借助远缘杂交构建大黄鱼微卫星标记连锁图谱
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文建立了大黄鱼与黄姑鱼杂交鱼苗的基因组DNA扩增技术,以及通用序列加尾与荧光素标记的微卫星分型技术。利用所建立的技术,以大黄鱼♀×黄姑鱼♂和大黄鱼♂×黄姑鱼♀杂交初孵仔鱼为材料构建微卫星标记连锁图谱,同时利用诱导的杂交三倍体研究了32个大黄鱼Ⅰ型微卫星标记与着丝粒的遗传距离。主要结果如下:
     1.为实现利用Gel-Scan 3000遗传分析仪准确、自动地记录微卫星标记电泳产物并节省成本,研究了以添加荧光标记的M13引物为通用引物的微卫星标记分析技术。其PCR体系包含3条引物:5’端加上M13通用序列的正向引物、反向引物与M13引物(5’端标记一种荧光素),正向与反向引物用量之比为1:10,且正向引物与M13引物用量之和等于反向引物用量时扩增效果最好。研究确定了适用于大黄鱼已有微卫星标记的PCR反应体系、热循环条件,以及多重上样方法。与普通PCR及银染显色技术相比,该方法具有高通量、低成本以及分析精确等优点。
     2.鉴于大黄鱼与黄姑鱼杂交能获得拥有父本和母本单倍体基因组且形态正常的杂交仔鱼,但仔鱼不能开口摄食和成长,DNA数量不足以用于遗传图谱构建,因此研究了杂交仔鱼的DNA扩增技术。基因组DNA以TaqⅠ内切酶酶切,酶切片段与TaqⅠ寡核苷酸接头连接,然后以该接头序列为引物用高保真DNA聚合酶对连接产物进行PCR扩增。采用这种方法,可使基因组DNA增加约2.5×107倍,大部分扩增片段集中在500-1500 bp之间,用作大黄鱼微卫星标记连锁图谱构建的PCR反应模板效果良好,从而解决了用初孵仔鱼构建遗传图谱DNA模板不足的问题。
     3.采用纯粹的大黄鱼家系构建遗传图谱,由于亲本间的遗传差异不大,在很多微卫星位点上都缺乏作图信息,构建高密度图谱有困难。因此本文尝试利用大黄鱼与黄姑鱼杂交子代进行大黄鱼遗传图谱构建,以期能够对利用纯粹的大黄鱼家系构建的SSR标记图谱进行加密。共使用144尾大黄鱼♀×黄姑鱼♂家系、96尾黄姑鱼♀×大黄鱼♂家系的初孵仔鱼,主要选择在纯粹的大黄鱼家系中缺乏作图信息的位点,加上部分已在本实验室构建的大黄鱼SSR标记图谱上定位的位点作为锚定标记,共检测了221个标记,正反交家系中具作图信息的标记分别有81个与61个,能定位到雌雄图谱中的标记分别有43个与30个,分别构成15个与11个连锁群。构成的雌性图谱总长度529.17 cM,预期长度1138.96 cM,图谱覆盖率为46.4%;雄性图谱总长度327.56 cM,预期长度614.48 cM,图谱覆盖率为53.3%。雌雄图谱中偏离1:1分离比的位点分别有5个与7个,占总标记的6.1%与11.7%。32个微卫星标记可在黄姑鱼基因组中扩增出清晰的条带,其中14个具有多态性。
     4.进行大黄鱼与黄姑鱼杂交,通过抑制受精卵第二极体排出,构建了2个三倍体家系;利用这2个家系研究了32个大黄鱼Ⅰ型微卫星标记与着丝粒间遗传距离。其中21个位点的重组率大于2/3,说明这些位点处于与着丝粒距离较远的位置,位点LYC1737与着丝粒重组率达0.979,显示其可能位于远离着丝粒的染色体的端部区域;LYC3211与着丝粒重组率为0,表明位置紧邻着丝粒。
Whole genome amplification technique, universal sequence tailed and fluorescence labeled microsatellite analysis method by the universal M13 primer were established for the distant hybridization fingerprints of Larimichthys crocea×Nibea albiflora in this study. Those methods were employed to construct the SSR genetic linkage maps by distant hybridized fry of Larimichthys crocea (♀)×Nibea albiflora (♂) and Larimichthys crocea (♂)×Nibea albiflora (♀) separately. Additonally, the genetic distance between centromere and 32 typeⅠmicrosatellites were analyzed by inducing hybrid triploid lines of Larimichthys crocea. The major results were presented as following.
     1. M13-tailed microsatellite analysis method was developed by the fluorescent labeling universal M13 primer, which facilated to collect the genotyping datas of microsatellites automatically and accurately. The PCR system included three primers: forward tailed primer by M13 universal sequence, reverse primer, and labeled M13 universal primer by fluorescence dye. The desired PCR result could be obtained when the proportion of forward primer and reverse primer was 1:10, and the amount of the forward primer and M13 primer equaled to reverse primer. In this study, the PCR reaction system, thermal cycling procedure, and multi-loading method for PCR products had been optimized for the developed microsatellites. Comparing with the common PCR and silver-staining methods, our approach had the advantages of high-throughput, low-cost, and being accurate analysis.
     2. Although the normal distant hybridized fry which processed the parental haploid genomes and normal morphology could be created by the distant hybridization between Larimichthys crocea and Nibea albiflora, they could not ingest exogenous food and growed normally. The quality of their gomomic DNA, thus, was unsufficient for constructing of genetic linkage maps. Therefore, whole genome amplification was developed in this study for the amplifying genomic DNA of distant hybridized fry. The endonuclease TaqⅠwas used to digeste the genomic DNA, then the oligounclotide adaptor was ligated to the DNA fragments, and finally the PCR amplification was performed for the ligation products by the primer from the adaptor sequence and the high fidelity DNA polymerase. Genomic DNA could be multiplied about 2.5×107 folds, and the most amplified DNA fragments fall the range of 500 bp-1500 bp. Desried PCR amplification could be attained when the amplified gemomic DNA was used as PCR template. Whole genome amplification provided an aviliable solution for the unsufficient quality of genomic DNA when using fingerprints to construct genetic linkage maps.
     3. It was very difficulty to construct high density genetic maps by families of large yellow croaker alone, because there were a few genetic variances among parents, resulting in the lacks of genetic linkage information for many microsatellites. We, thus, attempted to use the distant hybridized fry of Larimichthys crocea and Nibea albiflora to construct the genetic maps for large yellow croaker, with the expecting to increase the markers’dencity in genetic maps. 144 and 96 F1 progenies from two reciprocal hybrid lines of Larimichthys crocea and Nibea albiflora were used. The major resources of microsatellites were those that lack linkage information in families of Larimichthys crocea, and those that had been mapped on the genetic maps of Larimichthys crocea with regarding as anchor markers. 221 microsatellites were tested, and there were 81 and 61 microsatellites of processing linkage information in reciprocal crossing families, while the female map and male map were consisted of 43 and 30 loci, with assembling into 15 and 11 linkage groups separately. The total length of two maps were 529.17 cM and 327.56 cM, with the expected length of 1138.96 cM and 614.48 cM, respectively. The coverage rates of two maps, hence, were 46.4% and 53.3% separately. Additionly, specific amplified products could be obtained by 32 microsatellites in Nibea albiflora, and 14 markers were polymorphic.
     4. When distant hybridization between Larimichthys crocea and Nibea albiflora, the releasing of secondary polar body was inhabited to found two hybrid triploid lines. The distance between centromere and 32 typeⅠmicrosatellites were analyzed by this triploid lines for Larimichthys crocea. The value of recombination rate for 21 markers was larger than 2/3, inllustrating there were long distance between centromere and those microsatellites. The recombination rate value between LYC1737 and centromere was 0.979, presenting that LYC1737 was possible at the terminal region of chromosome; while the value was 0 for LYC3211, displaying that LYC3211 was likely to be very close to the centromere.
引文
[1] Bruford MW, Cheesman DJ, Coote T, et al. Microsatellites and their application to conservation genetics[M]// Smith TB, Wayne RK. Molecular Genetic Approaches in Conservation. Oxford: Oxford University Press, 1996: 278-297.
    [2] Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of dinucleatide repeat within the cardiac muscle actin gene [J]. Am J Hum Genet., 1989, 44: 397-401.
    [3] Edward A, Civitello A, Hammond H, et al. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats [J]. Am J Hum Genet., 1991, 49: 746-756.
    [4] Estoup A, Tailliez C, Crnuet J, et al. Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae) [J]. Mol Biol Evol, 1995, 12: 1074-1084.
    [5] Wang Z, Weber JL, Zhong G, et al. Survey of plant short tandem DNA repeats [J]. TAG Theoretical and Applied Genetics, 1994, 88: 1-6.
    [6] Lagercrantz U, Ellegren H, Andersson L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates [J]. Nucl. Acids Res., 1993, 21: 1111-1115.
    [7] Schlotterer C, Tautz D. Slippage synthesis of simple sequence repeats [J] Nucleic Acids Res, 1992, 20: 211-215.
    [8] Cho YG, Ishii T, Temnykh S, et al. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.) [J]. TAG Theoretical and Applied Genetics, 2000, 100: 713-722.
    [9] Schlotterer C. Evolutionary dynamics of microsatellite DNA [J]. Chromosoma, 2000, 109: 365-371.
    [10] Levinson G, Gutman G. Slipped-strand mispairing: a major mechanism for DNA sequence evolution [J]. Mol Biol Evol, 1987, 4: 203-221.
    [11] Smith GP. Evolution of repeated DNA sequences by unequal crossover [J]. Science, 1976, 191: 528-535.
    [12] Jeffreys AJ, Tamaki K, Macleod A, et al. Complex gene conversion events in germline mutation at human minisatellites [J]. Nat Genet, 1994, 6: 136-145.
    [13] Ye H, Wang XQ, Gao TX, et al. EST-derived microsatellite in Pseudosciaena crocea and their applicability to related species [J]. Acta Oceanol. Sin., 2010, 29: 83-91.
    [14] Rossetto M. Sourcing of SSR markers from related plant species [M]// Henry RJ. Plant Genotyping: the DNA Fingerpriting of Plant. 2001, 211-224.
    [15]林凯东,罗琛.鲤的微卫星引物对草鱼基因组分析适用性研究[J].激光生物学报,2003,12(2):121-127.
    [16]魏东旺,楼允东,孙效文,等.鲤鱼微卫星分子标记的筛选[J].动物学研究2001,22(3):238-241.
    [17] Karagyozov L, Kalcheva I, Chapman V. Construction of random small-insert genomic libraries highly enriched for simple sequence repeats [J]. Proc. Natl. Acad. Sci., 1993, 21: 3911-3912.
    [18] Edwards KJ, Barker JHA. Microsatellite libraries enriched for several microsatellite sequences in plants [J]. Biotechniques, 1996, 20: 759-760.
    [19] Kandpal RP, Kandpal G, Weissman SM. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers [J]. Proc. Natl. Acad. Sci., 8: 88-92.
    [20] Matthew BH, Elaine LP. Universal linker and ligation procedures for construction of genomic DNAlibraries enriched for microsatellites [J]. Biotechniques, 1999, 27: 500-507.
    [21] James PC. A high through-put procedure for capturing microsatellites from complex plant genomes [J]. Plant Molecular Biology Reporter, 1998, 16: 341-349.
    [22]张义凤,孙效文,鲁翠云等.磁珠富集法制备翘嘴红鲌微卫星分子标记[J].农业生物技术学报,2008,16(4):610-615.
    [23] Suwi W, Prajuab L. Development of microsatellite markers in black tiger shrimp (Penaeus monodon Fabricius) [J]. Aquaculture, 2003, 224: 39-50.
    [24] Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation: a review [J]. Mol. Ecol., 2002, 11: 1-16.
    [25]任鹏.杂色鲍和大黄鱼微卫星标记的筛选[D].厦门:集美大学,2008.
    [26]曲妮妮,龚世园,黄桂菊,等.基于FIASCO技术的合浦珠母贝微卫星标记分离与筛选研究[J].热带海洋学报,2010,29(3):47-54.
    [27] Ender A. RAPD identification of microsatellites in Daphnia [J]. Molecular Ecology, 1996, 5: 437-441.
    [28] Ueno S. Development and characterization of microsatellite markers in Camellia japonica L. [J]. Molecular Ecology, 1999, 8: 335-346.
    [29] Lunt DH, Hutchinson WF, Carvalho GR, et al. An efficient method for PCR based isolation of microsatellite arrays (PIMA) [J]. Molecular Ecology, 1999, 8: 891-894.
    [30] Felsenfeld G, Davies DR, Rich A. Formation of a three-stranded polynucleotide molecule [J]. J. Am. Chem. Soc., 1957, 79: 2023-2024.
    [31] Ito T, Smith CL, Cantor CR. Sequence-specific DNA purification by triplex affinity capture [J]. Proc. Natl. Acad. Sci. USA, 1992, 89: 495-498.
    [32] Huang F, Widyatmoko-Anthonius YPBC, Susumu S. Enrichment of microsatellite DNAs using triplex affinity capture in Chamaecyparis botusa [J]. Journal of the Japanese Forest Society, 2005, 87(2): 153-156.
    [33] Alarcón JA, Magoulas A, Georgakopoulos T, et al. Genetic comparison of wild and farmed European stocks of the gilthead sea bream (Sparus aurata) [J]. Aquaculture, 2004, 230: 65-80.
    [34] Evans B, Bartlett J, Sweijd N, et al. Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra) and South Africa (Haliotis midae) [J]. Aquaculture, 2004, 233: 109-127.
    [35] Norris AT, Bradley DG, Cunningham E P. Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) stocks [J]. Aquaculture, 1999, 180: 247-264.
    [36] Pampoulie C, J?rundsdóttir TD, Steinarsson A, et al. Genetic comparison of experimental farmed strains and wild Icelandic stocks of Atlantic cod (Gadus morhua L.) [J]. Aquaculture, 2006, 261: 556-564.
    [37] Was A, Wenne R. Genetic differentiation in hatchery and wild sea trout (Salmo trutta) in the Southern Baltic at microsatellite loci [J]. Aquaculture, 2002, 204: 493-506.
    [38]梁宏伟,李忠,罗相忠,等.基于微卫星标记的5个尼罗罗非鱼品系的遗传多样性分析[J].生物多样性,2009,17(1):82-87.
    [39] Wang J. Estimation of effective population sizes from data on genetic markers [J]. Phil. Trans. R. Soc. B, 2005, 13: 1395-1409.
    [40] Shrimpton JM, Heath DD. Census vs. effective population size in chinook salmon: large-and small-scale environmental perturbation effects [J]. Molecular Ecology, 2003, 12: 2571–2583.
    [41] Charlesworth B. Effective population size and patterns of molecular evolution and variation [J]. Nature Genetics, 2009, 10: 195-204.
    [42] Hitoshi A, Robin SW, William RA, et al. Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms [J]. Molecular Ecology, 2007, 16: 953-966.
    [43] Dirk SS, Juha M. Demographic and genetic estimates of effective population and breeding size in the amphibian Rana temporaria [J]. Conservation Biology, 2007, 21: 142-151.
    [44] Beaumout MA. Detecting population expansion and decline using microsatellites [J]. Genetics Society of America, 1999, 153: 2013-2029.
    [45] Day S B, Bryant E H, Meffert L M. The influence of variable rates of inbreeding on fitness, environmental responsiveness, andevolutionary potential [J]. Evolution, 2003, 57: 1314-1324.
    [46]马大勇,胡红浪,孔杰.近交及其对水产养殖的影响[J].水产学报,2005,29:849-856.
    [47]王昕,陈宏,曹红鹤.中国10个地方猪种的群体近交程度分析.遗传,2006,28:1229-1232.
    [48]李思发,杨怀宇,邹曙明.快速近交对团头鲂遗传结构的影响和近交效应的估计[J].水产学报,2005,29 (2):161-165.
    [49] Gjerde B, Gunnes K, Gjedrem T. Effect of inbreeding on survival and growth in rainbow trout [J]. Aquaculture, 1983, 34: 327-332.
    [50] Kelly PD, Chu F, Woods IG, et al. Genetic linkage map of zebrafish genes and ESTs [J]. Genome Research, 2000, 10: 558-567.
    [51] Kimura T, Yoshida K, Shimada A, et al. Genetic linkage map of medaka with polymerase chain reaction lengthpolymorphisms [J]. Gene, 2005, 363: 24-31.
    [52] Ren G, Stphane M, Kamila TC, et al. A TypeⅠand TypeⅡmicrosatellite linkage map of rainbow trout (Oncorhynchus mykiss) with presump tive coverage of all chromosome arms [J]. BMC Genomics, 2006, 7(302): 12-13.
    [53] Inami M, Hatanaka A, Mitsuboshi T, et al. A microsatellite linkage map of red sea bream (Pagrus major) and mapping of QTL markers associated with resistance to Red Sea Bream Iridovirus (RSI V) [D]. A Plant & Animal GenomesⅫConference C, 2005.
    [54] Chistiakov DA, Hellemans B, Haley CS, et al. AMicrosatellite linkage map of the European sea bass Dicentrarchus labrax L. [J]. Genetics, 2005, 170: 1821-1826.
    [55] Wang CM, Zhu ZY, Lo LC, et al. A microsatellite linkage map of barramundi, Lates calcarifer [J]. Genetics, 2007, 175: 907-915.
    [56] Kai W, Kikuchi K, Fujita M, et al. A genetic linkage map for the tiger pufferfish, Takifugu rubripes [J]. Genetics, 2005, 171: 227-238.
    [57] Peichel CL, Nereng KS, Ohgi KA, et al. The genetic architecture of divergence between threespine stickleback species [J]. Nature, 2001, 414: 901-905.
    [58] Stem shom KC, Nolte AW, Tautz D. A genetic map of Cottus gobio (Pisces Teleostei) based on microsatellites can be linked to the physical map of Tetraodon nigroviridis [J]. J Evol Biol, 2005, 18(6): 1619-1624.
    [59] Rafaella F, Bruno L, Matina T, et al. A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L. [J]. Genetics, 2006, 174: 861-869.
    [60] Morishima K, Nakayama I, Arai K, et al. Genetic linkage map of the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) [J]. Genetics, 2007, 4: 227-241.
    [61] Telenius H, Carter NP, Bebb CE, et al. Degenerate oligonucleotide-primed PCR: General amplification of target DNA by a single degenerate primer [J]. Genomics, 1992, 13: 718-725.
    [62] Paunio T, Reima I, Syvanen AC. Preimplantation diagnosis by whole-genome amplification, PCR amplification, and solid-phase minisequencing of blastomere DNA [J]. Clin. Chem., 1996, 42: 1382-1390.
    [63] Kittler R, Stoneking M, Kayser M. A whole genome amplification method to generate long fragments from low quantities of genomic DNA [J]. Analytical Biochemistry, 2002, 300: 237-244.
    [64] Cheung VG, Nelson SF. Whole genome amplifcation using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA [J]. Proc. Natl. Acad. Sci., 1996, 93: 14676-14679.
    [65] Buchanan A V, Risch GM, Robichaux M, et al. Long DOP-PCR of rare archival anthropological samples [J]. Human Biology, 2000, 72: 911-925.
    [66] Fersht AR, Knill-Jones JW, Tsui WC. Kinetic basis of spontaneous mutations, misinsertion frequencies, proofreading specificities, and costs of proofreading by DNA polymerases of Escherichia coli [J]. J. Mol. Biol., 1982, 156: 37-51.
    [67] Hamilton SC, Farchaus JW, Davis MC. DNA polymerases as engines for biotechnology [J]. Bio Techniques, 2001, 31: 370-383.
    [68] Fehér LZ, Balázs M, Kelemen JZ, et al. Improved DOP-PCR-based representational whole gemome amplification using quantitative real-time PCR [J]. Diagn. Mol. Pathol., 2006, 15: 43-48.
    [69] Zhang L, Cui X, Schmitt K, et al. Whole genome amplification from a single cell: implications for genetic analysis [J]. Proc. Natl. Acad. Sci., 1992, 89: 5847-5851.
    [70] Heinm?ller E, Liu Q, Sun Y, et al. Toward efficient analysis of mutation in single cells from ethanol-fixed, paraffin-embedded, and immunohistochemically stained tissues [J]. Lab. Invest., 2002, 82: 443-453.
    [71] Dietmaier W, Hartmann A, Wallinger S, et al. Multiple mutation analyses in single tumor cells with improved whole genome amplification [J]. American Journal of Patbology, 1999, 154: 83-95.
    [72] Cha RS, Zarbl H, Keohavong P, et al. Mismatch amplification mutation assay (MAMA): applification to the c-H-ras gene [J]. PCR Methods applification, 1992, 2: 14-20.
    [73] Bottema CDK, Sommer SS. PCR amplification of specific alleles: rapid detection of known mutation and polymorphisms [J]. Mutat. Res., 1993, 288: 93-102.
    [74] Dean FB, Nelson JR, Giesler TL, et al. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymorase and multiply-primed rolling circle amplification [J]. Genome Research, 2001, 11: 1095-1099.
    [75] Dena FB, Hosono S, Fang L, et al. Comprehensive human genome amplification using multiple displacement [J]. Proc, Natl. Acad. Sci., 2002, 99: 5261-5266.
    [76] Hosono S, Faruqi AF, Dean FB, et al. Unbiased whole-genome amplification directly from clinical sample [J]. Genome research, 2003, 13: 954-964.
    [77] Detter JC, Jett JM, Lucas SM, et al. Isothermal strand-displacement amplification applications for high-throughtput genomics [J]. Genomics, 2002, 80: 691-698.
    [78] Paez JG, Lin M, Beroukhim R, et al. Genome coverage and sequence fidelity of 29 polymerased-based multiple-strand displacement whole-genome amplification [J]. Nucleic Acids. Res., 2004, 32: e71.
    [79] Nelson JR, Cai YC, Giesler TL, et al. TempliPhi phi 29 DNA polymerase based rolling circleamplification of templates for DNA sequencing [J]. Biotechniques Suppl, 2002, 32: 44-47.
    [80] Blanco L, Bernad A, Lazaro JM, et al. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication [J]. J. Biol. Chem., 1989, 264: 8935-8940.
    [81] Lage JM, Leamon JH, Pejovic T, et al. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH [J]. Gemome Research, 2003, 13: 294-307.
    [82] Kornberg A, Baker TA. DNA Replication [M]. New York: W.H. Freeman New York, 1992.
    [83] Esteban JA, Salas M, Blanco L. Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization [J]. J. Biol Chem., 1993, 268: 2719-2726.
    [84] Ludecke HJ, Senger G, Claussen U, et al. Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification [J]. Nature, 1989, 228: 348-350.
    [85] Tanabe C, Aoyagi K, Sakiyama T, et al. Evalution of a whole-genome amplification method based on adaptor-ligation PCR of randomly sheared genomic DNA [J]. Genes, Chromosomes and Cancer, 2003, 38: 168-176.
    [86] Richardson CC. Bacteriophage T7: minimal requirements for the replication of duplex DNA molecular [J]. Cell, 1983, 33: 315-317.
    [87] Frick DN, Baradaran K, Richardson CC. An N-terminal fragment of the gene 4 helicase/primase of bacteriophage T7 retains primase activity in the absence of helicase activity [J]. Proc. Natl Acad. Sci. USA, 1998, 95: 7957-7962.
    [88] Matson SW, Tabor S, Richardson CC. The gene 4 protein of bacteriophage T7. Characterization of helicase activity [J]. J. Biol. Chem., 1983, 258: 14017-14024.
    [89] Hori K, Mark DF, Richardson CC. Deoxyribonucleic acid polymerase of bacteriophage T7. Characterization of the exonuclease activities of gene 5 protein and the reconstituted polymerase [J]. J. Biol. Chem., 1979, 254: 11598-11604.
    [90] Tabor S, Huber HE, Richardson CC. Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7 [J]. J. Biol. Chem., 1987, 262: 16212-16223.
    [91] Kim YT, Tabor S, Bortner C, et al. Purification and characterization of the bacteriophage T7 gene 2.5 protein. A single-stranded DNA-binding protein [J]. J. Biol. Chem., 1992, 267: 15022-15031.
    [92] Jong AY, Ma JJ. Saccharomyces cerevisiae nucleoside-diphosphate kinase: purification, characterization, and substrate specificity [J]. Arch. Biochem. Biophys., 1991, 291: 241-246.
    [93] Cooperman BS, Chiu NY, Bruckmann R H, et al. Yeast inorganic pyrophosphatase.Ⅰ. New methods of purificity, assay, and crystallization [J]. Biochemistry, 1973, 12: 1665-1669.
    [94] McLeish MJ, Kenyon GL. Relating structure to mechanism in creatine kinase [J]. Crit. Rev. Biochem. Mol. Biol., 2005, 40: 1-20.
    [95] Phillips J, Eberwine JH. Antisense RNA amplification: a linear amplification method for analyzing the mRNA population from single living cells [J]. Methods, 1996, 10: 283-288.
    [96] Liu CL, Schreiber SL, Bernstein BE. Development and validation of a T7 based linear amplification for genomic DNA [J]. BMC Genomics, 2003, 4: 19-30.
    [97] Wild PJ, Stoehr R, Knuechel R, et al. Laser microdissection for microsatellite analysis in colon and breast cancer [J]. Methods in Molecular Biology, 2005, 293: 93-102.
    [98] Li J, Harris L, Mamon H, et al. Whole genome amplification of plasma-circulating DNA enables expanded screening for allelic imbalance in plasma [J]. Journal of Molecular Diagnostics, 2006, 8: 22-30.
    [99] Barker DL, Hansen MST, Faruqi AF, et al. Two methods of whole-genome amplification enable accurate genotyping across a 2320-SNP linkage panel [J]. Genome Research, 2004, 14: 901-907.
    [100] Wong KK, Tsang YTM, Shen J, et al. Allelic imbalance analysis by high-density single-nucleotide polymorphic allele (SNP) array with whole genome amplified DNA [J]. Nucleic Acids Research, 2004, 32: e69.
    [101] Simpson DJ, Bicknell EJ, Buch HN, et al. Genome-wide amplification and allelotyping of sporadic pituitary adenomas identify novel regions of genetic loss [J]. Genes, Chromosomes and Cancer, 2003, 37: 225-236.
    [102] Mutsuga N, Shahar T, Verbalis JG, et al. Selective gene expression in magnocellular neurons in rat supraoptic nucleus [J]. The Journal of Neuroscience, 2004, 24: 7174-7185.
    [103] Kosambi DD. The estimation of map distances from recombination values [J]. Ann Eugen, 1944, 12: 172-175.
    [104]戢福云,李奎,赵书红,等.单精子分型技术构建遗传连锁图谱的研究进展[J].国外医学遗传学分册,1998,21(2):96-100.
    [105] Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers [J]. Genetics, 1994, 137: 1121-21137.
    [106]林红.远缘杂交法结合RAPD技术对鲢、团头鲂遗传图谱的构建[D].南京:南京农业大学,2000.
    [107] Eriko O, Takuya N, Yoshitomo N, et al. Genetic linkage maps of two yellowtails (Seriola quinqueradiata and Seriola lalandi) [J]. Aquaculture, 2005, 244: 41-48.
    [108] Liao M, Zhang L, Yang G, et al. Development of silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) genetic maps using microsatellite and AFLP markers and a pseudo-testcross strategy [J]. Animal Genetics, 2007(38): 364-370.
    [109]岳志芹,王伟继,孔杰,等.AFLP分子标记构建中国对虾遗传连锁图谱的初步研究[J].高技术通讯,2004,14(5):88-93.
    [110]王伟继,孔杰,董世瑞,等.中国明对虾AFLP分子标记遗传连锁图谱的构建[J].动物学报,2006,52(3):575-584.
    [111] Wilson K, Li Y, Whan V, et al. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphisms [J] . Aquaculture, 2002, 204: 297-309.
    [112] Li Y, Byrne K, Miggiano E, et al. Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers [J]. Aquaculture, 2003, 219: 143-156.
    [113] Perez F, Erzao C, Zhinaula M, et al. A sex-specific linkage map of the white shrimp Penaeus (Litopenaeus) vannamei based on AFL P markers [J]. Aquaculture, 2004, 242: 105-118.
    [114] Yu Z, Guo X. Genetic linkage map of the eastern oyster, Crassostrea virginica Gmelin [J]. Biological Bulletin, 2003, 224: 327-338.
    [115] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual [M]. New York: Cold Spring Harbor Laboratory Press, 1989.
    [116] Williams JGK, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucl Acids Res, 1990, 18, 22: 6531-6535.
    [117] Zabeau M, Vos P. Selective restriction fragment amplification: ageneral method for DNA fingerprinting.Canada: 119557 [P], 03-01-1993.
    [118] Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting [J]. Nucl Acids Res, 1995, 23, 21: 4490-4414.
    [119] Weber JL, Wong C. Mutation of human short tandem repeats [J]. Hum Mol Genet, 1993, 2: 1123-1128.
    [120] Tautz D. Hypervariability of simple sequences as a general source forpolymorphic DNA markers [J]. Nucleic Acids Res, 1989, 17: 6463-6471.
    [121] Hamada H, Kakunaga T. A novel repeated element with Z-DNA-formingpotential is widely found in evolutionarily diverse eukaryotic genomes [J]. ProNatl Acad Sci USA, 1982, 79: 6465-6469.
    [122] Olson M, Hood L, Cantor C, et al. A common language forphisical mapping of the human genome [J]. Science, 1989, 245: 1434-1435.
    [123] Kimmerly W, Stultz K, Lewis K, et al. APl-based phisical map of the Drosophila euchromatic genome[J].Genome Res, 1996, 6: 414-430.
    [124] Dietrich WF, Miller J, Steen R, et al. A comprehensive genetic map of the mouse genome [J]. Nature, 1996, 380: 149-152.
    [125] Yong ND. A Cautiously optimistic vision for marker-assisted breeding [J]. Molecular Breeding, 1999, 15: 505-510.
    [126] Lander ES, Bostein D. Mapping Mendelian factors underlying quantitative traits using RFLP lingkage maps [J]. Genetics, 1989, 121: 185-199.
    [127] Postlethwait J H, Yan YL, Gates MA, et al. Vertebrate genome evolution and the zebrafish gene map [J]. Nat Genet, 1998, 18: 345-349.
    [128] Thorgaard GH, Allendorf FW, Knudson KL. Gene centromere mapping in rainbow trout: high interference over long map distance [J]. Genetics, 1983, 103: 771-783.
    [129] Postlethwait J, Johnson SL, Midson CN, et al. A genetic map for the zebrafish [J]. Science, 1994, 264: 699-703.
    [130] Gates M A, Kim L, Egan ES, et al. A genetic linkage map for zebrafish: Comparative analysis and localization of genes and expressed sequences [J]. Genome Res, 1999, 9: 334-347.
    [131] Barbazuk WB, Korf I, Kadavi C, et al. The syntenic relationship of the zebrafish and human genomes [J]. Genome Res, 2000, 10: 1351-1358.
    [132] Knapik EW, Goodman A, Atkinson OS. A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence lengthpolymorphisms [J]. Development, 1996, 123: 451-460.
    [133] Knapik EW, Goodman A, Ekker M, et al. A microsatellite genetic linkage map for zebrafish (Danio rerio) [J]. Nat Genet, 1998, 18: 338-343.
    [134] Shimoda N, Knapik EW, Ziniti J, et al. Zebrafish genetic map with 2000 microsatellite markers [J]. Genomics, 1999, 58: 219-232.
    [135] Wada H, Naruse K, Shimada A, et al. Genetic linkage map of a fish, the Japanese medaka Oryziao latipes [J]. Mol Mar BiolBiotech, 1995, 4(3): 269-274.
    [136] Ohtsuka M, Makino S , Yoda K, et al. Construction of a linkage map of the medaka (Oryzias latipes) and mapping of the Damutant locus defective in dorsoventral patterning[J]. Genome Res, 1999, 9: 1277-1287.
    [137] Naruse K, Fukamachi S, Mitani H, et al. A detailed linkage map of Medaka, Oryzias latipes: comparative genomics and genome evolution [J]. Genetics, 2000, 154: 1773-1784.
    [138] Liu ZJ, Nichols A, Li P, et al. Inheritance and usefulness of AFLP markers inchannel catfish (Ictalurus punctatus), blue catfish (I. furcatus) and their F1, F2 and backcross hybrids [J]. Mol. Gen. Genet., 1998, 258: 260-268.
    [139] Liu ZJ, Karsi A, Dunham RA. Development of polymorphic EST markers suitable for genetic linkage mapping of catfish [J]. Mar. Biotechnol., 1999, 1: 437-447.
    [140] Liu ZJ, Li P, Kucuktas H, et al. Development of AFLP markers for genetic linkage mapping analysis using channel catfish and blue catfish interspecific hybrids [J]. Trans. Am. Fish. Soc., 1999, 128: 317-327.
    [141] Liu ZJ, Karsi A, Li P, et al. An AFLP-based genetic linkagemap of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family [J]. Genetics, 2003, 165: 687-694.
    [142] Waldbieser GC, Bosworth BG, Nonneman DJ, et al. A microsatellite based genetic linkage map for channel catfish, Ictalurus punctatus [J]. Genetics, 2001, 158: 727-734.
    [143] Poompuang S, Na-Nakorn U. A preliminary genetic map of walking catfish (Clarias macrocephalus) [J]. Aquaculture, 2004, 232: 195-203.
    [144] Young WP, Wheeler PA, Coryell VH, et al. A detailed linkage map of rainbow trout produced using doubled haploids [J]. Genetics, 1998, 148: 1-13.
    [145] Sakamoto T, Danzmann RG, Gharbi K. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates [J]. Genetics, 2000, 155: 1331-45.
    [146] Kocher TD, Lee W J, Sobolewska H, et al. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus) [J]. Genetics, 1998, 148: 1225-1232.
    [147] Agresti J, Seki JS, Cnaani A, et al. Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci [J]. Aquaculture, 2000, 185: 43-56.
    [148] Coimbra MRM, Kobayashi K, Koretsugu S, et al. A genetic linkage map of the Japanese flounder, Paralichthys olivaceus [J]. Aquaculture, 2003, 220: 203-218.
    [149] Dimitry AC, Bart H, Chris SH, et al. A microsatellite linkage map of the European sea bass Dicentrarchus labrax L. [J]. Genetics, 2005, 170: 1821-1826.
    [150]孙效文,梁利群.鲤鱼的遗传连锁图谱(初报)[J].中国水产科学,2000(7):1-5.
    [151] Zhang L, Yang G, Guo S, et al. Construction of a genetic linkage map for silver carp (Hypophthalmichthys molitrix) [J]. Animal Genetics, 2010, 41: 523-530.
    [152] Shi Y H, Kui H, Guo X M, et al. Genetic linkage map of the pearl oyster, Pinctada martensii (Dunker) [J]. Aquaculture Research, 2009, 41: 35-44.
    [154]朱元鼎,伍汉霖.福建鱼类志(下卷)[M].福州:福建科技出版社,1985:101-136.
    [155]王小平.闽东大黄鱼养殖业现状及其发展对策[J].福建水产,2000,2 (6):52-57.
    [156]谢书秋,刘振勇.闽东大黄鱼养殖现状分析与发展对策[J].福建水产,2006,3 (13):95-97.
    [157]苏跃中,刘家富.大黄鱼人工繁殖及育苗技术的研究[J].现代渔业信息,1997,12 (5):21-27.
    [158]游岚.大黄鱼人工繁殖和育苗技术要点[J].水产科技情报,1997,24 (6):263-264.
    [159]叶启旺,陈勇.大黄鱼升温育苗技术的初步研究[J].水产科技情报,1997,24 (5):202-204.
    [160]朱振乐.大黄鱼人工育苗技术总结[J].水产学杂志,2000,13 (1):30-34.
    [161]严正凛,吴萍茹.外源激素对大黄鱼的催产效果[J].水产学报,1999,23 (2):202-205.
    [162]张彩兰,刘家富,李雅璀,等.福建省大黄鱼养殖现状分析与对策[J].上海水产大学学报,2002,11 (1):77-83.
    [163] Wang ZY, Xie FJ, Cai MY, et al. Aquaculture and breeding of large yellow croaker in China [R]. Texas: World Aquaculture Society, 2007.
    [164]王志勇.福建官井洋大黄鱼AFLP指纹多态性的研究[J].中国水产科学,2002,9(3):198-202.
    [165]翁朝红,王志勇,蔡明夷,等.不同倍性大黄鱼核仁数目银染观察[J].海洋学报,2009,31(6):136-141.
    [166]尤永隆,林丹军,陈莲云.大黄鱼的精子发生[J].动物学研究,2001,22(6):461-466.
    [167]尤永隆,林丹军.大黄鱼精子的超微结构[J].动物学报,1997,43(2):119-126.
    [168]林丹军,尤永隆,陈炳英.大黄鱼精子冷冻复苏后活力和超微结构的变化[J].福建师范大学学报,2006,2(3):71-76.
    [169]王军,全成干,苏永全,等.官井洋野生与养殖大黄鱼同工酶的研究[J].海洋科学,2001,25(6):39-41.
    [170]全成干,王军,丁少雄,等.大黄鱼养殖群体遗传多样性的同工酶[J].厦门大学学报,1997,83(4):584-588.
    [171]李明云,张海琪,薛良义,等.网箱养殖大黄鱼遗传多样性的同工酶和RAPD分析[J].中国水产科学,2003,1(6):521-525.
    [172]陈锦,黎中宝,方秀,等.大黄鱼野生与养殖群体遗传结构的比较研究[J].海洋科学,2010,43 (2):45-48.
    [173]管丹冬,李明云,叶帅东.岱衢族大黄鱼不同组织的同工酶谱[J].宁波大学学报,2008,12(1):34-38.
    [174] Wang J, Su YQ, Quan CG, et al. Genetic diversity of the wild and reared Pseudosciaena crocea [J]. Chinese Journal of Oceanology and Limnology, 2001, 19 (2): 152-156.
    [175]黄勤,陈曦,杨金先,等.福建养殖大黄鱼(Pseudosciaena crocea)RAPD标记机多态性调查[J].福建农业学报,20072,2(2):130-135.
    [176]黄良敏,谢仰杰,苏永全.闽-粤东族与岱衢族养殖大黄鱼的遗传多样性研究[J].厦门大学学报,2006,45(6):836-840.
    [177]丁诗华,黄丽英,张海琪,等.大黄鱼(Pseudosciaena crocea)岱衢洋选育群体和官井洋养殖群体的遗传差异分析[J].海洋与湖沼,2006,73(1):41-46.
    [178]王志勇,王艺磊,林利民,等.福建官井洋大黄鱼AFLP指纹多态性的研究[J].中国水产科学,2002,9(3):198-202.
    [179]刘颖,蔡明夷,刘贤德,等.大黄鱼与黄姑鱼杂交F1家系初孵仔鱼的AFLP分析[J].水产学报,2010,43(6):672-677.
    [180]王晓清,王志勇,柳晓春,等.人工雌核发育大黄鱼的AFLP分析[J].海洋与湖沼,2007,38(1):34-40.
    [181]王晓清,王志勇,谢中国,等.大黄鱼与鮸鱼杂交的遗传分析[J].水产学报,2008,32(1):51-57.
    [182]刘必谦,董闻琦,王亚军,等.岱衢族大黄鱼种质的AFLP分析[J].水生生物学报,2005,9(4):413-416.
    [183]黎中宝,方秀,陈锦,等.大黄鱼(Pseudosciaena crocea)养殖群体遗传多样性的降低[J].海洋与湖沼,2009,40(4):446-450.
    [184] Guo W, Wang ZY, Wang YL, et al. Isolation and characterization of six microsatellite markers in the large yellow croaker (Pseudosciaena crocea) [J]. Molec Ecol Notes, 2005, 5: 369-371.
    [185] Chang YM, Ding L, Wang WW, et al. Isolation and characterization of 11 microsatellite markers for the large yellow croaker, Pseudosciaena crocea [J]. Conserv Genet, 2009, 10: 1405-1408.
    [186] An HS, Cho, KC, Park JY, et al. Eleven new highly polymorphic microsatellite loci in the yellow croaker, Pseudosciaena crocea [J]. Molec Ecol Notes, 2005, 5: 866-868.
    [187]林能锋,许斌福,曾红.PCR法筛选大黄鱼微卫星DNA[J].福建畜牧兽医,2005,27(2):7-8.
    [188]郝君,孙效文,梁利群,等.大黄鱼微卫星标记的富集与筛选[J].中国水产科学,2006,13 (5):762-766.
    [189]丁少雄.分子标记在大黄鱼(Pseudosciaena crocea)遗传育种及石首鱼科(Sciaenidae)分子系统进化研究中的应用[D].厦门:厦门大学,2001.
    [190]叶小军,王志勇,刘贤德,等.大黄鱼连续两代雌核发育群体的微卫星标记分析[J].水生生物学报,2010,43(1):144-151.
    [191]蔡明夷,刘贤德,武祥伟,等.大黄鱼与黄姑鱼异源三倍体的诱导和微卫星分析[J].水产学报,2010,34:1629-1635.
    [192]赵广泰,刘贤德,王志勇,等.大黄鱼连续4代选育群体遗传多样性与遗传结构的微卫星分析[J].水产学报,2010,43(4):500-507.
    [193]王晓清,王志勇,柳小春,等.大黄鱼人工诱导雌核发育后代的微卫星标记分析[J].遗传,2006,28(7):831-837.
    [194]常玉梅,徐万土,池炳杰,等.养殖大黄鱼一个繁育群体亲本亲缘关系剖析[J].动物学研究,20090,30(6):620-626.
    [195]王文文,常玉梅,梁利群.微卫星分析四个大黄鱼群体的遗传多样性[J].水产学杂志,2009,22(2):6-11.
    [198]常玉梅,王文文,徐万土,等.人工繁育大黄鱼(Pseudosciaena crocea)群体F2及F3遗传差异分析[J].海洋与湖沼,2009,4(4):414-422.
    [199]李明云,朱俊杰,邬勇,等.大黄鱼线粒体DNA的限制性内切酶图谱[J].科技通报,2006,22(4):456-461.
    [200]李鹏飞,周永东,徐汉祥.大黄鱼、鮸鱼及美国红鱼线粒体DNA的Cyt b基因序列比较[J].南方水产,2008,4(3):43-47.
    [201]毛勇,蒋秋芬,曾华嵩,等.大黄鱼线粒体DNA控制区遗传多样性分析[J].厦门大学学报,2009,4(3):440-444.
    [202]蒙子宁,庄志猛,丁少雄,等.中国近海8种石首鱼类的线粒体16S rRNA基因序列变异及其分子系统进化[J].自然科学进展,2004,4(5):514-521.
    [203]张祖兴,李明云,朱俊杰.大黄鱼mtDNA和Cyt b基因的克隆与序列分析[J].水产科学,2006,25(12):626-631.
    [204]田兰香,梁冰,张树义,等.细胞色素b基因序列与7种石首鱼类的系统进化[J].台湾海峡,2004,23 (4):436-443.
    [205]陈艺燕,钱开诚,任岗,等.大黄鱼与小黄鱼细胞色素b基因全序列的比较分析[J].生态科学,2005,42(2):143-145.
    [206] Cui ZX, Liu Y, Li CP, et al. The complete mitochondrial genome of the large yellow croaker, Larimichthys crocea (Perciformes, Sciaenidae): Unusual features of its control region and the phylogenetic position of the Sciaenidae [J]. Gene, 2009, 432: 33-43.
    [207]王志勇,谢芳靖,刘家富等.大黄鱼的遗传改良研究[C]//中国科学院海洋科学与技术研讨会.海洋科学与技术论文摘要集.青岛:中国海洋大学,2006:71-73.
    [208] Xie FJ, Wang ZY, Liu JF. Induction of diploid gynogenesis in large yellow croaker, Pseudosciaena crocea[C]// Program & Abstracts of the 4th Marine Biology and Biotechnology Symposium. Hong Kong, 2004: 118-121.
    [209] Wang ZY. Studies on genetic improvement and sex control of large yellow croaker[C]// Abstract of 13th International Congress on Genes, Gen Families and Isozymes & 2005’Forum on Fisheries Science and Technology. Shanghai, 2005: 88-90.
    [210]王志勇,谢芳靖,刘家富.大黄鱼雌核发育二倍体诱导方法[P].中国,发明专利,1792347,2006.
    [211]李益云.大黄鱼雌核发育的诱导及遗传分析[D].厦门:集美大学,2007.
    [212]叶小军.大黄鱼人工养殖和雌核发育群体的微卫星标记分析[D].厦门:集美大学,2008.
    [213]吴清明.大黄鱼同质雌核发育的诱导及遗传分析[D].厦门:集美大学,2009.
    [214]马梁,王军,陈武各,等.鮸状黄姑鱼与大黄鱼人工杂交子代的胚胎发育[J].厦门大学学报,2002,41(3):378-381.
    [215]谢中国.大黄鱼(♀)与鮸鱼(♂)杂交及其子代的遗传分析[D].长沙:湖南农业大学,2006.
    [216]林琪,吴建绍,曾志南.静水压休克诱导大黄鱼三倍体[J].海洋科学,2001,(9):6-9.
    [217]王军,王德祥,尤颖哲等.大黄鱼三倍体诱导的初步研究[J].厦门大学学报,2001,40(4):927-930.
    [218]许建和,尤锋,吴雄飞等.冷休克法和静水压法人工诱导大黄鱼三倍体[J].中国水产科学,2006,13 (2) :206-210.
    [219]郑春静,吴雄飞,刘东海等.用流式细胞仪检测大黄鱼三倍体[J].细胞生物学杂志,2006,28:253-256.
    [220] Bassam B J, Caetano-Anolles G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels [J]. Anal Biochem, 1991, 196: 80-83.
    [221] Oetting WS, Lee HK, Flanders DJ, et al. Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers [J]. Genomics, 1995, 30: 450-458.
    [222] Edwards MC, Gibbs RA. Multiplex PCR: advantages, development, and applications [J]. Genome Research, 1994, 3: 65-75.
    [223] Mitchell SE, Kresovich S, Jester CA, et al. Application of multiplex PCR and fluorescent-based, semi-automated allele sizing technology for genotyping plant genetic resources [J]. Corp Science, 1997, 37: 617-624.
    [224] Schuelke M. An economic method for the fluorescent labeling of PCR fragments [J]. Nature Biotechnology, 2000, 18: 233-234.
    [225] Gel-Scan 3000 DNA Fragment Analysis Operators Manual Version 2.1. CORBETT ROBOTICS, Appendix A&B-preparation of denaturing Gels, 20-21.
    [226] Zhang LS, Vanessa B, Li SH, et al. 2003. Optimization of multiplex gel electrophoresis in sunflower SSR analysis using infrared fluorescence and tailed primers [J]. Acta. Botanica. Sinica., 2003, 45: 1312-1318.
    [227] Masi P, Spagnoletti Zeuli PL, Donini P. Development and analysis of multiplex microsatellite markers sets in common bean (Phaseolus vulgaris L.) [J]. Molecular Breeding, 2003, 11: 303-311.
    [228] Wattier R, Engel CR, Saumitou-Laprade P, et al. Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus GvlCT in Gracilaria gracilis (Rhodophyta) [J]. Molecular Ecology, 1998, 7: 1569-1573.
    [229] Dunning AM, Talmud T, Humphries SE. Errors in the polymerase chain reaction [J]. Nucleic Acids Research, 1988, 16: 10393.
    [230] Keohavong P, Thilly WG. Fidelity of DNA polymerases in DNA amplification [J]. Proc. Natl. Acad. SCI. USA, 1989, 86: 9253-9257.
    [231] Li H, et al. Amplification and analysis of DNA sequences in single human sperm and diplioid cells [J]. Nature, 1988, 335, 29: 414-417.
    [232] Postlethwait JH, Johnson SL, Midson CN, et al. A genetic linkage map for the zebrafish [J]. Science, 1994, 264: 699-703.
    [233] Chakravarti A, Lasher LK, Reefer JE. A maximum likelihood for estimating genome length using genetic linkage data [J]. Genetics, 1991, 128: 175-182.
    [234]杜长斌,楼允东,沈俊宝,等.微卫星分子标记技术在鱼类遗传连锁图谱构建中的应用[J].上海水产大学学报,2000,9(3):254-258.
    [235] Hubert R, et al. A new source of polymorphic DNA markers for sperm typing: analysis of microsatellite repeats in single cells [J]. Am.J.Hum.Genet., 1992, 51: 985-991.
    [236] Lien S, et al. A simple and powerful method for linkage analysis by amplification of DNA from single sperm cells [J]. Genomics, 1993, 18: 41-44.
    [237] Amheim N. Genetic analysis of by single typing [J]. Animal Biotechnology, 1994, 5(2): 82-88.
    [238]刘颖,蔡明夷,刘贤德,等.大黄鱼与黄姑鱼杂交F1初孵仔鱼的AFLP分析[J].水产学报,2010,34(6):672-677.
    [239] Ramsay L, Macaulay M, Degli IS, et al. Asimple sequence repeat-based linkage map of barley [J]. Genetics, 2000, 156: 1997-2006.
    [240] Torada A, Koike M, Mochida K, et al. SSR-based linkage map with new markers using an interspecific population of common wheat [J]. Theor Appl Genet, 2006, 112: 1042-1051.
    [241] Lyttle TW. Segregation distorters [J]. Annu. Rev. Genet., 1991, 25: 511-557.
    [242] Faris JD, Laddomada B, Gill BS, et al. Molecular mapping of segregation distortion loci in Aegilops taushii [J]. Genetics, 1998, 149: 319-327.
    [243] Guyomard R. High level of residual heterozygosity in gynogenetic rainbow trout, Salmo gairdneri [J]. Theor Appl Genet, 1984, 67: 307-316.
    [244] Thompson D, Scott AP. An analysis recombination data in gynogenetic diploid rainbow trout [J]. J Hered, 1984, 53: 441-452.
    [245] Allendorf FW, Seeb JE, Knudsen KL,et al. Gene-centromere mapping of 25 loci in rainbow trout[J]. J Hered, 1986, 77: 307-312.
    [246] Streisinger G, Singer F, Walker C, et al. Segregation analysis and gene-centromere distance in zebrafish [J]. Genetics, 1986, 112: 311-319.
    [247] Naruse K, Shima A. Linkage relationships of gene loci in the Medaka Oryzias latipes (Pisces: Oryziatidae), determined by backcrosses and gynogenesis [J]. Biochem. Genet., 1989, 27: 183-198.
    [248] Liu Q, Goudie CA, Simco B A, et al. Gene-centromere mapping of six enzyme loci in gynogenetic channel catfish[J]. J Hered, 1992, 83: 245-248.
    [249] Taniguchi N, Kijima A, Fukai J. High heterozygosity at Gpi-1 in gynogenetic diploids and triploids of ayu Plecoglossus altivelis [J]. Nipon Suisan Gakkaishi, 1987, 53: 717-720.
    [250] Matsuoka MP ,Gharrett AJ , Wilmot R L, et al. Gene-Centromere Distances of Allozyme loci in Even-and Odd-year Pink Salmon, (Oncorhynchus gorbuscha) [J].Genetica, 2004, 121: 1-11.
    [251] Lindner KR, Seeb JE, Habicht C, et al. Gene-centromere mapping of 312 loci in pink salmon by half-tetrad analysis [J]. Genome, 2000, 43: 538-549.
    [252] Suwa M, Arai K, Suzuki R. Suppression of the first cleavage and cytogeneticx studies on the gynogenetic loach [J]. Fisheries. Sci., 1994, 60: 673-681.
    [253] Kauffman EJ, Gestl EE, Kim DJ, et al. Microsatellite-centromere mapping in the zebrafish (Danio rerio) [J]. Genomics, 1995, 30: 337-341.
    [254] Estoup A, Presa P, Krieg F, et al. (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout) [J]. J Hered, 1993, 71: 488-496.
    [255] Aliah RS, Taniguchi N. Gene-centromere distance of six microsatellite DNA loci in gynogenetic nishikigoi (Cyprinus carpio) [J]. Fish Genet. Breed Sci., 2000, 29: 113-119.
    [256] Morishima K, Nakayama I, Arai K. Microsatellite-centromere mapping in the loach, Misgurnus anguillicaudatus [J]. Genetica, 2001, 111: 59-69.
    [257] Nomura K, Morishima K, Tanaka H, et al. Microsatellite-centromere mapping in the Japanese eel (Anguilla japonica) by half-tetrad analysis using induced triploid families [J]. Aquaculture, 2006, 257: 53-67.
    [258] Li YY, Cai MY, Wang ZY, et al. Microsatellite-centromere mapping in large yellow croaker (Pseudosciaena crocea) using gynogenetic diploid families [J]. Marine Biotechnology, 2008, 10: 83-90.
    [259]郭文久.微卫星在基因组上的分布与功能及其计算方法初步研究[D].成都:四川农业大学,2004.
    [260] Johnson SL, Africa D, Horne S, et al., Half-tetrad analysis in zebrafish: mapping the mutation and the centromere of linkage group I [J]. Genetics, 1995, 139: 1727-1735.
    [261]全成干,王军,丁少雄,等.大黄鱼染色体核型研究[J].厦门大学学报(自然科学版),2000,39 (1):107-110.
    [262]叶华.大黄鱼SSR遗传连锁图谱的构建及生长相关性状的QTL定位[D].长沙:湖南农业大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700