微波辅助菜籽饼粕蛋白水解产物的高效制备及其功能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菜籽饼粕蛋白是重要的植物蛋白源之一,但由于菜籽饼粕中的一些有毒和抗营养成分的存在,限制了菜籽饼粕蛋白的应用。研究表明通过水解蛋白质获得多肽是一条有效的改善蛋白质功能特性的途径。本课题的研究目的是利用微波辅助酶解技术,在前人研究的基础上建立一种高效的制备菜籽多肽的工艺,并对获得的菜籽多肽的功能特性和抗氧化活性进行研究。研究的方法是借助微波辅助技术,利用碱性蛋白酶,风味蛋白酶以及碱性蛋白酶-风味蛋白酶双酶酶解脱脂菜籽饼粕蛋白,通过对酶解工艺重要参数的优化,建立最佳工艺条件,并对酶解后获得的菜籽多肽的部分功能特性和抗氧化活性进行了考察。实验结果表明:
     1通过响应面分析法优化出最佳碱性蛋白酶酶解脱脂菜籽饼粕蛋白的工艺条件为:微波温度46℃,微波功率500 W,微波辅助酶解时间7 min(水解度为12.57%)可以达到普通水浴酶解4 h(水解度为14.14%)的效果。由于适当的加热处理可以使得蛋白质结构打开,酶解过程中更多的蛋白质分子酶切位点与蛋白酶结合,酶解反应易于进行。所以,在酶解反应进行前对菜籽饼粕进行预处理是非常有必要的。因此,本实验研究了用微波辅助加热代替普通水浴加热对菜籽饼粕蛋白进行预处理,短时间内达到普通水浴预处理菜籽饼粕蛋白的效果。通过优化得出:微波预处理功率600 W,温度75℃,微波预处理菜籽饼粕3 min,可以达到普通水浴加热预处理30 min的效果。
     2优化出微波辅助风味蛋白酶酶解脱脂菜籽饼粕的最佳工艺条件为:微波温度50℃,微波功率500 W,水解时间13 min,水解度可达25.64%。酶解后获得的菜籽多肽具有良好的功能特性:当水解度达到25%时,溶解度可以达到55%;水解度为15%时持油性达到最大,而持水性在水解度达到5%时即可达到最大;在水解度为10%时乳化能力指数和乳化稳定性指数均达到最大;菜籽饼粕蛋白酶解液的起泡性及起泡稳定性要好于菜籽饼粕蛋白,且随着水解度的不断增加,起泡性不断增大。通过对菜籽多肽抗氧化活性的研究表明菜籽饼粕蛋白酶解液中的不同分子量的多肽片段都具有一定程度的抗氧化活性,同时也说明不同强度的抗氧化活性由不同水解度的酶解产物中存在得不同分子量的多肽片段产生的。
     3利用微波辅助技术,采用正交试验用碱性蛋白酶和风味蛋白酶对脱脂菜籽粕进行分步酶解。优化出酶与蛋白的质量比为0.225 g/g,两种酶的质量比为2/1,即:碱性蛋白酶加量为E:S为9 000 U/g;风味蛋白酶加量为E:S为37.5 LAPU/g,碱性蛋白酶酶解3 min,风味蛋白酶酶解13 min,此时的水解度为53.67%。同时在最优化条件下进行验证试验,此时得到的水解度和氮收率分别为50.94%和96%,多肽为分子量在1 000 Da左右的短肽。
Rapeseed protein is one of the plant protein resources. But because of the existence of toxic substances and anti-nutritional factors in rapeseed meal, the application of rapeseed meal was limited. Some researches show that it is an effective method to modify the functional properties through hydrolyzing protein to get peptide. So the purpose of this subject is establishing a high efficiency peptide preparation technology using microwave technology on the base of previous study and studying the functional properties and antioxidative characteristic of the rapeseed peptide. The method is microwave assisted hydrolyzing the rapeseed protein by Alcalase, Flavourzyme and the two enzymes respectively. Through optimizing the important process parameters, the optimal microwave assisted enzyme hydrolysis condition is established. And then in the optimal condition the rapeseed peptide is prepared and study their functional properties and antioxidative characteristic. The research result is showing as following:
     1 By the analysis of response surface methodology (RSM), the optimal microwave assisted Alcalase hydrolysis condition is: microwave temperature 46℃, microwave power 500 W and microwave time 7 min. And in this condition the degree of hydrolysis (the DH) is 12.57% which is equal to the hydrolysis degree of hydrolysis in common water bath for about 4 hours (the DH is 14.14%). And because of the suitable heating pretreatment can make unfold of protein structure and make more hydrolysis sites contact with the enzyme, the reaction can process easily. Hence, it is very necessary to pretreat the rapeseed meal before the hydrolysis reaction. In this experiment, the water bath pretreatment of rapeseed meal is substituted by microwave heating and the result show that several minutes pretreatment using this method can achieve to the effect of 30 minutes water bath pretreatment. And the optimal pretreatment condition is microwave power 600 W, microwave temperature 75℃and microwave pretreatment time 3 min.
     2 The optimal microwave assisted Flavourzyme hydrolysis condition for rapeseed protein is microwave temperature 50℃, microwave power 500 W, microwave hydrolysis time 13 min, and the DH is 25.64%. The rapeseed peptide obtained from the rapeseed meal protein has good functional properties: the solubility can reach 55% when the DH is 25%; fat absorption and water absorption of the hydrolysate reach peak when the DH is 15% and 5%, respectively; the emulsifying activity and emulsifying stability could reach maximum when the DH was 10%; the foaming capacity of the hydrolysate is better than the rapeseed protein and the foaming capacity increase with the accelerate of the DH. And the study of antioxidative characteristic displayed that hydrolysate of different DH all had a certain extent antioxidative characteristic, which was determined by the molecular weight and the species of peptide in the hydrolysate.
     3 In this part experiment, the microwave assisted technology is used and the step enzymatic hydrolysis process of defatted rapeseed meal protein is studied. After the Alcalase hydrolysis, the Flavourzyme is used to hydrolyze the rapeseed meal protein continuously. The optimal dosage ratio of enzyme and rapeseed meal is 0.225 g/g, the ratio of the two enzyme is 2/1 (Alcalase 9 000 U/g, Flavourzyme 37.5 LAPU/g), the hydrolysis time is just 3 min for Alcalase and 13 min for Flavourzyme, and in this condition the DH is 53.67%. The verification test for the optimal condition show the DH and the nitrogen recovery ratio is 50.94% and 96%. And the molecular weight of mainly hydrolysate was 1000 Da.
引文
1.成跃祖. (主编). (1993).凝胶渗透色谱法的进展及其应用.北京:中国石化出版社.
    2.崔蕊静,杜茂宝,李汉臣,杜彬. (2007).微波辅助处理在豆奶酶解技术中的应用研究.中国粮油学报, 22(4),54-57
    3.邓勇,冯学武. (2001).大豆多肽分子质量分布于苦味的确定.中国农业大学学报, 6(4),98-102
    4.高丽莉. (2009).超滤在食品加工中的应用.农产品加工(创新版). 12,61-64
    5.郭璐璐. (2009).菜籽蛋白制备分离和性质研究及其酶解反应的初步分析.硕士学位论文.中国农业科学院.
    6.郭兴凤,周瑞宝,谷文英,汤坚. (2001).菜籽蛋白的酶水解-复合风味蛋白酶水解条件的研究.粮油食品科技, 9(2),32-34.
    7.姜绍通,罗蕾蕾,潘牧,聂胜德. (2009).菜籽粕分步酶解制备水解产物的研究.食品科学,30(10),52-55
    8.姜绍通,聂慎德,江敏,潘牧,罗蕾蕾. (2009).菜籽清蛋白双酶分步酶解的工艺研究.食品工业科技, 30(4),149-152
    9.姜绍通,潘牧,郑志,潘丽君,罗水忠,孙汉巨(2009).菜籽粕粗藏蛋白制备及功能性质研究.食品科学, 30(8),29-32
    10.蒋卉,蒲云峰,白红进. (2009).超声-微波协同提取刺山柑籽油的研究.食品研究与开发, 30(5),20-23
    11.金晶,徐志宏,魏振承,谢笔钧,刘军. (2010).双酶分步水解制备菜籽蛋白肽.食品与生物技术学报, 29(1),50-55
    12.李菊芳,董绪燕,魏芳,袁钢友,江木兰,黄凤洪,等. (2010).微波辅助分步酶解菜籽粕制备菜籽多肽的研究.中国油脂, 35(3),18-22
    13.李磊,陈均志,张海平. (2007).微波复合酶水解植物蛋白制取小分子多肽的研究.安徽农业科学, 35(19),5655-5656,5660
    14.李晓东,牛治霞,张柏林. (2006).乳清蛋白水解物水解度3种测定方法的比较.中国乳品工业, 34(10),59-62.
    15.李玉珍,林亲录,肖怀秋,赵谋明. (2005).大豆多肽特性及其应用研究.中国食品添加剂, 6,91-95
    16.刘海梅,熊善柏,谭汝成. (2008).脱脂菜籽粕中蛋白质的分步酶水解研究.中国油脂, 28(7),15-17
    17.刘静,陈均志. (2006).微波双酶协同水解大豆分离蛋白制备小分子肽的研究.食品研究与开发, 27(8),9-12
    18.刘志强,贺建华,曾云龙,金宏. (2004).酶及处理参数对水酶法提取菜籽油和蛋白质的影响.中国农业科学, 37(4),592-596
    19.刘志强,刘擘,曾云龙. (2004).水相酶解法提取菜籽油与菜籽蛋白研究-菜籽蛋白质酶水解的工艺过程及动力学.中国粮油学报, 19(4),58-61
    20.刘志强. (2003).水相酶解法提取饲用菜籽蛋白新技术.硕士学位论文.湖南农业大学.
    21.鲁伟,宋俊梅,任国铺. (2005).大豆分离蛋白水解用酶的筛选研究.食品工业科技, 26(1),55-57
    22.倪培德,江志炜. (2002).高油分油料水酶法预处理制油新技术.中国油脂, 27(6),5-8
    23.施文正,汪之和,徐红萍,林争艳. (2004).微波水解制备鱼蛋白的研究.氨基酸和生物资源, 26(2),26-28
    24.孙厚光. 3月后鄂企再登纳斯达克. 2007-11-07取自http:// finance. sina. com. cn/roll/20071107/07441775532. shtml
    25.万楚筠,黄凤洪,李文林. (2006).菜籽肽的制取及生物活性研究进展.中国油脂, 31(9),7-11
    26.王车礼,史美仁. (1997).菜籽粕脱毒提取菜籽蛋白研究进展Ⅱ.菜籽蛋白的制取.中国油脂, 22(4),53-56
    27.王车礼,史美仁. (1997).温度对菜籽蛋白质及植酸萃取率的影响.天然产物研究与开发, 9(3),74-76
    28.王汉中. (2007).我国油菜产需形势分析及产业发展对策.中国油料作物学报, 29(1),101-105
    29.王丽华,黄明发. (2008).大豆源生物活性肽研究进展.粮食与油脂, 1,42-45
    30.王璐,武占省,温树梅,立春. (2009).微波与超声波技术制备生物柴油的研究进展.油脂工程技术, 4,63-66
    31.王璋.许时婴.汤坚. (主编). (1999).食品化学.北京:中国轻工业出版社
    32.徐铮奎. (2006).多肽成为国际市场畅销保健食品新原料.中国制药信息, 22(3),39-40;
    33.严奉伟. (2004).菜籽饼粕综合提取工艺研究.农业工程学报, 20(2),209-212
    34.杨国燕,陈栋梁,刘莉,邬冠鹏,王阿敏. (2007).菜籽分离蛋白及菜籽蛋白肽的功能特性研究.食品科学, 28(1):76-78.
    35.于晓明,郭顺堂. (2007).挤压组织化对脱脂花生蛋白粉持水性和持油性的影响.食品工业科技, 28(1),87-89
    36.曾晓波. (2004).菜籽浓缩蛋白的制取及菜籽肽生物活性的研究.博士学位论文.华中农业大学
    37.张汆,许雪峰,李敏,孙艳辉,贾小丽. (2009).食用棉籽蛋白粉双液相萃取条件分析.粮油加工, 9,67-70
    38.张丽,徐忠. (2003).大豆蛋白酶解物的功能特性研究.食品与发酵工业, 29(9),27-30.
    39.张宇昊,王强,周素梅,马良. (2008).分步酶解制备花生短肽的研究.农业工程学报, 24(5):275-279
    40.赵新淮,冯志彪. (1994).蛋白质水解物水解度的测定.食品科学, 11,65-67
    41.赵玉红,孔保华,张立钢,赵以明. (2000).水解度对蛋白水解物的影响.肉类工业, 9,20-21
    42.中研普华公司.2009-2012年多肽行业竞争格局与投资战略研究咨询报告. 2009-08-10取自www. Chinaccm. Com/48/4803/480305/news/20090810/165834. asp
    43.周爱东,杨红晓,贺祝. (2008).菜籽饼脱毒及菜籽蛋白提取的研究进展.黑龙江农业科学, (1),97-99
    44.朱建华,杨晓泉,邹文中,周春霞. (2004).超声处理对大豆分离蛋白功能特性的影响.食品科学, 25(7), 56-58.
    45. Andrés Moure, J. Sineiro, Herminia Domínguez, Juan Carlos Parajó. (2006). Functionality of oilsees protein products: Areview. Food Research International, 39,945-963
    46. Anjum MF, Tasadduq I, Al-Sultan K. (1997). Response surface methodology: A neural network approach. Eur J Oper Res, 101,65-73
    47. Bas D, Boyac? IH. (2005). Modeling and optimization I: usability of reaponse surface methodology. J Food Eng, 78, 836-845
    48. Box GEP, Hunter JS. (1957). Multifactor experimental design for exploring response surface. Ann. Math. Stat, 28,195-241
    49. Chabanon G., Chevalot I, Framboisier X, Framboisier X, Marc I. (2007). Hydrolysis of rapeseed protein isoates: Kinetics, characterization and functional properties of hydrolysates. Process Biochem, 42,1419-1428
    50. Cumby N, Zhong Y, Shahidi F. (2007). Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chem, 109,144-148
    51. Dinakar Panyam, Arun Kilara. (1996). Enhancing the functionality of food proteins by enzymatic modification. Trends in Food Science & Technology. 7(4),120-125
    52. Engelhardt H, Kramer M, Waldhoff H. (1990). Enhancement of protein detection by microwave-induced hydrolysis and OPA derivatization. Chromatographia, 30, 523-526
    53. F.Javier Izquierdo,Inteaz Alli, Rosario Gómez,Hosahalli S. Ramaswamy, Varoujan Yaylayan. (2005). Effects of high pressure and microwave on pronase andα-chymotrypsin hydrolysis ofβ-lactoglobulin. Food chemistry, 92(4),713-719
    54. G. Chabanon, I.Chevalot, X. Framboisier, S.Chenu, I.Marc. (2007). Hydrolysis of rapeseed protein isoates: Kinetics, characterization and functional properties of hydrolysates. Process biochemistry, 42,1419-1428
    55. Hang Guo, Yoshiaki Kouzuma, Masami Yonekura. (2009). Structures and properties of antioxidative peptides derived from royal jelly protein. Food chemistry, 113,238-245
    56. Hartmann R, Meisel H. (2007) Food-derived peptides with biological activity: from research to food application. Curr Opin Biotech, 18,163-169
    57. Javier Vioque, Raul Sánchez-Vioque, Alfonso Clemente, Justo Pedroche, Juan Bautista, Francisco Millan. (1999). Production and characterization of an extensive rapeseed protein hydrolysate. Journal of the American oil chemists’society, 76(7), 819-823
    58. Jones, Linda Jean. (1983). Functional properties of modified oilseed protein concentrates and isolates. Canadian Institute of Food Science and Technology Journal, 16(1),57-62
    59. Ju-Fang Li, Fang Wei, Xu-Yan Dong, Lu-lu Guo, Guang-Ming Li, Hong Chen et al. (2010). Microwave-assisted Approach for the Rapid Enzymatic Digestion of Rapeseed Meal. Food Sci. Biotechnol, 19(2),463-469
    60. Juan HF, Chang SC, Huang HC, Chen ST. (2005). A new application of microwave technology to protemics. Proteomics, 5, 840-842
    61. Korhonen H, Pihlanto A. (2006). Bioactive peptides: production and functionality. Int Dairy J, 16,945-960
    62. Lorenzo Cerretani, Alessandra Bendini, Maria Teresa Rodriguez-Estrada, Elena Vittadini, Emma Chiavaro. (2009). Microwave heating of different commercial categories of olive oil: PartⅡ. Effect on thermal properties. Food chemistry, 115(4),1381-1388
    63. Marczak ED, Usui H, Fujita H, Yang Y, Yokoo M, Lipkowski AW, Yoshikawa M. (2003). New antihypertensive peptides isolated from rapeseed. Peptides, 24,791-798
    64. Maria del Mar Yust, Justo Pedroche, Cristina Megías, Julio Girón-Calle, Manuel Alaiz, Francisco, et al. (2004). Rapeseed protein hydrolysates: a source of HIV protease peptide inhibitors. Food chemistry, 87,387-392
    65. Martina Hrckova, Monika Rusnakova, Jaroslav Zemanovic. (2002). Enzymatic Hydrolysis of Defatted Soy Flour by Three Different Proteases and their Effect on the Functional Properties of Resulting Protein Hydrolysates. Czech Journal of Food Science, 20(1),7-14
    66. Naveeda Khatoon,Jamuna Prakash. (2006). Nutrient retention in microwave cooked germinated legumes. Food chemistry, 97(1),115-121
    67. Nichole Cumbuy, Ying Zhong, Marian Naczk, Fereidoon Shahidi. (2008). Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food chemistry, 109(1),144-148
    68. Niranjan Rajapakse, Eresha Mendis, Won-Kyo Jung, Jae-Young Je, Se-Kwon Kim. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int, 38(2),175-182.
    69. Pedroche J, Yust MM, Lqari H, Girón-Calle J, Alaiz M, Viooqe J, et al. (2004). Brassica carinata protein isolates: chemical composition, protein characterization and improvement of functional properties by protein hydrolysis. Food Chem, 88, 337-346
    70. Pramanik BN, Mirza UA. (2002). Microwave-enhanced reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Sci, 11,2676-2687
    71. Rosenthal A,Pyle D L, Niranjan K. (1998). Mechanisms in the simultaneous aqueous extraction of oil and protein from soybean. Transactions of The Institute of Chemical Engineers, Prat C. Food and Bioproducts,76,224-230
    72. Sadeghi AA, Shawrang P. (2007). Effects of microwave irradiation on ruminal protein degradation and intestinal digestibility of cottonseed meal. Livest Sci, 106,176-181
    73. Shao Bing Zhang,Zhang Wang,Shi Ying Xu. (2008). Antioxidant and antithrombotic activities of rapeseed peptides. J Am Oil Chem Soc, 5,521-527
    74. Shuang Lin, Dong Yun, Dawei Qi, Chunhui Deng, Yan Li, Xiangmin Zhang. (2008). Novel microwave-assisted digestion by trypsin-immobilized magnetic nanoparticles for proteomic analysis. Proteome, 7(3),1297-1307
    75. Shuang Lin, Guoping Yao, Dawei Qi, Yan Li, Chunhui Deng, Pengyuan Yang, et al. Fast and efficient proteolysis by microwave-assisted protein digestion using trypsin-immobilized magnetic silica microspheres. Analytical chemistry, 80(10),3655-3665
    76. Shuang Lin, Zhenxin Lin Chunhui Deng, Pengyuan Yang, Xiangmin Zhang. (2007). Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time–of-flight mass spectrometry analysis. Mass spectrometry, 21(23),3910-3918
    77. Sun W, Gao SJ, Wang LJ, Chen Y, Wu SZ, Wang XR, et al. Microwave-assisted protein preparation and enzymatic digestion in proteomic. Mol Cell Proteomics, 5,769-776
    78. Sushmita Behera, S. Nagarajan, L. Jagan Mohan Rao. (2004). Microwave heating and conventional roasting of cumin seeds (Cuminum cyminum L.) and effect on chemical composition of aolatiles. Food chemistry, 87(1),25-29
    79. Vesper H W. (2005). Assessment of microwave-assisted enzymatic digestion by measuring glycated hemoglobin Al by mass spectrometry. Mass sepctrom, 19,2865-2870
    80. Vioque J, Sánchez-Vioque R, Clemente A, Pedroche J, Millán F. (2000). Partially Hydrolyzed rapeseed protein isolates with improved functional properties. J Am Oil Chem Soc, 77,447-450
    81. Wanasundara PKJ, Ross ARS, Amarowicz R. (2002). Preparation and characterization of hydrolyzed proteins from defibrinated Bovine Plasma. J. Agric. Food Chem, 67,623-630
    82. Xi-qun Zheng, Li-te Li, Xiao-lan Liu, Xiao-jie Wang, Jie Lin, Di Li. (2006). Production of hydrolysate with antioxidative activity by enzymatic hydrolysis of extruded corn gluten. Applied Microbiology and Biotechnology, 73(4), 763-770.
    83. Xue ZH, Wu MC, Yin JZ. (2003). Technological optimizatation for hydrolysis of rapeseed albumin with alcalase. Transactions of Chinese Society of Agricultural Engineering, 19: 176-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700