食用植物油掺伪检测与定量分析的近红外光谱法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近红外光谱技术是近年来发展起来的一种快速、无损、方便的检测技术,其应用越来越广泛。化学计量学是一门新兴的交叉学科,在提取分析信息、光谱预处理以及模型的建立等方面具有自身的优势。近红外光谱技术与化学计量学的结合在定性判别和定量分析检测中都有很重要的应用,为食品安全检测提供了解决问题的新途径和新方法。本文共分为七章,主要研究了化学计量学结合近红外光谱技术用于食用植物油掺伪的定性鉴别和定量检测,以及食用植物油种类鉴别,酸价、过氧化值等指标的检测。
     1.综述了食用植物油种类判别、酸价、过氧化值以及食用植物油掺伪检测的国内外研究进展。概括介绍了近红外光谱技术原理以及近红外光谱技术在定性和定量检测中的研究现状。
     2.对大豆油、玉米油、花生油、芝麻油、山茶油等5种食用植物油种类鉴别的近红外光谱法进行了研究,分别采用马氏距离聚类分析方法和自组织竞争神经网络建立了判别模型,并探讨了光谱波长范围和光谱预处理方法对模型的影响,利用所建立的马氏距离聚类分析模型和自组织竞争网络模型对预测集25个样本进行预测,两个模型的预测准确率都达到100%。
     3.研究了偏最小二乘法(PLS)法和PLS-BP网络法结合近红外光谱技术用于同时检测食用植物油酸价和过氧化值,分别建立了酸价和过氧化值的定量分析模型。并分别采用所建立的酸价和过氧化值PLS模型和BP网络模型对预测集样本进行预测,结果表明,PLS所建模型对两组分预测集样品预测决定系数R2分别为0.9837和0.9752,预测均方根误差(RMSEP)为0.0752和0.00972,BP神经网络模型对预测集样品的R2分别为0.9695和0.9744,RMSEP分别为0.0595、0.00991。两种方法基本可以满足酸价和过氧化值同时测定的需要。
     4.研究了大豆油、玉米油、葵花籽油掺入到山茶油中的掺伪二元体系定性鉴别和定量测定。采用马氏距离聚类分析方法分别建立了山茶油掺伪与否的判别分析模型和三种掺伪山茶油分类的判别模型。两种掺伪判别模型的判别准确率都在99.1%以上,模型的预测效果满意。并建立了掺伪山茶油二元体系中大豆油、玉米油、葵花籽油含量的PLS模型,PLS模型的校正相关系数分别为0.99957、0.99962、0.99975;RMSEC分别为0.300、0.309和0.255。对预测集样本预测的RMSEP分别为0.467、0.272、0.410,同时预测集的真实值和预测值配对t-检验结果显示,差异均不显著,所得结果满意。
     5.配制掺有大豆油、菜籽油、棕榈油的掺伪花生油二元体系,采用PLS-BP网络法研究了花生油掺伪的定性鉴别和定量测定。采用BP网络建立了花生油掺伪鉴别模型,BP网络经744步左右达到训练目标,所建模型对校正集和预测集样本判别准确率分别为100%和96.0%。同时,采用BP网络建立起掺伪花生油中大豆油含量、菜籽油含量和棕榈油含量的定量校正模型,并对预测集样本进行结果预测,R2分别为0.9851、0.9901、0.9850,RMSEP分别为1.05、1.10、1.72。同时与PLS法和PCR法模型结果进行了比较,结果显示,PLS法预测结果稍好于BP网络模型,两种方法都可以满足掺伪花生油检测的需要。
     6.采用自组织特征映射(SOM)网络建立了掺有大豆油、菜籽油、花生油的掺伪芝麻油二元体系判别分析模型。采用PCA法对光谱数据进行压缩提取主成分,所建SOM网络训练500后判别准确率达到100%,利用SOM网络模型对预测集判别准确率为95.6%。此外,还采用PLS法对掺伪油含量进行定量分析并建立了定量校正模型。利用所建立的PLS模型对预测集样品的大豆油、菜籽油和花生油含量进行预测,预测结果的RMSEP分别为1.05、1.31和0.686,R2分别0.9951、0.9825和0.9944,预测结果满意。另外,本文还对芝麻油掺伪的三元体系(掺有大豆油和花生油)定量检测进行了探讨,建立了大豆油、花生油含量的PLS法模型,大豆油和花生油含量的PLS定量模型的校正相关系数分别为0.95714、0.97025,RMSEC分别为1.54和1.42。相关性还不够理想,定量分析的精确度尚须提高。
Near-infrared spectroscopy (NIRS) is a fast, non-destructive and convenient analytical technique which applied in more and more fields. Chemometrics is a rising Cross-disciplinary with many advantages in the aspects of extracting, analyzing information, spectra pretreatments and building the models. To afford new methods to solve the problem for food security and detection, near infrared spectroscopy combined with chemometrics are very important applications for the qualitative and quantitative analysis.. This paper is divided into seven chapters, with the major study on qualitative discriminate for adulteration of edible vegetable oil and categorys of edible vegetable oil, quantitative detection for adulteration of edible vegetable oil, acid value and peroxide value by chemometrics and near infrared spectroscopy technology.
     1. The research on category identification, acid value, peroxide value and adulteration detection of edible vegetable oil were summarized at home and abroad. The principles of near infrared spectroscopy were introduced. At the same time the research status of the qualitative and quantitative detection by using near infrared spectroscopy technology was concluded.
     2. The category identification of edible vegetable oil, included with soybean oil, corn oil, peanut oil, sesame oil and camellia oil was studied by using near infrared spectroscopy. The methods of mahalanobis distance and self-organizing competitive neural networks were used to classify those collected sampleswhich can build discriminative models. Simultaneously, the effects of the wavelength range and methods of spectra pretreatments on the models were explored. Both methods provided. To predict the validation set of 25 samples, the use of the established model of mahalanobis distance and self-organizing competitive neural networks showed very good discrimination between the oil classes with low classification error, the accuracy rate of which were reached to 100%.
     3. Quantitative determination of acid value and peroxide value were researched by the buildng of partial least squares (PLS) regression model and PLS-Back Propagation artificital neural network combined with near infrared spectroscopy,and the models were used to predict the validation set of 15 samples, respectively. The coefficient of determination of PLS model for acid value and peroxide value were 0.9837,0.9752, and the root mean square error of prediction (RMSEP) of 0.0752,0.00972, respectively. By using the models of BP network to predict the validation set of 15 samples the coefficient of determination R2 for acid value and peroxide value can reached to 0.9695,0.9744with the RMSEP of 0.595,0.00991 respectively. These two models can satisfy with the detected need of acid value and peroxide value, simultaneously.
     4. Qualitative and Quantitative determination of the adulterated binary system which was comprised of pure camellia oil samples mixed with various concentrations of soybean oil, corn oil and sunflower seed oil were researched by using near infrared spectroscopy. The discriminative model of between pure camellia oil and camellia oil adulterated, and model of amang three camellia oil samples adulterated were estabulished by mahalanobis distance cluster analysis. The accuracy rate useing the established models reached more than 99.1%. The quantitative determination models to detect concentrations of soybean oil, corn oil, and sunflower seed oil which adulterated into camellia oil binary system by partial least squares were established.The correlation coefficients of PLS were 0.99957,0.99962,0.99975, and RMSEC were 0.300,0.309,0.255. The RMSEP were 0.467,0.272, and 0.410, respectively. The true value and the predictive value of the validation set were compared by using paired t-test, the result showed that it was no significant difference and the research can obtained satisfactory results.
     5. The peanut oil adulterated binary system mixed with various concentrations of soybean oil, rapeseed oil and palm oil were prepared, and then the qualitative and quantitative determination of the system were studied by back propagation artificital neural network combined with near infrared spectroscopy. The BPnet could be divided into four classes processing 744 epochs. The accurate rate of the established BP neural network model to predict calibration set and validation set were reached to 100% and 96.0%, respectively. At the same time, by using BP-neural network, the quantitative determination models which were used to detect the concentrations of soybean oil, rapeseed oil, and palm oil in the peanut oil adulterated binary system were established, the predictive value of the validation set were obtain, also. The coefficients of determination were 0.9851,0.9901,0.9850, and the RMSEP were 1.05,1.10 and 1.72, respectively. Moreover, the results of the model were compared with the PLS and PCR, which show that PLS prediction model is better than the BP network, and both models can meet the needs of detecting the adulteration of peanut oil.
     6. The sesame oil samples adulterated binary system mixed with various concentrations of soybean oil, rapeseed oil and peanut oil were prepared. Qualitative determination of adulterate peanut oil was studied by Self-Organizing feature Map (SOM) neural network combined with near infrared spectroscopy. The spectrum datas were compressed by PCA to obtain scores of principal components. The optimal result was obtain when training epochs were reach to approximately 500 epochs with the accurate rate of 100%, and the accuracy rate of validation set 50 samples was reached to 95.6%. Subsequently, the quantitative determination models used to detect concentrations of soybean oil, rapeseed oil, and palm oil in peanut oil adulterated binary system were established by PLS. The RMSEP for validation set using PLS models were 1.05,1.31,0.686, and the R2 were 0.9951,0.9825,0.9944; separately. In this chapter, we also studied sesame oil samples adulterated ternary system mixed with varying concentrations of soybean oil and peanut oil, and the quantitative determination models were established to detect concentrations of soybean oil and peanut oil by partial least squares. The correlation coefficients of models were 0.95714 and 0.97025; The RMSEC were 1.54 and 1.42, respectively. The correlation is poor, which revealed that the method could not get an accurate.quantitation analyzed result.
引文
[1]王肇慈.粮油食品品质分析(第二版)[M].北京:中国轻工业出版社,2000,74.
    [2]Dupuy N, Duponchel L, Huvenne J P, et al. Classification of edible fats and oils by principal component analysis of fourier transform infrared spectra [J]. Food Chemistry,1996,57(2): 245~251.
    [3]Yolanda Gonzalez Martin, Jose Luis Perez Pavon, Bernardo Moreno Cordero, et al. Classification of vegetable oils by linear discriminant analysis of Electronic Nose data [J]. Analytica Chimica Acta,1999,384(1):83~94.
    [4]Ewa Sikorska, Tomasz G_orecki b,Igor V. Khmelinskii.etal. Classification of edible oils using synchronous scanning fluorescence spectroscopy [J].Food Chemistry,2005,89(2):217-225.
    [5]Poulli K I, Mousdis G A, Georgiou C A. Classification of edible and lampante virgin olive oil based on synchronous fluorescence and total luminescence spectroscopy [J].Analytica Chimica Acta,2005,542(2):151~156.
    [6]张国文,倪永年,涂北平.食用植物油的分类和质量鉴别的模式识别研究[J].食品科学,2005,26(1):71-75.
    [7]Gisele G. Bortoleto, Luiz Carlos M. Pataca, Maria Izabel M.S. Bueno. A new application of X-ray scattering using principal component analysis-classification of vegetable oils[J]. Analytica Chimica Acta,2005,539(1-2):283~287.
    [8]Francisco Fernandes Gambarra-Neto, Glimaldo Marino, Mario Cesar Ugulino Araujo, et al. Classification of edible vegetable oils using square wave voltammetry with multivariate data analysis[J].Talanta,2009,77(5):1660~1666.
    [9]孙丽琴,孙丽君,郑刚.不同的存放条件对油脂酸价和过氧化值的影响[J].粮油仓储科技通讯,2007,(2):45-46.
    [10]李书国,陈辉,李雪梅,等.食用油酸价分析检测技术研究进展[J].粮油食品科技,2008,16(3):31-33.
    [11]杨盛华,张伟忠,刘马英,等.碘量比色法测定食品油脂中过氧化值的研究[J].海峡预防医学杂志,2000,6(2):48.
    [12]高向阳,刘炎超,王慧荣,等.Luminol-I2化学发光体系测定食用油中过氧化值的研究[J].食品科学,2008,29(2):318-320.
    [13]江秀明,周长智,李建伟,等.可见分光光度法测定食用油过氧化值[J].郑州粮食学院学报,1999,20(2):55-57.
    [14]Barbara Muik, Bernhard Lendl, Antonio Molina-Diaz, et al. Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy [J]. Chemistry and Physics of Lipids,2005,134(2):173~182.
    [15]卜宏建,谭耀辉,呼雪丽.食用花生油掺杂的快速物理鉴别[J].食品科学,2000,21(1):55-56.
    [16]杜连起,张洪新,张琳,等.芝麻油掺假快速检测新方法的研究[J].河北农业技术师范学院学报,1995,9(4):17-20.
    [17]周祥德.掺伪芝麻油中芝麻油含量分析方法的比较[J].粮食与食品工业,2004,12(2):53-55.
    [18]朱杏冬,王凯雄,臧荣春,等.芝麻油掺伪检测的紫外分光光度法研究[J].中国油脂,2000,25(1):50-51.
    [19]王力清,刘瑞兴.芝麻油中掺棉籽油的分光光度法研究[J].食品机械,2003,(1):39-40.
    [20]斑晓伟,王绪勉,王瑞芬,等.花生油掺入棉籽油定性定量检测[J].山东食品科技,2000,(2):20-21.
    [21]海铮,王俊.基于电子鼻山茶油芝麻油掺假的检测研究[J].中国粮油学报,2006,21(3):192-196.
    [22]Ma Concepcin Cerrato Oliveros, Jos Luis Prez Pavn, Carmelo Carcl a Pinto, etal. Electronic nose base on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oil [J]. Analytica Chimica Acta,2002,459(2):219~228.
    [23]李卓新.气相色谱法测定花生油掺假的研究[J].粮食储藏,2001,30(3):41-43.
    [24]何小青,徐德英,罗美中,等.微波辅助衍生GC-MS测定脂肪酸及校正变换矩阵法用于食用油鉴别的研究[J].分析测试学报,2005,24(1):25-28.
    [25]林丽敏.气相色谱法测定芝麻油掺伪的研究[J].粮食储藏,2006,35(3):43-47.
    [26]郑志雯,杨培慧,张峥,等.食用植物油掺伪的高分辨气相色谱研究[J].广州食品工业科技,2002,19(1):74-76.
    [27]Kapoulas V M, Andrikopoulos N K. Detection of olive oil adulteration with linoleic acid-rich oils by reversed-phase high-performance liquid chromatography [J]. Chromatogr,1986, (366):311~320.
    [28]Gozde Gurdeniz, Banu Ozen. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data [J]. Food Chemistry,2009,116(2): 519~525.
    [29]Ruben M. Maggio, Lorenzo Cerretani, Emma Chiavaro, et al. A novel chemometric strategy for the estimation of extra virgin olive oil adulteration with edible oils [J]. Food Control, 2010,21(6):890~895.
    [30]Alexia A, Petrakis P V, Photis D. Detection of refined olive oil adulteration with refined hazelnut oil by employing NMR spectroscopy and multivariate statistical analysis [J]. Talanta,2010,80(5):2165~2171.
    [31]梁秀英.芝麻油掺入花生油、棉籽油的定性定量检测[J].医学动物防治,2004,20(9):528-529.
    [32]Hu L Z, Toyoda K, Ihara I. Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy [J]. Journal of Food Engineering,2010,96(2):167~171.
    [33]Gonzalvez A, Armenta S, Guardia M D. Adulteration detection of argan oil by inductively coupled plasma optical emission spectrometry [J].Food Chemistry,2010,121(3):878~886.
    [34]陆婉珍等编著.现代近红外光谱分析技术[M].北京:中国石化出版社,2001.
    [35]Stark E, Luchter K. Near-Infrared Analysis:A Technology for Quantitative and Qualitative Analysis [J]. Applied Spectroscopy Review,1986,22 (4):335~339.
    [36]McClure W F, Crowell B D, Stanfield L S, et al. Near infrared technology for precision environmental measurements:I. Determination of nitrogen in green and dry-grass tissue [J]. Near Infrared Spectroscopy,2002, (10):177~185.
    [37]褚小立,袁洪福,陆婉珍.近年来我国近红外光谱分析技术的研究与应用进展[J].分析仪器,2006,(2):1-10.
    [38]严衍禄.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005.
    [39]倪永年.化学计量学在分析化学中的应用[M].北京:科学出版社,2004.
    [40]荣菡,刘波平,邓泽元,等.基于PLS-模式识别近红外光谱技术快速检测鲜乳和掺假乳[J].食品科学,2008,29(8):492-495.
    [41]Massart D L, Kaufman L. The Interpretation of Analytical Chemical Data by Use of Cluster Analysis [J]. Wiley, New York,1983.
    [42]陈念贻,钦佩,陈瑞亮,等.模式识别方法在化学化工中的应用[M].北京:科学出版社,2000.
    [43]Feldhoff R, Huth-Fehre T, Kantimm T, et al. Near Infrared Spectroscopy:Field Test for Post Consumer Package Identification by NIR Spectroscopy Combined with Neural Networks, 7th Proc.Int.Conf.. Chichester, UK:NIR Publication,1997,389~392.
    [44]刘波平,荣菡,邓泽元,等.基于PLS-自组织竞争神经网络近红外光谱技术对鲜乳和掺假乳的检测方法研究[J].分析测试学报,2008,27(11):1147-1150.
    [45]Fan Q, Wang Y L, Sun P, et al. Discrimination of Ephedra plants with diffuse reflectance FT-NIRS and multivariate analysis[J]. Talanta,2010,80(3):1245~1250.
    [46]张国文,潘军辉,王福民.主成分回归用于分光光度法同时测定6种食品添加剂[J].分析实验室,2007,26(7):52-57.
    [47]Lovett D K, Deaville E R, Givens D I, et al. Near infrared reflectance spectroscopy (NIRS) to predict biological parameters of maize silage:effects of particle comminution, oven drying temperature and the presence of residual moisture[J]. Animal Feed Science and Technology, 2005, (120):323~332.
    [48]Cozzolino D, Kwiatkowski M J, Dambergs R G, et al.Analysis of elements in wine using near infrared spectroscopy and partial least squares regression[J]. Talanta,2007,138(2): 302~310.
    [49]王立琦.BP神经网络在大豆油酸价近红外光谱检测中的应用[J].食品科学,2009,30(4):243-246.
    [50]林新,牛智有.基于近红外光谱茶叶种类的快速识别[J].华中农业大学学报,2008,27(2):326-330.
    [51]Chen Y, Xie M Y, Yan Y, etal. Discrimination of Ganoderma lucidum according to geographical origin with near infrared diffuse reflectance spectroscopy and pattern recognition techniques[J]. Analytica Chimica Acta,2008,618(2):121~130.
    [52]何勇,冯水娟,李晓丽.应用近红外光谱快速鉴别酸奶品种的研究[J].光谱学与光谱 分析,2006,26(11):20-21.
    [53]刘飞,王莉,何勇,等.应用可见/近红外光谱进行黄酒品种的判别[J].光谱学与光谱分析,2008,28(3):586-589.
    [54]Shao Y N, He Y, Antihus H G, et al. Visible/near infrared spectrometric technique for nondest ructive as sessment of tomato'Heatwave'(Lycopersicum esculentum) quality characteristics [J]. Food Engineering,2007, (81):672~678.
    [55]刘福莉,陈华才,姜礼义,等.近红外透射光谱聚类分析快速鉴别食用油种类[J].中国计量学院学报,2008,19(3):278-282.
    [56]Nicoletta S, Lorenzo C, Valentina D E, et al. Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity[J]. Food Research International,2010,43(1):369~375.
    [57]Yang H, Irudayaraj J, Paradkar M M. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy [J]. Food Chemistry,2005,93(1):25~32.
    [58]Che Man Y B. Determination of Free Fatty Acids in Palm oil by Near-infrared Reflectance Spectroscopy [J]. J.AOCS,1998,75(5):557~562.
    [59]Ahmed A A, Frederick R, Voort V D. New FTIR Method for the Determination of FFA in Oils [J]. Journal of the American Oil Chemists'Society,2004,81(5):441~446.
    [60]Rao Y L, Xiang B X, Zhou X H, et al. Quantitative and qualitative determination of acid value of peanut oil using near-infrared spectrometry[J]. Journal of Food Engineering,2009, 93(2):249~252.
    [61]Li H. Determination of Peroxide Value by Fourier Transform Near-Infrared Spectroscopy[J]. JAOCS,2000,77(2):137~142.
    [62]崔晓君,袁昌明,徐立恒.花生油中过氧化物的近红外光谱分析[J].应用化学,2008,25(3):376-378.
    [63]鲍丹青,毕艳兰,邓德文,等.利用近红外光谱技术快速测定大豆油的过氧化值[J].第三届中国科协年会论文集(三),2008,1479-1484.
    [64]Armenta S, Garrigues S, Guardia M D. Determination of edible oil parameters by near infrared spectrometry [J]. Analytica Chimica Acta,2007, (596):330~337.
    [65]Flavia C C Oliveira, Christian R R Brandao, Ramalho H F, et al. Adulteration of diesel/biodiesel blends by vegetable oil as determined by Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy[J]. Analytica Chimica Acta,2007,587(2): 194~199.
    [66]翟海滨,杨海雷,程翼宇.近红外漫反射光谱技术快速无损鉴别阿胶真伪[J].光谱学与光谱分析,2006,26(1):60-62.
    [67]荣菡,刘波平,邓泽元,等.基于PLS-模式识别近红外光谱技术快速检测鲜乳和掺假乳[J].食品科学,2008,29(8):492-495.
    [68]陈兰珍,赵静,叶志华,等.蜂蜜真伪的近红外光谱鉴别研究[J].光谱学与光谱分析,2008,28(11):2565-2568.
    [69]丁念亚,黎薇.近红外漫反射光谱在中药分类及真伪鉴别中的应用[J].计算机与应用, 2008,25(4):499-503.
    [70]Wang L, Frank S C Lee, Wang X R, et al. Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oil by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR [J]. Food Chemistry,2006, (95):529~536.
    [71]刘福莉,王志岚,郑驰原,等.食用调和油中花生油含量的近红外光谱分析[J].激光生物学报,2007,16(6):759-762.
    [72]翁欣欣,陆峰,王传现,等.近红外光谱-BP神经网络-PLS法用于橄榄油缠在分析[J].光谱学与光谱分析,2009,29(12):3283-3287.
    [73]Yang H, Irudayaraj J. Comparison of near-infrared, Fourier transform infrared, and Fourier transform-Raman methods for determining olive pomace oil adulteration in extra virgin olive oil [J]. Journal of the American Oil Chemists'Society,2001, (78):889~895.
    [74]Christy A A, Kasemsumran S, Du Y, et al. The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics [J]. Analytical Sciences,2004, (20):935~940.
    [75]Ozdemir D, Oztiirk B. Near infrared spectroscopic determination of olive oil adulteration with sunflower and corn oil [J]. Journal of Food and Drug Analysis,2007,15(1):40~47.
    [76]Heussen P CM, Janssen H G, Samwel I B M, et al. The use of multivariate modelling of near infra-red spectra to predict the butter fat content of spreads [J]. Analytica Chimica Acta,2007, (595):176~181.
    [77]魏明,廖成华.食用植物油掺伪的气相色谱检测方法研究[J].西南科技大学学报,2003,18(3):57-60.
    [78]周峰,李杏梅,刘福江,等.基于主成分分析的自组织竞争神经网络在多光谱遥感影像分类中的应用[J].光学与光电技术,2007,5(3):43-46.
    [79]贾天下,叶昕,田庆久.基于自组织竞争神经网络的遥感图像分类研究[J].第十五届全国遥感技术学术交流会论文摘要集,贵阳,2005.
    [80]徐爱萍,徐武平.基于自组织竞争神经网络技术的模糊聚类研究[J].计算机工程与科学,2006,28(11):119-122.
    [81]杨建刚.人工神经网络实用教程[M].杭州:浙江大学出版社,2001.
    [82]Murray I. The NIR spectra of homologous series of organic compounds[C]. Proceedings of the international NIR/NIT conference. Budapest, Hungary:Akademiai Kiado.1996,13~28.
    [83]赵琛,翟海斌,程翼宇.虫草氨基酸的人工神经网络-近红外光谱快速测定方法[J].光谱学与光谱分析,2004,24(1):50-53.
    [84]Ren G X., Chen F. Simultaneous quantification of ginsenosides in american ginseng (panax quinquefolium) root powder by visible/near-infrared reflectance spectroscopy [J]. Journal of Agricultural and Food Chemistry,1999, (47):2771~2775.
    [85]罗香,刘波平,张小林,等.偏最小二乘近红外光谱法测定瘦肉脂肪酸组成的研究[J].分析实验室,2007,26(10):25-29.
    [86]段焰青,王家俊,杨涛,等.FT-NIR光谱法定量分析烟草薄片中5种化学成分[J].激光与红外,2007,37(10):1058-1061.
    [87]包春芳,刘彤,王彬,等.近红外光谱-偏最小二乘法非破坏分析酱油的主要成分[J].吉林大学学报(理学版),2009,47(2):362-366.
    [88]刘波平,秦华俊,罗香,等.偏最小二乘-反向传播-近红外光谱法同时测定饲料中4种氨基酸[J].分析化学,2007,35(4):525-528.
    [89]刘波平,秦华俊,罗香,等.PLS-BP法近红外光谱同时检测饲料组分的研究[J].光谱学与光谱分析,2007,27(10):2005-2009.
    [90]彭帮柱,龙明华,岳田利,等.傅立叶变换近红外光谱法检测白酒总酸和总酯[J].农业工程学报,2006,22(12):216-219.
    [91]Voort F R vandc, Memon K P. Journal of the American oil chemists society,1996,73 (4): 411~416.
    [92]王士杰.工程勘察测试数据的预处理[J].工程勘察,1999,(1):13-16.
    [93]潘传娇,马玉晓.GPS网络部尺度准则观测数据的误差剔除[J].山东科技大学学报(自然科学版),2004,23(4):19-21.
    [94]廖书娟,吉当玲,童华荣.茶油脂肪酸组成及营养保健功能[J].粮食油脂,2005,(6):7-9.
    [95]叶新民,方德国,鲍智鸿.茶油体外抗氧化作用的研究[J].安徽农业科技,2001,29(6):791-792.
    [96]邓小莲,谢光盛,黄树根.保健茶油的研制及其调节血脂的作用[J].中国油脂,2002,27(5):96-98.
    [97]Matton F H. ComParison oil effects of dietary SFA, MUFA, PUFA on plasma lipids in man [J]. J. Lipid Res.,1985, (26):194.
    [98]Barradas M A. The effect of oil supplementation on human platelet function, serum cholesterol related variablesand plasma fibrinogen concentrations [J]. Nutrution Research, 1990, (10):403.
    [99]冯翔,周韫珍.茶油、玉米油和鱼油对小鼠免疫功能的影响[J].营养学报,1996,18(4):412-417.
    [100]Muik B, Lendl B, Molina D A. Determination of oil and water content in olive pomace using near infrared and Raman spectrometry[J]. Analytical and Bioanalytical Chemistry, 2004, (379):35~41.
    [101]王遵义,邵咏妮.基于小波变换和神经网络的可见-近红外光谱对烟草品种的鉴别[J].浙江大学学报(农业与生命科学版),2009,35(6):655-658.
    [102]李亮,王雷鸣,丁武.近红外光谱技术结合人工神经网络鉴别生鲜奶和蛋白掺假奶[J].食品工业,2009,(6):67-69.
    [103]王莉,刘飞,何勇.应用可见-近红外光谱技术进行白醋品牌和pH值的快速检测[J].光谱学与光谱分析,2008,28(4):813-816.
    [104]林萍,陈永明,何勇.基于可见近红外光谱的糖类别快速鉴别研究[J].光谱学与光谱分析,2009,29(2):382-385.
    [105]Liu F, He Y. Classification of brands of instant noodles using Vis/NIR spectroscopy and chemometrics [J]. Food Research International,2008, (41):562~567.
    [106]He Y, Li X L, Deng X F. Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model [J]. Journal of Food Engineering,2007, (79):1238~1242.
    [107]刘波平,荣菡,罗香,邓泽元.PLS-BP法近红外光谱技术同时测定鲜乳中四种主成分的含量[J].分析试验室,2009,28(6):66-69.
    [108]刘波平,秦华俊,罗香,曹树稳,王俊德.基于偏最小二乘与广义回归神经网络的近红外光谱测定土豆中三种营养成分的研究[J].分析试验室,2007,26(9):38-41.
    [109]Marengo E, Bobba M, Robotti E, et al. Hydroxyl and acid number prediction in polyester resins by near infrared spectroscopy and artificial neural networks [J]. Analytica Chimica Acta.2004,511(2):313~322.
    [110]李伟,张书慧,张倩,等.近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量[J].农业工程学报,2007,23(1):55-59.
    [111]李萍萍,魏芳,董绪燕,等.基于主成分分析法的芝麻油香气质量评价模型的构建[J].中国油脂,2009,34(10):75-79.
    [112]Kapoulas V M, Andrikopoulos N K. Detection of olive oil adulteration with Iinoleic acid-rich oils by reversed-phase high-performance liquid chromatography [J]. Chromatogr, 1986, (366):311~320.
    [113]黎海红,李雪琴,苗笑亮.掺伪芝麻油检测的主成分分析方法研究[J].食品工业科技,2008,29(6):297-300.
    [114]Kohonen T. Self-organizing maps (3rd ed.). Berlin:Springer-Verlag,2001.
    [115]Mangiameli P, Chen S K, West D. A comparison of SOM neural network and hierarchical clustering methods [J]. European Journal of Operational Research,1996,93(2):402~417.
    [116]Lu H Q, Wu Y Z, Chen S C. A new method based on SOM network to generate coarse meshes for overlapping unstructured multigrid algorithm [J]. Applied Mathematics and Computation,2003,140(2-3):357~360.
    [117]刘飞,刘志斌.自组织特征映射网络在水质分类中的应用[J].露天采矿技术,2007,(5):70-72.
    [118]Mu T T, Nandi A K. Breast cancer detection from FNA using SVM with different parameter tuning systems and SOM-RBF classifier[J]. Journal of the Franklin Institute,2007, 344(3-4):285~311.
    [119]Rantanen J T, Laine S J, Antikainen O K, et al. Visualition of fluid-bed granulation with self-organizing map[J]. Journal of Pharmaceutical and Biomedical Analysis,2001,24(3): 343~352.
    [120]曹志胜.自组织特征映射网络在客户分类中的应用研究[D].东北师范大学,2008.
    [121]卢军,王贤峰,赵立飞.自组织特征映射网络在储粮害虫分类中的应用[J].农机化研究,2009,(4):184-186.
    [122]李迪敏,何立居,陈文伟.自组织特征映射网络在船舶雷达目标识别中的应用[J].中国水运,2006,11(6):44-46.
    [123]曲建岭,王磊,杨建华,等.基于自组织特征映射网络的气体识别方法研究[J].测 控技术,2000,19(3):6-8.
    [124]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业大学出版社,2005.
    [125]Cottrell M, Fort J C, Pages G. Theoretical aspects of the SOM algorithm [J]. Neurocomput-ing,1998,21(1-3):119~138.
    [126]Yao X, Senior Member IEEE, Liu Y. A new evolutionary system for evolving artificial neural networks. IEEE TRANSACTION ONNEUAL NETWORKS,1997,8 (3).
    [127]Baker D J, Ephremides A. The architectural organization of a mobile radio network via a distributed algorithm.IEEE I COM 29,1981, (11).
    [128]Shacham N, Westcott J. Future directions in packet radio architectures and protocols. Proc IEEE,1987,75(1).
    [129]Xu L, Zhou Y P, Tang L J, et al. Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration [J]. Analytica Chimica Acta,2008,616(2):138~143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700