guerret-Stocker, J. P. Carbillet, G. Mantion, J. P. Miguet, and J. A. Grimaud, "Collagen immunotypingof the hepatic fibrosis in human alveolar echinococcosis, "Zeitschrift fur Parasitenkunde, vol.72, no.1, pp.97-104,1986.
    [47]P. Grenard, S. Bresson-Hadni, S. El Alaoui, M. Chevallier, D. A. Vuitton, and S. Ricard-Blum, "Transglutaminasemediated cross-linking is involved in the stabilization of extracellular matrix in human liver fibrosis, " Journal of Hepatology, vol.35, no.3, pp.367-375,2001.
    [48]S. Ricard-Blum, S. Bresson-Hadni, S. Guerret, et al. "Mechanism of collagen network stabilization in human irreversible granulomatous liver fibrosis," Gastroenterology, vol.111, no.1, pp.172-182,1996.
    [49]S. Ricard-Blum, S. Bresson-Hadni, D. A. Vuitton, G. Ville, and J.-A. Grimaud, "Hydroxypyridinium collagen cross-links in human liver fibrosis:study of alveolar echinococcosis," Hepatology, vol.15, no.4, pp.599-602,1992.
    [50]D. A. Vuitton, S. Bresson-Hadni, D. Lenys, et al., "IgEdependent humoral immune response in Echinococcus multilocularis infection:circulating and basophil-bound specific IgE against Echinococcus antigens in patients with alveolar echinoc-occosis, " Clinical and Experimental Immunology, vol.71, no.2, pp.247-252,1988.
    [51]S. Guerret, D. A. Vuitton, M. Liance, C. Pater, and J. P. Carbillet, "Echinococcus multilocularis:relationship between susceptibility/resistance and liver fibrogenesis in experimental mice, " Parasitology Research, vol.84, no.8, pp.657-667,1998.
    [52]M. Liance, S. Ricard-Blum, I. Emery, R. Houin, and D. A. Vuitton, "Echinococcus multilocularis infection in mice:in vivo treatment with a low dose of IFN-γ decreases metacestode growth and liver fibrogenesis, " Parasite, vol.5, no.3, pp.231-237, 1998.
    [53]S. Bresson-Hadni, D. A. Vuitton, B. Bartholomot, et al., "A twenty-year history of alveolar echinococcosis:analysis of a series of 117 patients from eastern France, " European Journal of Gastroenterology and Hepatology, vol.12, no.3, pp.327-336, 2000.
    [54]Hayashida T, Decaestecker M, Schnaper HW. Cross2talk bet ween ERKMAP kinase and Smad signaling pathways enhances TGF2 beta2 dependent res ponses in human mesangial cells[J]FASEB J,2003,17(11):157621578.
    [1]Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol,1990, 6:597-641.
    [2]Gressner AM, Weiskirchen G, Breitkopf K, et al. Roles of TGF-beta in hepatic fibrosis. FrontBiosci,2002,7:d793-d807.
    [3]Massague J, Attisano L, Wrana JL. The TGF-beta family and its composite receptors. Tends Cell Biol 1994;4:172-178.
    [4]Faure S, Lee MA, Keller T, ten Dijke P, Whitman M. Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 2000;127:2917-2931
    [5]Dunker N, Krieglstein K. Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and aduit homestasis. Eur J Biochem 2000;267:6982-6988.
    [6]黄耀煊,张桂霞,吕民生,范公忍,陈乃玲,邬光惠.转化生长因子-β1在肝细胞性肝癌中表达增强[J].世界华人消化杂志1999;7:150-152.
    [7]Crowe MJ, Doetschman T, Greenhalgh DG. Delayed wound healing in immunodeficent TGF-beta 1 knock out mice. J Invest Dermatol 2000;115:3-11.
    [8]Iwasawa M. Accelerated maturation in prefabricated flaps by transforming grwth factor beta:an experimental study in the rabbit. Ann Plast Surg 1993;31:72-75.
    [9]Tatakis DN, Wikesjo UM, Razi SS, Sigurdsson TJ, Lee MB, Nguyen T, Ongpipattanakul B, Hardwick R. Periodontal repair in dogs:effect of transforming growth factor-beta 1 on alveolar bone and cementum regeneration. J Clin Periodontol 2000;27:698-704.
    [10]Sasaki H Pollard RB, Schmitt D, Suzuki F. Transforming growth factor-beta in the regulation of the immune response. Clin Immunol Immunopathol 1992;65:1-9.
    [11]Border WA, Ruoslahti E. Transforming grwth factor-beta in disease:the dark side of tissue repair. J Clin Invest 1992;90:1-7.
    [12]陈峰,郑敏,陈智Smad2和Smad3在TGF-β1信号转导通路中的作用[J].国际流行病学传染病学杂志,2006,33(3):187-189.
    [13]Massague J., Wotton D. Transcriptional control by the TGF-beta/smad signaling systerm. EMBO J,2000,19(8):1745-1754.
    [14]Schiffer M, von Gersdorff G, Bitzer M, et al. Smad proteins and transforming growth factor-beta signaling. Kidney Iny Suppl,2000,77:s45-s52.
    [15]Massague J. How cells readTGF-beta signals. Nat Rev Mol Cell Biol,2000, 1(3):169-178.
    [16]黄文林,朱孝峰主编.信号转导.北京:人民卫生出版社.2005.
    [17]查锡良主编.医学分子生物学.北京:人民卫生出版社,2003.
    [18]Long JY, Wang GN, Matsuura I, et al. Activation of Smad transcriptional activity by protein inhibitor of activated STAT3(PLAS3). Proc Natl Acad Sci USA,2004, 101(1):99-104.
    [19]Usui T, Takase M, Kaji Y, et al. Extracellular matrix production regulation by TGF-beta in conreal endothelial cells. Invest Ophthalmol Vis Sci,1998,39(11): 1981-1989.
    [20]Ito N, kawata S, Tsushima H, Tanura S, Kiso S, Takami S, et al. Increased circulating transforming growth factor betal in a patient with giant hepatic hemangioma:possible contribution to an impaired immune function. Hepatology 1997;25:93-96.
    [21]刘芳,刘金星,曹治宸,等。转化生长因子β1在慢性乙型肝炎患者肝细胞损伤和肝纤维化形成中的意义[J].中华传染病杂志,1999;17:241-244.
    [22]孙樱,宣世英,辛永宁,等.慢性乙型肝炎患者血清TGF-β1与肝组织纤维化及肝功能相关性的研究[J].中华肝脏病杂志,2002;10:221-222.
    [23]Flisiak R, Prokopowicz D. Transforning growth factor-betal as a surrogate marker of hepatic dysfunction in chronic liver disease. Clin Chem Lad Med 2000:38:1129-1131
    [24邬光惠,黄耀煊,范公忍,张桂霞.乙型肝炎患者血中转化生长因子β1[J].世界华人消化杂志,1998;6:505-506.
    [25]Lee DK. Park SH, Yi Y, et al. The hepatitis B virus encided oncoprotein pX amplifies TGF-beta family signaling through direct interaction with Smad4 potential mechanism of hepatitis B Virus-induced liver fibrosis. Genes Dev,2001,15:455-466.
    [26]Taniguchi H, Kaio N, Otsuka M, et al Hepatitis C virus core protein upregulates transforming growth factor-(31 transcription. J Med Virol,2004,72:52-59.
    [27]王丽婷,马红,贾继东.瘦素对肝纤维化作用机制的研究进展[J].基础医学与临床,2006,26(1):42~45.
    [28]Williams E, Iredale J. Hepatic regeneration and TGF-beta:growing to a prosperous perfection. Gut,2000,46(25):593-594.
    [29]陈峰,蔡卫民,陈智等.血吸虫肝纤维化患者转化生长因子β1 mRNA的水平及临床意义[J].中国寄生虫与寄生虫病杂志,1999,17(3):140-142.
    [30]蔡卫民,张立煌,孙永良,等.日本血吸虫病肝纤维化患者免疫调节有关因素的探讨[J].中华传染病杂志,1993,11:63-65.
    [31]余治健,向选东,蔡胜蓝,等.日本血吸虫病小鼠肝纤维化肝脏CTGF,TGF-β1的表达及意义[J].中国病原生物学杂志,2006,2(1):36-38.
    [32]彭心宇,张示杰,牛建华,等.肝包虫外膜内完整摘除术[J].中华普通外科,2002,17(9):529-530.
    [33]彭心宇.肝包虫病的外科治疗新观点[J].中国实用外科杂志,2003,23(11):651-653
    [34]李建辉,彭心宇,唐娟,等.肝包虫周围纤维囊壁中骨桥蛋白免疫印记与组化分析[J].世界华人消化杂志,2006,14(7):693-696.
    [35]吴向未,陈雪玲,彭心宇等TGF-β1、TNF-α mRNA在肝包虫囊肿周围人体纤维囊壁中的特异性分层表达[J].中国地方病学杂志,2004,7(23):311-313.
    [36]姜涛等,肝包虫囊壁及周围肝组织中CTGF与TGF-β1的表达[J].石河子大学学报, 2007,3(25):323-325.
    [37]张亚楼,马海龙,刘辉,齐新伟,刘涛,姜涛,姬风彩,温浩Smad 4在肝泡状棘球蚴病小鼠中的表达及其意义[J].中华消化外科杂志2009,8:47-49.
    [38]魏绪法,邵英梅,王俊华,李瑶,张传山,刘辉,姜涛,卢晓梅,温浩,林仁勇.泡球蚴感染中期小鼠肝脏病灶周围肉芽肿TGF-β1及其受体TβRⅠ和p-Smad2/3的表达及意义[J],中国病原生物学杂志,2010,5(12):895-897.
    [39]王俊华,卢晓梅,张传山,魏绪法,温浩,林仁勇.转化生长因子-β1及凋亡相关因子在泡球蚴感染宿主病灶旁免疫细胞中的表达及其意义[J].中华实验外科杂志[J],2011,28(2):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700