骨肉瘤细胞MG63中内源性microRNA-27a对骨肉瘤恶性行为的影响及其调控靶基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     骨肉瘤是高度恶性骨肿瘤,多见于儿童和青少年,临床治疗非常困难。尽管新辅助化疗明显提高了生存率,但近30年骨肉瘤的生存率没有得到进一步的提高,5年生存率和总的生存率一直徘徊在50-60%,单纯截肢患者常于一年内死于肺转移。已经有大量的学者对骨肉瘤发生、发展的分子机制进行了深入研究,这有助于更早、更准确的诊断,以及开发新的治疗方案。尽管对骨肉瘤的分子机制的理解正在逐渐加深,但其复杂的分子机制仍然没有得到很好的了解。
     microRNA (miRNA,小RNA)是内源性,非编码,单链RNA,长度为19-25个核苷酸,通过促进靶mRNA降解或抑制靶mRNA水平的蛋白质翻译而在转录后水平负调控基因的表达,具有广泛的生物学效应。越来越多的资料显示miRNA参与肿瘤的发生发展,其表达谱可用于肿瘤的早期诊断,肿瘤分型并可判断肿瘤的预后以及对特定治疗方案的敏感性,甚至可以作为有效的治疗靶点。而且已经有研究发现骨肉瘤中miRNA表达谱的改变。但这些改变的miRNA表达谱对骨肉瘤的影响和意义及其内在的调控靶基因尚未进行深入的研究。因此很有必要对骨肉瘤细胞中的miRNA进行更进一步的研究。
     已经发现多种肿瘤中miR-27a表达升高,具有促进肿瘤的作用,而且骨肉瘤中miR-27a的表达也是升高的,但其作用机制仍不明确,本研究拟通过体外试验来明确miR-27a在骨肉瘤细胞中的作用并探讨其作用机制。
     研究目的
     1.探讨MAP2K4与miR-27a之间的靶向关系。
     2.构建miR-27a特异性抑制剂转染骨肉瘤细胞株MG63细胞,明确miR-27a对骨肉瘤细胞恶性生物学行为的影响。
     3.通过Western blotting检测JNK/p38信号通路上关键蛋白的表达水平的改变,探讨miR-27a在骨肉瘤发生发展上的分子机制。
     研究方法
     通过生物软件预测miR-27a的靶基因,构建靶基因报告载体,转染骨肉瘤细胞后进一步验证miR-27a对靶基因MAP2K4的调节作用。
     体外培养骨肉瘤细胞株MG63,处理组和阴性对照组分别转染miR-27a特异性抑制剂及阴性对照抑制剂,通过MTT法、集落形成试验、小室迁移试验等检测其对骨肉瘤细胞增殖、迁移和侵袭等细胞行为的影响来明确miR-27a在骨肉瘤细胞中的作用。并通过Western blotting检测JNK/p38信号通路上关键蛋白的表达水平的改变。
     研究结果
     1. MAP2K4是miR-27a的一个靶基因
     用三大常用的miRNA数据库TargetScan、miRBase和Pictar来预测miR-27a的目标基因。结果检测到MAP2K4mRNA的3'UTR有两个可能的结合部位。将MAP2K4的3’UTR序列克隆到pGL3载体,位于萤光素酶报告基因的下游。同时构建了预测结合部位突变的阴性对照。野生型pGL3-MAP2K43'UTR载体的萤光素酶活性明显降低,而突变型的萤光素酶活性则无明显降低。同时转染miR-27a抑制剂或阴性对照+野生型pGL3-MAP2K43'UTR载体到MG63细胞抑制miR-27a增加萤光素酶活性。
     2.抑制miR-27a后可以抑制MG63的增殖
     MTT检测发现转染72小时后,miR-27a抑制剂较阴性对照组可以显著抑制MG63细胞的增殖。MG63细胞所形成的集落较阴性对照组少了39.6%。
     3.抑制miR-27a后可以抑制MG63细胞的迁移和侵袭能力
     小室迁移和侵袭实验显示转染了miR-27a抑制剂后MG63的转移和侵袭能力分别减少了63.5%和69.1%。
     4.抑制MG63中miR-27a后能增加激活.JNK/p38信号通路
     将miR-27a抑制剂或阴性对照转染MG63细胞,结果显示转染miR-27a抑制剂的MG63细胞中MAP2K4蛋白表达水平提高的同时,JNK1和p38的磷酸化水平也分别上升了25%和29%。
     结论
     本研究发现MAP2K4是miR-27a的功能靶基因,抑制骨肉瘤细胞中的miR-27a可以提高MAP2K4的蛋白表达水平,通过激活JNK/p38信号通路抑制骨肉瘤细胞MG63的增殖、迁移和侵袭性能力。
Osteosarcoma is a high-grade malignant bone neoplasm that occurs primarily in children and adolescents. The clinical treatment for osteosarcoma is very difficult. Despite incorporation of chemotherapy into initial treatment, which significantly increases the cure rate, the5-year event-free survival and overall survival rates are around50-60%, and patients treated with amputation alone often died of pulmonary metastasis within one year. Molecular pathways contributing to osteosarcoma development and progression have recently been discovered, and various studies have been carried out to investigate the genes that are involved in metastasis of osteosarcoma. However, the highly complex molecular mechanism of metastasis is still poorly understood. Recently, microRNAs have become a new research "hot topic" for molecular pathways. MicroRNAs (miRNAs) are endogenous, noncoding, single-stranded RNAs of19-25nucleotides in length, which can regulate gene expression at the post-transcriptional level by inhibiting the translation of a protein at the mRNA level or by promoting mRNA degradation. However, their biological function remains largely unknown and only a few mRNAs that are directly regulated by miRNAs in animals have been verified empirically. Comparison between human cancer and their normal tissue counterparts have revealed distinct miRNAs expression profiles. In addition, miRNAs may function as either oncogenes or tumor suppressors by specifically regulating the expression of their target genes. miR-27a, a member of an evolutionarily conserved miRNA family, is abnormally increased in several types of cancers and has been identified as being increased in osteosarcoma and has a pro-metastatic role in osteosarcoma cell lines. However, the effects of miR-27a on osteosarcoma have not been totally elucidated. Therefore, it is of great significance to further study the mechanism of miR-27a in osteosarcoma.
     Methods:In this study, Three Biological softwares were conducted to predict miR-27a target in MAP2K4. a specific miR-27a inhibitor was used to inhibit endogenous miR-27a activity in human osteosarcoma cell line MG63. Cell proliferation assay, colony formation assay, migration and invasion assay were performed to assess the effect of miR-27a on proliferation, metastasis and invasion of MG63. The expression levels of several proteins evolved in the JNK/p38signaling passage was detected by Western blotting.
     Results:The luciferase activity of the wild-type pGL3-MAP2K43'UTR vector was significantly inhibited after the transfection of miR-27a precursor or the control precursor into MG63cells, but not by the mutant-type pGL3-MAP2K43'UTR vector. Meanwhile, inhibition of miR-27a increased the luciferase activity after the transfection of miR-27a inhibitor or the control inhibitor into MG63cells with the wild-type pGL3-MAP2K43'UTR vector. These results demonstrated that MAP2K4is a potential target of miR-27a and can be directly regulated by miR-27a. Inhibition of miR-27a significantly suppressed cell proliferation after72hours compared with the negative control group, and statistical analysis indicated that inhibition of miR-27a suppressed the colony formation of MG63cells by39.6%. Transwell migration and invasion assays demonstrated that the number of migratory and invasive cells transfected with the miR-27a inhibitor was reduced by63.5%and69.1%, respectively. After transfection with miR-27a inhibitor in MG63cells, the level of phosphor-JNK1and phosphor-p38raised (by25%and29%, respectively) along with the up-regulation of MAP2K4protein.
     In summary, this is the first study to propose that miR-27a functions as an oncogene by targeting MAP2K4in osteosarcoma MG63cell lines. Inhibition of miR-27a increases MAP2K4, which in turn inhibits cell proliferation and migration through the JNK/p38signaling pathway in MG63cells. These findings may help us to understand the molecular mechanism of miR-27a in tumorigenesis of osteosarcoma and provide new diagnostic and therapeutic options for treatment of this neoplasia.
引文
[1]GEREIGE R, KUMAR M. Bone lesions:benign and malignant [J]. Pediatr Rev, 31(9):355-62; quiz 63.
    [2]BACCI G, LONGHI A, VERSARI M, et al. Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy:15-year experience in 789 patients treated at a single institution [J]. Cancer,2006,106(5):1154-61.
    [3]LIU J, GUO W, YANG R L, et al. [Prognostic factors for 72 patients with osteosarcoma of the extremity treated with neoadjuvant chemotherapy] [J]. Zhonghua Wai Ke Za Zhi,2008,46(15):1166-70.
    [4]YAN K, GAO J, YANG T, et al. MicroRNA-34a inhibits the proliferation and metastasis of osteosarcoma cells both in vitro and in vivo [J]. PLoS One,7(3): e33778.
    [5]ZHANG G, LI M, JIN J, et al. Knockdown of S100A4 decreases tumorigenesis and metastasis in osteosarcoma cells by repression of matrix metalloproteinase-9 [J]. Asian Pac J Cancer Prev,12(8):2075-80.
    [6]LI Y, KONG D, WANG Z, et al. Regulation of microRNAs by natural agents:an emerging field in chemoprevention and chemotherapy research [J]. Pharm Res, 27(6):1027-41.
    [7]CHIANG H R, SCHOENFELD L W, RUBY J G, et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes [J]. Genes Dev, 24(10):992-1009.
    [8]ZIYAN W, SHUHUA Y, XIUFANG W, et al. MicroRNA-21 is involved in osteosarcoma cell invasion and migration [J]. Med Oncol,28(4):1469-74.
    [9]KOBAYASHI E, HORNICEK F J, DUAN Z. MicroRNA Involvement in Osteosarcoma [J]. Sarcoma,2012(359739.
    [10]LULLA R R, COSTA F F, BISCHOF J M, et al. Identification of Differentially Expressed MicroRNAs in Osteosarcoma [J]. Sarcoma,2011(732690.
    [11]OSAKI M, TAKESHITA F, SUGIMOTO Y, et al. MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression [J]. Mol Ther,19(6):1123-30.
    [12]MERTENS-TALCOTT S U, CHINTHARLAPALLI S, LI X, et al. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells [J]. Cancer Res,2007,67(22):11001-11.
    [13]GUTTILLA I K, WHITE B A. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells [J]. J Biol Chem,2009,284(35): 23204-16.
    [14]LIU T, TANG H, LANG Y, et al. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin [J]. Cancer Lett,2009,273(2): 233-42.
    [15]CHINTHARLAPALLI S, PAPINENI S, ABDELRAHIM M, et al. Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18beta-olean-1,12-dien-30-oate in colon cancer cells [J]. Int J Cancer,2009,125(8):1965-74.
    [16]JONES K B, SALAH Z, DEL MARE S, et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma [J]. Cancer Res,72(7):1865-77.
    [17]SPRUCE T, PERNAUTE B, DI-GREGORIO A, et al. An early developmental role for miRNAs in the maintenance of extraembryonic stem cells in the mouse embryo [J]. Dev Cell,2010,19(2):207-19.
    [18]TORLEY K J, DA SILVEIRA J C, SMITH P, et al. Expression of miRNAs in ovine fetal gonads:potential role in gonadal differentiation [J]. Reprod Biol Endocrinol,2011,9(2.
    [19]BARTEL D P. MicroRNAs:target recognition and regulatory functions [J]. Cell, 2009,136(2):215-33.
    [20]CROSBY M E, KULSHRESHTHA R, IVAN M, et al. MicroRNA regulation of DNA repair gene expression in hypoxic stress [J]. Cancer Res,2009,69(3): 1221-9.
    [21]JONES K B, SALAH Z, DEL MARE S, et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma [J]. Cancer Res,2012,72(7): 1865-77.
    [22]MAIRE G, MARTIN J W, YOSHIMOTO M, et al. Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma [J]. Cancer Genet,2011,204(3):138-46.
    [23]MIN S, LI L, ZHANG M, et al. TGF-beta-associated miR-27a inhibits dendritic cell-mediated differentiation of Th1 and Th17 cells by TAB3, p38 MAPK, MAP2K4 and MAP2K7 [J]. Genes Immun,2012,13(8):621-31.
    [24]CHEN K C, CHANG L S. Notexin upregulates Fas and FasL protein expression of human neuroblastoma SK-N-SH cells through p38 MAPK/ATF-2 and JNK/c-Jun pathways [J]. Toxicon,2010,55(4):754-61.
    [25]DUAN W J, LI Q S, XIA M Y, et al. Silibinin activated p53 and induced autophagic death in human fibrosarcoma HT1080 cells via reactive oxygen species-p38 and c-Jun N-terminal kinase pathways [J]. Biol Pharm Bull,2011, 34(1):47-53.
    [26]OTERO M, PLUMB D A, TSUCHIMOCHI K, et al. E74-like factor 3 (ELF3) impacts on matrix metalloproteinase 13 (MMP13) transcriptional control in articular chondrocytes under proinflammatory stress [J]. J Biol Chem,2012, 287(5):3559-72.
    [27]DAVIS S J, CHOONG D Y, RAMAKRISHNA M, et al. Analysis of the mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer [J]. BMC Cancer,2011,11(173.
    [28]HUANG L, WU C, YU D, et al. Identification of common variants in BRCA2 and MAP2K4 for susceptibility to sporadic pancreatic cancer [J]. Carcinogenesis, 2013,
    [29]BEROUKHIM R, MERMEL C H, PORTER D, et al. The landscape of somatic copy-number alteration across human cancers [J]. Nature,2010,463(7283): 899-905.
    [30]TENG D H, PERRY W L,3RD, HOGAN J K, et al. Human mitogen-activated protein kinase kinase 4 as a candidate tumor suppressor [J]. Cancer Res,1997, 57(19):4177-82.
    [31]LEARY R J, LIN J C, CUMMINS J, et al. Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers [J]. Proc Natl Acad Sci U S A,2008,105(42):16224-9.
    [32]SJOBLOM T, JONES S, WOOD L D, et al. The consensus coding sequences of human breast and colorectal cancers [J]. Science,2006,314(5797):268-74.
    [33]YOSHIDA B A, DUBAUSKAS Z, CHEKMAREVA M A, et al. Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17 [J]. Cancer Res,1999,59(21):5483-7.
    [34]XIN W, YUN K J, RICCI F, et al. MAP2K4/MKK4 expression in pancreatic cancer:genetic validation of immunohistochemistry and relationship to disease course [J]. Clin Cancer Res,2004,10(24):8516-20.
    [35]OTTAVIANI G, JAFFE N. The epidemiology of osteosarcoma [J]. Cancer Treat Res,2009,152(3-13.
    [36]BRICCOLI A, ROCCA M, SALONE M, et al. High grade osteosarcoma of the extremities metastatic to the lung:long-term results in 323 patients treated combining surgery and chemotherapy,1985-2005 [J]. Surg Oncol,2010,19(4): 193-9.
    [37]ZHONG X, COUKOS G, ZHANG L. miRNAs in human cancer [J]. Methods Mol Biol,2012,822(295-306.
    [38]WANG X, TANG S, LE S Y, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth [J]. PLoS One,2008,3(7):e2557.
    [39]DENG S, CALIN G A, CROCE C M, et al. Mechanisms of microRNA deregulation in human cancer [J]. Cell Cycle,2008,7(17):2643-6.
    [40]NIKIFOROVA M N, TSENG G C, STEWARD D, et al. MicroRNA expression profiling of thyroid tumors:biological significance and diagnostic utility [J]. J Clin Endocrinol Metab,2008,93(5):1600-8.
    [41]CHO W C. OncomiRs:the discovery and progress of microRNAs in cancers [J]. Mol Cancer,2007,6(60.
    [42]LI Z, HU S, WANG J, et al. MiR-27a modulates MDRl/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells [J]. Gynecol Oncol,2010,119(1):125-30.
    [43]SUN Q, GU H, ZENG Y, et al. Hsa-mir-27a genetic variant contributes to gastric cancer susceptibility through affecting miR-27a and target gene expression [J]. Cancer Sci,2010,101(10):2241-7.
    [44]RABINOWITS G, GERCEL-TAYLOR C, DAY J M, et al. Exosomal microRNA: a diagnostic marker for lung cancer [J]. Clin Lung Cancer,2009,10(1):42-6.
    [45]RODRIGUEZ M C, PETERSEN M, MUNDY J. Mitogen-activated protein kinase signaling in plants [J]. Annu Rev Plant Biol,61(621-49.
    [46]WHITMARSH A J, DAVIS R J. Role of mitogen-activated protein kinase kinase 4 in cancer [J]. Oncogene,2007,26(22):3172-84.
    [47]HICKSON J A, HUO D, VANDER GRIEND D J, et al. The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma [J]. Cancer Res,2006,66(4):2264-70.
    [48]KENNEDY N J, SLUSS H K, JONES S N, et al. Suppression of Ras-stimulated transformation by the JNK signal transduction pathway [J]. Genes Dev,2003, 17(5):629-37.
    [49]KHATLANI T S, WISLEZ M, SUN M, et al. c-Jun N-terminal kinase is activated in non-small-cell lung cancer and promotes neoplastic transformation in human bronchial epithelial cells [J]. Oncogene,2007,26(18):2658-66.
    [50]LOTAN T, HICKSON J, SOURIS J, et al. c-Jun NH2-terminal kinase activating kinase 1/mitogen-activated protein kinase kinase 4-mediated inhibition of SKOV3ip.1 ovarian cancer metastasis involves growth arrest and p21 up-regulation [J]. Cancer Res,2008,68(7):2166-75.
    [51]WANG L, PAN Y, DAI J L. Evidence of MKK4 pro-oncogenic activity in breast and pancreatic tumors [J]. Oncogene,2004,23(35):5978-85.
    [52]DAVIS S J, CHOONG D Y, RAMAKRISHNA M, et al. Analysis of the mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer [J]. BMC Cancer,11(173.
    [53]CUNNINGHAM S C, GALLMEIER E, HUCL T, et al. Theoretical proposal: allele dosage of MAP2K4/MKK4 could rationalize frequent 17p loss in diverse human cancers [J]. Cell Cycle,2006,5(10):1090-3.
    [54]LAI L, SONG Y, LIU Y, et al. MicroRNA-92a negatively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase [J]. J Biol Chem,2013,288(11):7956-67.
    [55]MA Y, ZHANG P, WANG F, et al. Elevated oncofoetal miR-17-5p expression regulates colorectal cancer progression by repressing its target gene P130 [J]. Nat Commun,2012,3(1291.
    [1]Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. RNA.2003.9(2):175-9.
    [2]Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science (80-).2001.294(5543):853-8.
    [3]Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature.2007.448(7149):83-6.
    [4]Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J.2007.26(3): 775-83.
    [5]Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO J.2004.23(20):4051-60.
    [6]Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA.2004. 10(12):1957-66.
    [7]Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature.2003.425(6956):415-9.
    [8]Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature.2004.432(7014):235-40.
    [9]Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science (80-).2004.303(5654):95-8.
    [10]Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.2003.17(24):3011-6.
    [11]Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science (80-).2001.293(5531):834-8.
    [12]Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell.2004.16(6):861-5.
    [13]Bhayani MK, Calin GA, Lai SY. Functional relevance of miRNA sequences in human disease. Mutat Res.2012.731(1-2):14-9.
    [14]Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science (80-).2007.318(5858): 1931-4.
    [15]Kim VN. MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Biol.2005.6(5):376-85.
    [16]Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. Mammalian mirtron genes. Mol Cell.2007.28(2):328-36.
    [17]Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell.2007.130(1): 89-100.
    [18]Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell.2008.30(4):460-71.
    [19]Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR. Proc Natl Acad Sci U S A.2007.104(23):9667-72.
    [20]Moretti F, Thermann R, Hentze MW. Mechanism of translational regulation by miR-2 from sites in the 5'untranslated region or the open reading frame. RNA. 2010.16(12):2493-502.
    [21]Qin W, Shi Y, Zhao B, et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLOS ONE.2010.5(2): e9429.
    [22]Hwang HW, Wentzel EA, Mendell JT. A hexanucleotide element directs microRNA nuclear import. Science (80-).2007.315(5808):97-100.
    [23]Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol.2007.9(6):654-9.
    [24]Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A.2002.99(24):15524-9.
    [25]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A.2004.101(9):2999-3004.
    [26]Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A.2004.101(26):9740-4.
    [27]Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature.2005.435(7043):834-8.
    [28]Creighton CJ, Reid JG, Gunaratne PH. Expression profiling of microRNAs by deep sequencing. Brief Bioinform.2009.10(5):490-7.
    [29]Farazi TA, Horlings HM, Ten HJJ, et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res.2011.71(13): 4443-53.
    [30]Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006.6(11):857-66.
    [31]Blenkiron C, Goldstein LD, Thorne NP, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007.8(10):R214.
    [32]Sempere LF, Christensen M, Silahtaroglu A, et al. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 2007.67(24):11612-20.
    [33]Mattie MD, Benz CC, Bowers J, et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer.2006.5:24.
    [34]Lowery AJ, Miller N, Devaney A, et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res.2009.11(3):R27.
    [35]Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.2005.65(16):7065-70.
    [36]Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005.353(17):1793-801.
    [37]Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell.2006.9(3):189-98.
    [38]Caramuta S, Egyhazi S, Rodolfo M, et al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol.2010.130(8):2062-70.
    [39]Li X, Zhang Y, Zhang Y, Ding J, Wu K, Fan D. Survival prediction of gastric cancer by a seven-microRNA signature. Gut.2010.59(5):579-85.
    [40]Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA.2008. 299(4):425-36.
    [41]Giovannetti E, Funel N, Peters GJ, et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res.2010.70(11):4528-38.
    [42]Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev.2006.20(16):2202-7.
    [43]Obernosterer G, Leuschner PJ, Alenius M, Martinez J. Post-transcriptional regulation of microRNA expression. RNA.2006.12(7):1161-7.
    [44]Wulczyn FG, Smirnova L, Rybak A, et al. Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J.2007.21(2):415-26.
    [45]Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA.2008.14(1):35-42.
    [46]Pawlicki JM, Steitz JA. Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs:processing at transcription sites or accumulation in SC35 foci. Cell Cycle.2009.8(3):345-356.
    [47]Schmittgen TD, Jiang J, Liu Q, Yang L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Research.2004.32(4): e43-e43.
    [48]Jiang J, Lee EJ, Gusev Y, Schmittgen TD. Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res.2005. 33(17):5394-403.
    [49]Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology.2006.130(7):2113-29.
    [50]Michael MZ, O' CSM, van HPNG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res.2003.1(12): 882-91.
    [51]Zhang L, Huang J, Yang N, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A.2006.103(24):9136-41.
    [52]Raveche ES, Salerno E, Scaglione BJ, et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood.2007.109(12): 5079-86.
    [53]Weber B, Stresemann C, Brueckner B, Lyko F. Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle.2007.6(9):1001-5.
    [54]Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell.2006.9(6):435-43.
    [55]Lehmann U, Hasemeier B, Christgen M, et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol.2008.214(1): 17-24.
    [56]Toyota M, Suzuki H, Sasaki Y, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res.2008.68(11):4123-32.
    [57]Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res.2007. 67(4):1424-9.
    [58]Brueckner B, Stresemann C, Kuner R, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res.2007.67(4):1419-23.
    [59]Iorio MV, Visone R, Di LG, et al. MicroRNA signatures in human ovarian cancer. Cancer Res.2007.67(18):8699-707.
    [60]Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res.2006.66(3): 1277-81.
    [61]Shin S, Lee EM, Cha HJ, et al. MicroRNAs that respond to histone deacetylase inhibitor SAHA and p53 in HCT116 human colon carcinoma cells. Int J Oncol. 2009.35(6):1343-52.
    [62]Bandres E, Agirre X, Bitarte N. et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer.2009.125(11):2737-43.
    [63]Saito Y, Suzuki H, Tsugawa H, et al. Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene.2009.28(30):2738-44.
    [64]Rhodes LV, Nitschke AM, Segar HC, et al. The histone deacetylase inhibitor trichostatin A alters microRNA expression profiles in apoptosis-resistant breast cancer cells. Oncol Rep.2012.27(1):10-6.
    [65]Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A.2007.104(40):15805-10.
    [66]Garzon R, Heaphy CE, Havelange V, et al. MicroRNA 29b functions in acute myeloid leukemia. Blood.2009.114(26):5331-41.
    [67]Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rb12-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol.2008.15(3):268-79.
    [68]Sinkkonen L, Hugenschmidt T, Berninger P, et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol.2008.15(3):259-67.
    [69]Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006.38(2):228-33.
    [70]Roccaro AM, Sacco A, Jia X, et al. microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood.2010.116(9):1506-14.
    [71]Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet.2007.39(3):380-5.
    [72]Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science (80-).2008.320(5872):97-100.
    [73]Kumar MS, Pester RE, Chen C Y, et al. Dicerl functions as a haploinsufficient tumor suppressor. Genes Dev.2009.23(23):2700-4.
    [74]Karube Y, Tanaka H, Osada H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci.2005.96(2):111-5.
    [75]Merritt WM, Lin YG, Han LY, et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med.2008.359(25):2641-50.
    [76]Guo X, Liao Q, Chen P, et al. The microRNA-processing enzymes:Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J Cancer Res Clin Oncol.2012.138(1):49-56.
    [77]Lin RJ, Lin YC, Chen J, et al. microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res.2010.70(20):7841-50.
    [78]Grelier G, Voirin N, Ay AS, et al. Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer. 2009.101(4):673-83.
    [79]Faber C, Horst D, Hlubek F, Kirchner T. Overexpression of Dicer predicts poor survival in colorectal cancer. Eur J Cancer.2011.47(9):1414-9.
    [80]Chiosea S, Jelezcova E, Chandran U, et al. Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol.2006. 169(5):1812-20.
    [81]Muralidhar B, Winder D, Murray M, et al. Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles. J Pathol.2011.224(4):496-507.
    [82]Martello G, Rosato A, Ferrari F, et al. A MicroRNA targeting dicer for metastasis control. Cell.2010.141(7):1195-207.
    [83]Tang R, Li L, Zhu D, et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res.2012.22(3):504-15.
    [84]He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature.2007.447(7148):1130-4.
    [85]Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell.2007. 26(5):745-52.
    [86]Piovan C, Palmieri D, Di LG, et al. Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol Oncol.2012.6(4):458-72.
    [87]Chang TC, Zeitels LR, Hwang HW, et al. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci U S A. 2009.106(9):3384-9.
    [88]Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem.2010.110(5):1155-64.
    [89]Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep.2008.9(6):582-9.
    [90]Gregory PA, Bracken CP, Bert AG, Goodall GJ. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle.2008.7(20):3112-8.
    [91]Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A.2005.102(39):13944-9.
    [92]Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell.2005.120(5):635-47.
    [93]Sampson VB, Rong NH, Han J, et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res.2007. 67(20):9762-70.
    [94]Ciafre SA, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun.2005. 334(4):1351-8.
    [95]Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA.2007.297(17):1901-8.
    [96]Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.2005.65(14):6029-33.
    [97]Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem.2008.283(2):1026-33.
    [98]Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature.2010.467(7311):86-90.
    [99]Garzon R, Volinia S, Liu CG, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood.2008.111(6): 3183-9.
    [100]He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature.2005.435(7043):828-33.
    [101]Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol.2008.9(4):405-14.
    [102]Mu P, Han YC, Betel D, et al. Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev.2009.23(24): 2806-11.
    [103]Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A.2006.103(18):7024-9.
    [104]Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008.7(7):2152-9.
    [105]Xia L, Zhang D, Du R, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer.2008. 123(2):372-9.
    [106]Chen F, Zhu HH, Zhou LF, Wu SS, Wang J, Chen Z. Inhibition of c-FLIP expression by miR-512-3p contributes to taxol-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep.2010.23(5):1457-62.
    [107]Zhao JJ, Lin J, Yang H, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem.2008.283(45):31079-86.
    [108]Miller TE, Ghoshal K, Ramaswamy B, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kipl. J Biol Chem.2008. 283(44):29897-903.
    [109]Rao X, Di LG, Li M, et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene.2011.30(9): 1082-97.
    [110]Iorio MV, Casalini P, Piovan C, et al. microRNA-205 regulates HER3 in human breast cancer. Cancer Res.2009.69(6):2195-200.
    [111]Hurst DR, Edmonds MD, Welch DR. Metastamir:the field of metastasis-regulatory microRNA is spreading. Cancer Res.2009.69(19): 7495-8.
    [112]Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature.2007.449(7163):682-8.
    [113]Ma L, Reinhardt F, Pan E, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol.2010.28(4): 341-7.
    [114]Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene.2008. 27(15):2128-36.
    [115]Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res.2008.18(3):350-9.
    [116]Voorhoeve PM, le SC, Schrier M, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell.2006.124(6): 1169-81.
    [117]Li N, Fu H, Tie Y, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett.2009.275(1):44-53.
    [118]Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res.2009.19(4):439-48.
    [119]Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature.2008.451(7175):147-52.
    [120]Png KJ, Halberg N, Yoshida M, Tavazoie SF. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature.2012.481(7380): 190-4.
    [121]Khew-Goodall Y, Goodall GJ. Stromal miR-320 keeps an oncogenic secretome in check. Nat Cell Biol.2012.14(2):124-5.
    [122]Pulkkinen K, Malm T, Turunen M, Koistinaho J, Yla-Herttuala S. Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett.2008.582(16): 2397-401.
    [123]Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet.2006.38(9):1060-5.
    [124]Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood.2006.108(9):3068-71.
    [125]Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol.2010.12(3):247-56.
    [126]Rosenfeld N, Aharonov R, Meiri E, et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol.2008.26(4):462-9.
    [127]Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet.2003.35(3):215-7.
    [128]Calabrese JM, Seila AC, Yeo GW, Sharp PA. RNA sequence analysis defines Dicer's role in mouse embryonic stem cells. Proc Natl Acad Sci U S A.2007. 104(46):18097-102.
    [129]Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell.2007.131(6):1109-23.
    [130]Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell.2009.138(3):592-603.
    [131]Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009.11(12):1487-95.
    [132]Hsu PW, Huang HD, Hsu SD, et al. miRNAMap:genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res.2006. 34(Database issue):D135-9.
    [133]Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature.2009.460(7254):479-86.
    [134]Calin GA, Liu CG, Ferracin M, et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell.2007.12(3): 215-29.
    [135]Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis:the Rosetta Stone of a hidden RNA language. Cell.2011.146(3):353-8.
    [136]Chin LJ, Ratner E, Leng S, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3'untranslated region increases non-small cell lung cancer risk. Cancer Res.2008.68(20):8535-40.
    [137]Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 31 untranslated regions and fewer microRNA target sites. Science (80-).2008.320(5883):1643-7.
    [138]Iorio MV, Croce CM. MicroRNA dysregulation in cancer:diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med.2012. 4(3):143-59.
    [1]Geller DS, Gorlick R. Osteosarcoma:a review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol,2010,8(10):705-18.
    [2]Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk:an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol, 2002,20(3):776-90.
    [3]Berezikov E, Guryev V, de Belt J v, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 2005,120(1):21-4.
    [4]Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet,2009,10(10):704-14.
    [5]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-97.
    [6]Heneghan HM, Miller N, Kerin MJ. MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol,2010,10(5):543-50.
    [7]Nana-Sinkam SP, Croce CM. MicroRNAs as therapeutic targets in cancer. Transl Res,2011,157(4):216-25.
    [8]Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature,2005,435(7043):834-8.
    [9]Duan Z, Choy E, Nielsen GP, et al. Differential expression of microRNA (miRNA) in chordoma reveals a role for miRNA-1 in Met expression. J Orthop Res,2010,28(6):746-52.
    [10]Naka T, Iwamoto Y, Shinohara N, et al. Expression of c-met proto-oncogene product (c-MET) in benign and malignant bone tumors. Mod Pathol, 1997,10(8):832-8.
    [11]Ostroumov E, Hunter CJ. Identifying mechanisms for therapeutic intervention in chordoma:c-Met oncoprotein. Spine (Phila Pa 1976),2008,33(25):2774-80.
    [12]Taulli R, Bersani F, Foglizzo V, et al. The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J Clin Invest,2009,119(8):2366-78.
    [13]Subramanian S, Lui WO, Lee CH, et al. MicroRNA expression signature of human sarcomas. Oncogene,2008,27(14):2015-26.
    [14]Sarver AL, Phalak R, Thayanithy V, et al. S-MED:sarcoma microRNA expression database. Lab Invest,2010,90(5):753-61.
    [15]Broadhead ML, Clark JC, Myers DE, et al. The molecular pathogenesis of osteosarcoma:a review. Sarcoma,2011,2011:959248.
    [16]Tang N, Song WX, Luo J, et al. Osteosarcoma development and stem cell differentiation. Clin Orthop Relat Res,2008,466(9):2114-30.
    [17]Siclari VA, Qin L. Targeting the osteosarcoma cancer stem cell. J Orthop Surg Res,2010,5:78.
    [18]Liu C, Tang DG. MicroRNA regulation of cancer stem cells. Cancer Res,2011, 71(18):5950-4.
    [19]Maire G, Martin JW, Yoshimoto M, et al. Analysis of miRNA-gene expression-genomic profiles reveals complex mechanisms of microRNA deregulation in osteosarcoma. Cancer Genet,2011,204(3):138-46.
    [20]Lulla RR, Costa FF, Bischof JM, et al. Identification of Differentially Expressed MicroRNAs in Osteosarcoma. Sarcoma,2011,2011:732690.
    [21]Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM, et al. MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev,2010,19(6):877-85.
    [22]Stabley DL KD, Holbrook J ea. Digital gene expression of mirna in osteosarcoma xenografts:finding biological relevance in mirna high throughput sequencing data. Journal of Biomolecular Techniques,2010,21(3, supplement, article S25).
    [23]Marina N, Gebhardt M, Teot L, et al. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist,2004,9(4):422-41.
    [24]Ta HT, Dass CR, Choong PF, et al. Osteosarcoma treatment:state of the art. Cancer Metastasis Rev,2009,28(1-2):247-63.
    [25]Hermeking H. p53 enters the microRNA world. Cancer Cell,2007,12(5):414-8.
    [26]Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ, 2010,17(2):193-9.
    [27]Lynam-Lennon N, Maher SG, Reynolds JV. The roles of microRNA in cancer and apoptosis. Biol Rev Camb Philos Soc,2009,84(1):55-71.
    [28]He C, Xiong J, Xu X, et al. Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Commun,2009, 388(1):35-40.
    [29]Braun CJ, Zhang X, Savelyeva I, et al. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res,2008,68(24):10094-104.
    [30]Creighton CJ, Fountain MD, Yu Z, et al. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res,2010,70(5):1906-15.
    [31]Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell,2009,137(6):1032-46.
    [32]Ferguson WS, Goorin AM. Current treatment of osteosarcoma. Cancer Invest, 2001,19(3):292-315.
    [33]Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res,2005,65(14):6029-33.
    [34]Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology,2007,133(2):647-58.
    [35]Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene,2008,27 (15):2128-36.
    [36]Zhu S, Si ML, Wu H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem,2007,282(19):14328-36.
    [37]Zhu S, Wu H, Wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res,2008,18(3):350-9.
    [38]Ziyan W, Shuhua Y, Xiufang W, et al. MicroRNA-21 is involved in osteosarcoma cell invasion and migration. Med Oncol,2011,28(4):1469-74.
    [39]Kang HG, Kim HS, Kim KJ, et al. RECK expression in osteosarcoma: correlation with matrix metalloproteinases activation and tumor invasiveness. J Orthop Res,2007,25(5):696-702.
    [40]Duan Z, Choy E, Harmon D, et al. MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther,2011,10(8):1337-45.
    [41]Fornari F, Milazzo M, Chieco P, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res,2010,70(12):5184-93.
    [42]Ichimi T, Enokida H, Okuno Y, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer,2009,125(2): 345-52.
    [43]Osaki M, Takeshita F, Sugimoto Y, et al. MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Mol Ther,2011,19(6):1123-30.
    [44]Zhang H, Cai X, Wang Y, et al. microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep,2010,24(5):1363-9.
    [45]Michael MZ, O CSM, van HPNG, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res,2003,1(12):882-91.
    [46]Porkka KP, Pfeiffer MJ, Waltering KK, et al. MicroRNA expression profiling in prostate cancer. Cancer Res,2007,67(13):6130-5.
    [47]Iorio MV, Visone R, Di LG, et al. MicroRNA signatures in human ovarian cancer. Cancer Res,2007,67(18):8699-707.
    [48]Lui WO, Pourmand N, Patterson BK, et al. Patterns of known and novel small RNAs in human cervical cancer. Cancer Res,2007,67(13):6031-43.
    [49]Takagi T, Iio A, Nakagawa Y, et al. Decreased expression of microRNA-143 and-145 in human gastric cancers. Oncology,2009,77(1):12-21.
    [50]Chen X, Guo X, Zhang H, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene,2009,28(10):1385-92.
    [51]Akao Y, Nakagawa Y, Kitade Y, et al. Downregulation of microRNAs-143 and-145 in B-cell malignancies. Cancer Sci,2007,98(12):1914-20.
    [52]Wachtel M, Schafer BW. Targets for cancer therapy in childhood sarcomas. Cancer Treat Rev,2010,36(4):318-27.
    [53]Song B, Wang Y, Xi Y, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene, 2009,28(46):4065-74.
    [54]Song B, Wang Y, Titmus MA, et al. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer,2010,9:96.
    [55]Boni V, Bitarte N, Cristobal I, et al. miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidilate synthase regulation. Mol Cancer Ther,2010,9 (8):2265-75.
    [56]Gougelet A, Pissaloux D, Besse A, et al. Micro-RNA profiles in osteosarcoma as a predictive tool for ifosfamide response. Int J Cancer,2011,129(3):680-90.
    [57]Vester B, Wengel J. LNA (locked nucleic acid):high-affinity targeting of complementary RNA and DNA. Biochemistry,2004,43(42):13233-41.
    [58]Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer:rationale, strategies and challenges. Nat Rev Drug Discov,2010,9(10):775-89.
    [59]Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells. Nat Methods,2007,4(9):721-6.
    [60]Pecot CV, Calin GA, Coleman RL, et al. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer,2011,11(1):59-67.
    [61]Pirollo KF, Xu L, Chang EH. Non-viral gene delivery for p53. Curr Opin Mol Ther,2000,2(2):168-75.
    [62]Stegmeier F, Hu G, Rickles RJ, et al. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci U S A,2005,102(37):13212-7.
    [63]Susa M, Iyer AK, Ryu K, et al. Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma. PLOS ONE,2010,5(5):e 10764.
    [64]Chen Y, Zhu X, Zhang X, et al. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther,2010,18(9): 1650-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700