低品位氧化锌矿和高铁闪锌矿NH_3-(NH_4)_2SO_4体系浸出的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌以其良好的抗腐蚀性能和合金性能,在工业领域具有广泛的应用。近年来,我国锌冶炼工业发展迅速,国内锌精矿的消耗巨大。但由于锌精矿逐步消耗殆尽,导致锌冶炼原料供应紧张。为维持锌冶金工业的可持续发展,必须开发利用各种锌矿资源。我国西南地区蕴藏有丰富的锌矿资源,其中有很大一部分为高铁硫化矿和低品位氧化矿难以采用传统的锌冶炼工艺经济回收矿石中的有价金属。因此开发新的工艺来合理利用难处理锌矿势在必行。氨浸法具有能耗低、除杂简单、污染少、适应性强等优点,在处理复杂、低品位硫化矿和氧化矿时具有显著的技术优势和经济效益。
     本文以NH3-(NH4)2SO4氨性体系为浸出剂,通过采用不同的处理工艺,分别对兰坪低品位氧化锌矿和高铁闪锌矿进行了实验研究,考察了不同因素对浸出行为的影响。对低品位氧化锌矿进行了42L规模的实验室扩大试验,并探讨了机械球磨强化高铁闪锌矿氨性氧化浸出的作用机理。
     低品位氧化锌矿探索试验结果表明:pH值、总氨浓度、液固比是影响锌及杂质浸出的主要因素。在浸出剂总氨浓度为3 mol/L、pH为9.60、液固比为4、反应时间为4h的条件下,通过二段逆流浸出工艺对兰坪低品位氧化锌矿进行处理,锌的浸出率>90%,浸出液pH<9.0,能很好地满足萃取工序的要求。在氧化锌矿实验室扩大试验中,兰坪低品位氧化锌矿的总浸出率大于90%,浸出液中锌离子浓度约为13g/L,pH值为8.90-9.00,达到“氨浸-除杂-萃取-电积”工艺预先设定的技术指标。
     机械活化能够强化高铁闪锌矿的氧化浸出,活化时间、溶液pH值、氧化剂NaClO的用量、球磨气氛等因素对高铁闪锌矿的浸出都有影响。高铁闪锌矿在机械活化过程中颗粒粒径先降低后升高,晶格尺寸减少,晶格畸变率增加,晶体呈现出非晶态化。结合矿物粒径、晶格尺度和畸变率的变化趋势以及锌浸出率随球磨时间延长而不断增大的实验现象,认为当球磨时间较短时,在机械力的撞击、挤压下,矿物颗粒发生脆性破碎和塑性变形,高铁闪锌矿浸出率的提高是矿物比表面积增大和晶格畸变率增加共同作用的结果;当高铁闪锌矿在机械活化作用下比表面储能达到极限值后,矿物粒径不降反升,晶格缺陷与畸变成为促进矿物溶解浸出的主导因素。
Zinc is widely used in industry for its good corrosion resistance property and alloy performance. The domestic consumption of zinc concentrates is tremendous with the rapid development of zinc smelting industry. Therefore, it is necessary to exploit all sorts of zinc resources to keep the sustainable and healthy development of zinc metallurgical industry. Resourceful zinc ores are found in southwest of China, a great part of which are high-iron sphalerite and low-grade zinc oxide ore. As a result, it is difficult to extract valuable metals economically by traditional smelting technology. Therefore, the development of new process to deal with the refractory zinc ore is imperative. Ammonia immersion method has significant technical advantages and economic benefits for its low energy consumption, simple purification, less pollution and strong adaptability.
     The leaching processes of low grade zinc oxide ore from Lanping and high-iron sphalerite in the system of NH3-(NH4)2SO4 have been studied in this paper. The effect of various factors on the leaching behaviors was investigated.42L-scale expanded experiment of low grade zinc oxide ore has been accomplished in laboratory. And the mechanism of mechanical activation during the ammoniacal oxidation leaching process of high-iron sphalerite was also studied.
     The leaching experimental results of low-grade zinc oxide ore showed that the main parameters for the leaching of zinc and impurities are pH, total ammonia concentration, and liquid/solid ratio. The optimum leaching conditions were found to be the total ammonia concentration 3 mol/L, pH 9.60, liquid/solid ratio 4, leaching time 4 h. More than 90% of zinc was extracted, and pH of lixivium was less than 9.0 in the two-stage counter-current process, which is satisfied with the requirement for the subsequent solvent extraction process. In the expanded experiment of low grade zinc oxide ore, the total leaching ratio exceeded 90%, the concentration of zinc and pH of lixivium were about 13 g/L and 8.90-9.00 respectively, which is suitable for the predetermined qualification of "ammonia leaching-purification-extraction-electro-winning" technique.
     The mechanical activation could accelerate the extraction of high-iron sphalerite. The activation time, pH of solution, dosage of NaClO, grinding atmosphere were the main factors to the leaching of high-iron sphalerite. With the increase of activation tine, the particle size of the ore grains decreases first and then increases, the lattice strain ratio rises, and the crystalline turns into amorphous during the process of mechanical activation. Combining the changing tendency of particle size, crystallite size and lattice strain with the experimental phenomena that the zinc leaching ratio increases gradually with the prolongation of activation time, it indicates that brittle crush and plastic deformation occurs with the mechanical grinding. The increase of zinc recovery ratio is attributed to the increase of the specific surface area and lattice disorder. When the stored energy of surface reaches the ultimate state, the particle size doesn't decrease but increase, and the promotion of mineral dissolution is mainly determined by the lattice distortion.
引文
[1]Gray L. Zinc[M]. New York:Marshall Cavendish Benchmark,2006.
    [2]Zhang X G. Corrosion and Electrochemisty of Zinc[M]. New York:Plenum press, 1996.
    [3]彭容秋.锌冶金[M].长沙:中南大学出版社,1998.
    [4]彭容秋.铅锌冶金学[M].北京:科学出版社,2003.
    [5]王吉昆,周延熙.硫化锌精矿加压酸浸技术及产业化[M].北京:冶金工业出版社,2005.
    [6]孙连超,田荣璋.锌及锌合金物理冶金学[M].长沙:中南工业大学出版社,1994.
    [7]魏昶,王吉坤.湿法炼锌理论与应用[M].昆明:云南科技出版社,2003.
    [8]梅光贵,王德润,周敬元等.湿法炼锌学[M].长沙:中南大学出版社,2001.
    [9]王吉坤,周廷熙,吴锦梅.高铁闪锌矿精矿加压浸出半工业试验研究[J].中国工程科学,2005(01):16-17.
    [10]王忠实,蒋继穆.中国锌冶炼现状[J].有色冶炼,1996,6:1-5.
    [11]郎家重.国外锌冶炼工艺发展状况[J].有色矿冶,1999,4:30-32.
    [12]Norton G A, Groat C G. Mineral Commodity Sununaries2010. Washington:U.5. Government Printing Offiee,2010.184-187.
    [13]中国产业资讯网.2004-2005年铅锌行业发展分析研究报告,http://www. ehinaii.net.
    [14]郭天立.新建电锌厂浸出工序的试生产[J].有色冶炼,1995(1):17-21.
    [15]王振岭.电炉炼锌[M].北京:冶金工业出版社,2001.
    [16]曹修运.锌十万吨浸出试生产回顾及展望[J].株冶科技,1997,25(2):1-5.
    [17]重有色金属冶炼设计手册编委会.重有色金属冶炼设计手册(铅锌秘卷)[M].北京:冶金工业出版社,1996.
    [18]有色金属提取冶金手册编委会.有色金属提取冶金手册(锌镉铅铋)[M].北京:冶金工业出版社,1996.
    [19]李夏湘,何醒民.论常规法与热酸浸出黄钾铁矶法炼锌工艺艺流程的选择[J].湖南有色金属,2000(6):15-16.
    [20]Dutrizac J E. Efeetiveness of jarosites for precipitating sodium jarosite[J]. Journal of the Minerals, Metals and Materials Society,1999,51(12):30-32.
    [21]Elgersma F, Witkam P G J, Rosmalen G V. Simultaneous dissolution of zinc ferrite an precipitation of ammonium jarosite[J]. Hydrometallurgy,1993,34 (1):23-47.
    [22]Ozberk E, Jankola W A, Vecchiarelh M, et al. Commercial operations of the Sherrit zinc pressure leach process[J]. Hydrometalurgy,1995,39 (1-3):49-52.
    [23]Ozberk E, Collins M J, Makwana M, et al. Zinc pressure leaching at the Ruhr-Zink Refinery[J]. Hydrometalurgy,1995,39(1-3):53-62.
    [24]Collins M J, Mc-Conaghy E T, Staufer R F, et al. Starting up the Sherrit zinc pressure leach process at Hudson Bay[J]. Journal of the Minerals, Metals and Materials Society,1994,46(4):51-58.
    [25]Harvey T J, Yen W T, Paterson J G. Kinetic investigation into the pressure oxidation of sphalerite from a complex concentrate [J]. Minerals Engineering,1993, 6(8-10):949-967.
    [26]Jankola W A. Zinc pressure leaching at Cominco[J]. Hydrometalurgy,1995,39 (1-3):63-70.
    [27]Krysa B D. Zinc pressure leaching at HBMS[J]. Hydromemlurgy,1995,39 (1-3): 71-77.
    [28]Buban K R, Collins M J, Masters I M. Iron control in zinc pressure leach processes [J]. Journal of the Minerals, Metals and Materials Society,1999,51(12):23-25.
    [29]#12
    [30]Chalkley M E, Masters I M, Doyle B N. Recovery of metals from sulphidic material[P]. United States, US5380354.1995-01-10.
    [31]周廷熙,王吉昆.高铁硫化锌精矿冶炼工艺研究进展[J].中国有色冶金,2006(1):13-17.
    [32]赵进发.永昌铅锌公司硫磺渣浮选工艺获得成功[N].中国有色金属报,2006(2):62.
    [33]Tuovnen O H, Kelly D P. Biology of Thiobacillus ferroxidans in relation to the microbiological leaching sulphide ores[J].Zeitschrift fur Allgemine Mikrobiologie. 1927,12:11-46.
    [34]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社,2003.
    [35]Belyi A V, Zinenko G K, Korrov B G Bacterial leaching of a collective copper-zinc concentrate [J]. Tsventnye Metally,1987(8):25-27.
    [36]Sanmugasunderam V, Branion R M R and Duncan D W. A growth model for the continuous microbiologicalleaching of a zinc sulfide concentrate by Thiobacillus ferrooxidans[J]. Biotechnology and Bioengineering,1985,27:1173-1184.
    [37]Sanmugasunderam V, Branion R M R and Duncan D W. Two stage microbiologi-cal leaching, with and without recycle to the first stage of a zinc sulfide concentrate by Thiobacillus ferrooxidans[J]. Fundamental and Applied Bio-hydrometallurgy,1985:263-277.
    [38]雷云,杨显万.生物湿法冶金与西部矿产资源开发[J].有色金属,2000,52(4):100-103.
    [39]Harvey T G The Hydrometallurgical extraction of zinc by ammonium carbonate:A review of the Schnabel process[J]. Mineral Processing & Extractive Metall. Rev., 2006 (27):231-279.
    [40]Wendt W J. Ammonia-Ammonium carbonate leaching of low-grade zinc ores[J]. Eng. Min. J.,1953,154:84-90.
    [41]Filippou D. Innovative hydrometallurgical processes for the primary processing of zinc[J]. Miner. Process. Extr. Metall. Rev.,2004,25:205-252.
    [42]Spink D R, Robinson M C and Nguyen K D. Hydrometallurgical Process for the Manufacture of Zinc Oxide from Wasted Zinc Sulfide Concentrates, US 5028410, 1991.
    [43]Robinson M C and Eberts D H. Hydrometallurgical Production of Zinc Oxide from Roasted Zinc Concentrates [P]. United States, US 5204084,1993.
    [44]Peters M A. Process for Recovering Zinc from Steel-Making Flue Dust[P]. United States, US 4071357,1978.
    [45]彭清静,段友构,杨朝霞.氨浸-碳化法制活性氧化锌[J].化工生产与技术,2001,8(6):15-17.
    [46]杨声海,唐漠堂,邓昌雄,等.由氧化锌烟灰氨法制取高纯锌[J].中国有色金属学报,2001,11(6):1110-1113.
    [47]杨声海Zn(II)-NH3-NH4Cl-H2O体系制备高纯锌理论及应用:[博士学位论文].长沙:中南大学,2003.
    [48]唐谟堂,杨声海,何静,等.锌焙砂氨法生产高纯锌[J].中国有色冶金,2004(2):14-16.
    [49]Yang S H, Tang M T. Thermodynamics of Zn(Ⅱ)-NH3-NH4Cl-H2O system [J]. Trans Nonferrous Met Soc China,2000,10(6):830-833.
    [50]唐谟堂,杨声海Zn(Ⅱ)-NH3-NH4Cl-H2O体系电积锌工艺及阳极反应机理研究[J].中南工业大学学报,1999,30(2):153-156.
    [51]张保平,唐谟堂NH4Cl-NH3-H2O体系浸出氧化锌矿[J].中南工业大学学报(自然科学版),2001,32(5):483-486.
    [52]颜炜.氨法制备低铁锌工艺研究[J].有色金属(冶炼部分),2007(3):15-19.
    [53]王成彦,江培海.云南中低品位氧化锌矿及元江镍矿的合理开发利用[J].中国工程科学,2005,7:147-150.
    [54]Cole P M, Sole K C, Feather A M. Solvent extraction developments in Southern Africa:An update of some recent hydrometallurgical developmen[J]. Tsinghua Science and Technology,2006,11 (2):153-159.
    [55]Vahidi E, Rashchi F, Moradkhani D. Recovery of zinc from an industrial zinc leach residue by solvent extraction using D2EHPA[J]. Minerals Engineering,2009, 22(2):204-206.
    [56]Sainz-Diaz C I, Klocker H, Marr R, et al. New approach in the modelling of the extraction equilibrium of zinc with bis-(2-ethylhexyl) phosphoric acid [J]. Hydro-metallurgy,1996,42(1):1-11.
    [57]Pereira D D, Rocha S D F, Mansur M B, Recovery of zinc sulphate from industrial effluents by liquid-liquid extraction using D2EHPA (di-2-ethylhexyl phosphoric acid)[J]. Separation and Purification Technology,2006,35 (1):89-96.
    [58]Vahidi E, Rashchi F, Moradkhani D. Recovery of zinc from an industrial zinc leach residue by solvent extractionusing D2EHPA[J]. Minerals Engineering,2009, (22):204-206.
    [59]杨大锦.低品位锌矿堆浸——萃取——电积工艺研究:[博士学位论文].昆明:昆明理工大学,2006.
    [60]Alguacil F J, Alonso M. The effect of ammonium sulphate and ammonia on the liquid-liquid extraction of zinc using LIX54[J]. Hydrometallurgy,1999(53):203-209.
    [61]陈浩,朱云,等Zn-NH3-H2O体系中LIX54萃取锌[J].有色金属,2003,55(3):50-51.
    [62]王延忠,朱云,胡汉.从氨浸出液中萃取锌的实验研究[J].有色金属,2004,56(1):37-39.
    [63]吴贤文Zn-NH3-NH4C1体系锌的萃取——电积过程研究:[硕士学位论文].长沙:中南大学,2010.
    [64]陈启元,胡惠萍,付翁.一种有效提高氨性溶液中锌萃取效果的方法,中国,CN 101560600A[P].2009.
    [65]Fu W, Chen Q Y, Wu Q, et al. Solvent extraction of zinc from ammoniacal/ ammonium chloride solutions by a sterically hindered β-diketone and its mixture with tri-n-octylphosphine oxide[J]. Hydrometallurgy,2010,100 (3-4):116-121.
    [66]《浸矿技术》编委会.浸矿技术[M].北京:原子能出版社,1994.
    [67]方兆珩.浸出[M].北京:冶金工业出版社,2007.
    [68]徐红江,张延安.低品位氧化锌矿冶金进展[J].有色冶金,2009(2):28.
    [69]戴自希.世界铅锌资源的分布、类型和勘查准则[J].世界有色金属,2005(3):15-23.
    [70]周廷熙.兰坪氧化铅锌矿的处理工艺探讨[J].国外金属矿选矿,2004,4:10-11.
    [71]李志华,薛怀生,姚耀.春兰坪难选氧化锌矿氨浸动力学[J].云南冶金,2003,8(4):22.
    [72]向运松,严小陵,等.兰坪铅锌矿经济合理开发的研究[R].1990.
    [73]饶天龙.云南铅锌资源基本特征及超大型铅锌矿床找矿前景[J].中国矿业,2008,3(3):107-110.
    [74]Abdel-Aal E A. Kinetics of sulfuric acid leaching of low-grade zinc silicate ore[J]. Hydrometallurgy,2000(55):247-254.
    [75]李荣兴,谢刚,杨大锦,等.低品位氧化锌矿的搅拌浸出试验研究[J].中国稀土学报,2006(24):464-468.
    [76]杨大锦,谢刚,贾云芝,等.低品位氧化锌矿堆浸实验研究[J].过程工程学报,2006(1):59-62.
    [77]Feng L Y, Yang X W, Shen Q F, et al. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores[J]. Hydrometallurgy,2007(89):305-310.
    [78]Dufresne R E. Quick leach of siliceous zinc ore[J]. Journal of Metals,1976,28: 8-12.
    [79]Bodas M G. Hydrometallurgical treatment of zinc silicate ore from Thailand[J]. Hydrometatlurgy,1996,40:37-49.
    [80]李国民.高硅氧化锌矿浸出脱硅工艺的研究[J],中国有色冶金,2005(8):31-35.
    [81]Frenay J. Leaching of oxidized zinc ore in various media[J]. Hydrometallurgy, 1985,15:243-253.
    [82]刘三军,欧乐明,冯其明.低品位氧化锌矿石的碱法浸出[J].湿法冶金,2005,24(1):23-25.
    [83]王念卫,王成彦,尹飞,等.高碱性脉石低品位氧化锌矿低浓度氨浸动力学研究[J].矿冶,2010,19(1):36-39.
    [84]唐谟堂,张家靓,王博,等.低品位氧化锌矿在MACA体系中的循环浸出[J].中国有色金属学报,2011,21(1):214-218.
    [85]曹琴园,李洁,陈启元,等.机械活化对氧化锌矿碱法浸出及其物化性质的影响[J].过程工程学报,2009,9(4):669-674.
    [86]张玉梅,李洁,陈启元,等.超声波辐射对低品位氧化锌矿氨浸行为的影响[J].中国有色金属学报,2009,19(5):960-965.
    [87]赵纯禄.铁闪锌矿浮选工艺过程的特性[J].有色金属(选矿部分),1995(5):4-7.
    [88]Buban K R, Collins M J and Master I M. Iron Control in Zinc Pressure Leach Processes[J]. Journal of the Minerals, Metals and Materials Society,1999(51): 23-25.
    [89]王吉坤,周廷熙,硫化锌精矿加压酸浸技术及产业化[M].北京:冶金工业出版社,2005.
    [90]Osadchii E G, Gorbaty Y E. Raman spectra and unit cell parameters of sphalerite solid solutions (FexZn1-xs) [J]. Geochimica et Cosmochimica Acta,2010(74): 568-573.
    [91]Scott S D. Mossbauer spectra of synthetic of iron-bearing sphalerite. Can Miner, 1971(10):882-885.
    [92]张正阶,林金辉,宋谢炎,等.闪锌矿中杂质Fe存在形式的重新认识[J].矿物学报,1997(1):1-6.
    [93]Wright K, Gale J D. A first principles study of the distribution of iron in sphalerite[J]. Geochimica et Cosmochimica Acta 2010 (74):3514-3520.
    [94]Pring A, Tarantino S C, Tenailleau C, et al. The crystal chemistry of Fe-bearing sphalerites:an infrared spectroscopic study[J]. Am. Mineral.2008(93):591-597.
    [95]张志雄等.矿石学[M],北京:冶金工业出版社,1981.
    [96]Knopo O, Hung C and woodhams F W D. Chaleogenides of the transition element (Ⅶ A Mossbauer study of pentlandite) [J]. Am. Mineral,1970,55:1115-1130.
    [97]宋谢炎,张正阶,林金辉.铁闪锌矿中铁占位的物化条件及机制[J].矿物学报,1999(2):166-173.
    [98]童雄,周庆华,何剑,等.铁闪锌矿的选矿研究概况[J].金属矿山,2006(6):8-12.
    [99]窦明民.锌冶金中铁酸锌生成及离解机理研究[J].云南冶金,2003:63-65,99.
    [100]雷桂萍,刘中华.锌工业近十年的统计与发展趋势分析[J].上海有色金属,2001,22(4):175-180.
    [101]Akcil A, Ciftci H. A study of the selective leaching of complex sulphides from the Eastern Black Sea Region, Turkey[J]. Minerals Engineering,2002(15):457.
    [102]Li C X, Wei C, Xu H S, et al. Oxidative pressure leaching of sphalerite concentrate with high indium and iron content in sulfuric acid medium[J]. Hydrometallurgy,2010 (102):91-94.
    [103]Owusu G, Dreisinger D B, et al. Effect of surfactants on zinc and iron dissolution rates during oxidative leaching of sphalerite[J]. Hydrometallurgy,1995,38:315-324.
    [104]王吉坤,周廷熙,吴锦梅.高铁闪锌矿精矿加压浸出新工艺研究[J].有色金属(冶炼部),2004(1):5-8.
    [105]Perez I P and Dutrizac J E. The effect of the iron content of sphalerite on its rate of dissolution in ferric sulphate and ferric chloride media[J]. Hydrometallurgy, 1991(26):211-232.
    [106]Sahu S K, Sahu K K and Pandey B D. Leaching of Zinc Concentrate from the Ganesh-Himal Deposit of Nepal[J]. Metallurgical and Materials Transactions B, 2006 (37):541-548.
    [107]Balaz P and Ebert I. Oxidative leaching of mechanically activated sphalerite[J]. Hydrometallurgy,1991(27):141-150.
    [108]Shi S Y, Fang Z H, et al. Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans[J]. Hydrometallurgy,2004(75):1-10.
    [109]Zhang C L, Zhao Y C. Mechanochemical leaching of sphalerite in an alkaline solution containing lead carbonate[J]. Hydrometallurgy,2009,(100):56-59.
    [110]Rao K S and Ray H S. A new look at characterization and oxidative ammonia leaching behaviour of multimetal sulphides[J]. Minerals Engineering,1998(11): 1011-1024.
    [111]王书民,张国春.高铁闪锌矿精矿的氨浸工艺[J].商洛师范专科学校学报,2006,20:100-102.
    [112]Ghosh M K, Das R P, Biswas A K. Oxidative ammonia leaching of sphalerite Part I:Noncatalytic kinetics[J]. Int. J. Miner. Process,2002,66:241-254.
    [113]Ghosh M K, Das R P, Biswas A K. Oxidative ammonia leaching of sphalerite Part Ⅱ:Cu(Ⅱ) catalyzed kinetics [J]. Int. J. Miner. Process,2003,70:221-234.
    [114]中华人民共和国国家质量技术监督局.GB/T8151,1-2000.中华人民共和国国家标准-锌精矿化学分析方法-锌量的测定.北京:中国标准出版社,1994.
    [115]卧式行星球磨机在南京大学仪器厂问世.中国粉体工业,2005,6:41.
    [116]SL 91.2-1994.中华人民共和国行业标准——二氧化硅(可溶性)的测定(硅钼蓝分光光度法)[S].
    [117]GB/T 12689.3-90.中华人民共和国标准——锌及锌合金化学分析方法:磺基水杨酸分光光度法测定铁量[S].
    [118]昆明冶金研究院,陈世明,瞿开流.兰坪氧化锌矿石处理方法探讨[J].云南冶金,1998,27(5):31-32.
    [119]朱云,胡汉,苏云生,等.难选氧化锌矿氨浸动力学[J].过程工程学报,2002,2(1):81.
    [120]Moghaddam J, Sarraf-Mamoory R, Yamini Y, et al. Determination of the Optimum Conditions for the Leaching of Nonsulfide Zinc Ores (High-SiO2) in Ammonium Carbonate Media[J]. Ind. Eng. Chem. Res.,2005,44(24):8952-8958.
    [121]刘亚川,刘述平,李博,等.低品位氧化锌矿的氨——铵盐浸出研究[J].矿产综合利用,2008(2):3-5.
    [122]Park K H, Mohapatra D, Reddy B R. A study on the oxidative ammonia/ ammonium sulphate leaching of a complex (Cu-Ni-Co-Fe) matte[J]. Hydro-metallurgy,2007(86):164-171.
    [123]Wang R X, Tang M T, Yang S H, et al. Leaching kinetics of low grade zinc oxide ore in NH3-NH4C1-H2O system[J]. Cent. South Univ. Technol.,2008,15: 679-683.
    [124]Hu H P, Chen Q Y, Yin Z L, et al. Mechanism of mechanical activation for sulfide ores[J]. Trans. Nonferrous Met. Soc. China,2007(17):205-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700