EBV/LMP1介导SPLUNC1调节miR-141-PTEN通路影响鼻咽癌细胞增殖与凋亡的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     研究发现DNA肿瘤病毒中有些病毒的编码产物能与宿主细胞内抑制细胞生长和促进细胞分化的蛋白结合,使其失活而发挥致瘤作用。EBV(Epstein-Barr virus, EBV)可能也具有此作用。我室克隆得到的鼻咽组织相关的特异性表达基因(nashopharynix associated specific, NASG),即短腭、肺及鼻咽上皮克隆(Short Palate, Lung and Nasal epithelium Clone1, SPLUNC1)在鼻咽癌(nasopharyngeal carcinoma, NPC)组织及细胞系中表达下调,是一个潜在的鼻咽癌抑瘤基因,初步研究发现SPLUNC1能促使感染EBV的细胞裂解,启动补体途径和抗体依赖细胞介导的细胞毒(antibody-dependent cell-mediatedcytotoxicity, ADCC)作用对EBV进行清除,并能通过抑制EBV关键基因潜伏膜蛋白1(Latent membrane protein1, LMP1)的表达降低EBV的致瘤能力。miRNA芯片筛查发现miR-141能受到SPLUNC1的调控。生物信息学分析显示第10号染色体丢失的磷酸酶及张力蛋白同源的基因(phosphatase and tensin homolog deleted on chromosome ten, PTEN)为miR-141的靶基因。那么SPLUNC1能否通过miR-141调控PTEN及其下游信号通路呢?EBV对SPLUNC1的表达会有影响吗?
     本课题拟在前期研究的基础上,对EBV与SPLUNC1之间的相互影响进行探讨,并明确SPLUNC1是否通过miR-141调控了PTEN及其下游丝苏氨酸激酶(serine-threonine kinase, Akt)信号通路,探索EBV整合入细胞后是否影响SPLUNC1及受其调控的miR-141-PTEN-Akt信号通路,以期为EBV的致瘤机制和SPLUNC1发挥抑瘤作用的信号通路增添新的一笔。
     [SPLUNC1抑制整合入细胞内的EBV关键基因表达的同时SPLUNC1自身表达受损]
     由于EBV不能直接感染上皮细胞,因此我们采用共培养的方式使细胞感染EBV。将构建的过表达SPLUNC1的HNE2细胞和空白对昭HNE2/GFP与B95-8细胞(能产EBV)共培养24小时,随后采用补体激活的细胞毒实验去除B95-8细胞并通过扩增猿猴特异性基因CAJA-DRBI明确B95-8细胞是否清除干净;结果显示:整合入过表达SPLUNC1的细胞内的EBV关键基因EBER、BZLF、LMP1表达明显低于空载体组;HNE2/SPLUNC1细胞在第1天细胞接触EBV时,细胞会应激性地增加SPLUNC1的表达以抵抗病毒的侵入,但是在病毒整合入细胞后第2天、3天、5天、7天、9天,细胞内SPLUNC1的表达会逐渐降低,并不能恢复到细胞感染病毒前水平。以上结果证实SPLUNC1能抑制整合入细胞内的EBV关键基因的表达,与此同时EBV整合入细胞后也能抑制SPLUNC1的表达。
     [SPLUNC1通过miR-141调控PTEN-Akt信号通路影响NPC细胞的增殖和凋亡]
     miRNA芯片显示miR-141受到了SPLUNC1的调控。我们通过实验证实鼻咽癌细胞过表达SPLUNC1能降低miR-141的表达,siRNA瞬时干扰SPLUNC1的表达后,miR-141表达明显增高;且miR-141的表达与细胞分化程度和恶性程度相关。通过显微切割获得纯化后的NPC组织和正常鼻咽上皮(normal nasopharyngeal epithelium,NPE)组织,qRT-PCR检测发现SPLUNC1在NPC组织中的表达明显比NPE组织要低,而miR-141在NPC组织中的表达明显比NPE组织要高,两者的表达呈现负相关。
     生物信息学分析显示PTEN为miR-141的靶基因。于是我们将miR-141的mimics及inhibitors转染NP69细胞和NPC细胞系,检测PTEN的表达情况。结果显示miR-141的mimics能显著减少PTEN的表达,而在转染miR-141的inhibitor后细胞内PTEN的表达明显增加;检测NPE和NPC组织中PTEN的表达时,也显示PTEN在NPC组织中的表达明显低于NPE, NPC组织中PTEN和miR-141的表达呈负相关。
     既然miR-141受到SPLUNC1的调控,PTEN是miR-141的靶基因,那么SPLUNC1能否调控PTEN的表达。通过过表达SPLUNC1和加入全反式维甲酸来增加NPC细胞SPLUNC1的表达,证实SPLUNC1表达增加后,PTEN的表达也增加了;同时免疫荧光检测显示SPLUNC1并不影响PTEN在细胞内的分布。干扰SPLUNC1的表达又可明显下调PTEN的表达。随后在过表达SPLUNC1的NPC细胞系中转入miR-141的mimics,检测发现miR-141的mimics可部分抑制SPLUNC1上调PTEN的表达。其结果说明SPLUNC1除了通过miR-141影响PTEN外,还可能通过其它通路来影响PTEN的表达。
     PTEN参与细胞增殖和凋亡的信号通路主要是通过Akt信号通路来发挥作用。因此我们检测了NPC细胞过表达SPLUNC1后对Akt信号通路的影响,发现过表达SPLUNC1能明显抑制p-Akt的表达,干扰SPLUNC1后p-Akt的表达则明显增加,说明SPLUNC1能通过PTEN影响Akt的磷酸化和活化。通过采用PTEN的抑制剂BPV处理过表达SPLUNC1的细胞系,证实SPLUNC1还能够部分拮抗PTEN的抑制剂BPV对细胞Akt信号通路的影响。
     随后我们又通过流式细胞术证实过表达SPLUNC1能将细胞周期阻滞在G1期;SPLUNC1能上调p27蛋白的表达,下调cyclin D和cyclin E、CDK2蛋白的表达;同时还发现SPLUNC1能拮抗BPV的促增殖和抗凋亡作用。裸鼠成瘤实验进一步证实过表达SPLUNC1能通过调控PTEN-Akt通路抑制细胞增殖和诱导细胞凋亡,进而抑制裸鼠移植瘤的形成。
     [EBV/LMP1与SPLUNC1相互影响共同调控miR-141-PTEN-Akt信号通路]
     LMP1被广泛认为是EBV基因组中的重要致瘤基因。通过应用过表达LMP1的正常鼻咽上皮细胞系NP69-LMP1,发现细胞内LMP1高表达时SPLUNC1的表达极低,miR-141的表达则较高,引起PTEN表达降低而激活Akt信号通路。但NP69-LMP1细胞过表达SPLUNC1后,LMP1的表达明显被抑制,并上调PTEN的表达而抑制Akt通路的激活。结果说明LMP1能通过抑制:SPLUNC1进而影响miR-141-PTEN-Akt通路,但恢复细胞内SPLUNC1的表达又能抑制LMP1的表达,并增加PTEN的表达,从而导致下游Akt通路的失活。
     综上所述,我们发现SPLUNC1能与EBV存在相互影响;SPLUNC1可通过下调miR-141上调PTEN的表达,进而负性调控Akt信号转导通路抑制NPC细胞的增殖,诱导NPC细胞凋亡;EBV/LMP1可通过抑制SPLUNC1的表达影响miR-141-PTEN-Akt信号通路。因此我们提出EBV DNA整合于细胞染色体可能导致了EBV与宿主细胞关键基因相互影响,进而影响了宿主细胞的信号通路,这可能为EBV的致瘤机制之一。
[Background]
     It has been reported that some viral proteins in DNA tumor virus such as EBV/HBV can combine with the cell proteins, in which the proteins inhibiting cell proliferation and promoting cell differentiation in the host cell should be inactivated and the host cell can be resulted in malignant transformed. We previously identified a short palate, lung and nasal epithelium clone gene (SPLUNC1), which was a tissue-specific gene of nasopharyngeal epithelia. We also found that SPLUNC1was down-regulated in nasopharyngeal carcinoma (NPC) and proposed that SPLUNC1was a tumor suppression gene candidate. Our previous studies showed that SPLUNC1could accelerate the lysis and apoptosis of EBV infected cells and initiated antibody-dependent cell-mediated cytotoxicity, which participated in clearance process of EBV and also decreased the expression of EBV encoded Latent membrane protein1(LMP1) and consequently inhibited the tumorgencity of EBV. From the differential analysis of the microRNA (miRNA) expression profiles of over-expressed SPLUNC1NPC cells, miR-141expression could be regulated by SPLUNC1in NPC cells. Bioinformatics analysis revealed that probably phosphatase and tensin homolog deleted on chromosome ten (PTEN) was one of the target genes of miR-141. And then whether PTEN and its downstream molecules could be regulated by miR-141and whether EBV have effects on the expression of SPLUNC1is yet unknown.
     In this study, we have indentified SPLUNC1as a negative regulatory molecule of LMP1, and the expression of SPLUNC1also can be down-regulated by EBV infection in NPC cells. We have also showed that SPLUNC1can regulate PTEN and Akt signaling pathway through targeting miR-141and that LMP1could regulate the Akt signaling pathway by down-regulating SPLUNC1.
     [The carcinogenesis of EBV can been inhibited by SPLUNCl,in turn, EBV also suppresed the expression of SPLUNC1in NPC.]
     We employed co-culture system between B cells and NPC cells to obtain EBV-infected NPC cells and detected the expression level of key genes of EBV in NPC cells by RT-PCR. The results revealed that SPLUNC1could inhibit the expression of EBV related-genes, such as EBER, BZLF and LMP1. We also found that SPLUNC1increased responsively one day after that SPLUNC1-overexpressing HNE2cells contacted with EBV. However, the mRNA level of SPLUNC1decreased gradually after2days. The abovementioned results indicate that SPLUNC1can inhibit the expression of EBV key genes, and also the level of SPLUNC can be regulated by EBV infection.
     [SPLUNC1regulates NPC cell proliferation or apoptosis through miR-141-PTEN-Akt pathway]
     Previous analysis of miRNA expression profiles showed that miR-141was down-regulated by SPLUNC1. To confirm the result, we detected the expression of miR-141after SPLUNC1was over-expressed or knocked down. The results showed that SPLUNC1actually could decrease the expression of miR-141. We also used qRT-PCR to measure miR-141and SPLUNC1mRNA levels in NPC tissue samples. miR-141showed increased expression levels in NPC tissues compared with nasopharyngeal epithelial tissues, whereas SPLUNC1showed an inverse expression pattern. And the expression of miR-141negatively correlated with SPLUNC1.
     Bioinformatics software predicted that miR-141could bind to the3' untranslated region (UTR) of PTEN. We also demonstrated that the expression of PTEN could be down-regulated by miR-141. Meanwhile, expression levels of PTEN were also found to be down-regulated in NPC tissues in contrast to nasopharyngeal epithelial tissues.
     Given abovementioned results, we explored the expression of PTEN in SPLUNC1-over-expressed NPC cells and NPC cells treated with ATAR. We demonstrated that SPLUNC1could increase the expression of PTEN, but not have effects on localization of PTEN. These results were furtherly confirmed by the knockdown of SPLUNC1. To determine whether SPLUNC1could regulate the expression of PTEN through targeting miR-141, we assessed the expression of PTEN in SPLUNC1-overexpressed NPC cells, which were transfected with the miR-141mimics. The result showed that the up-regulation of PTEN by SPLUNC1was partially involved with miR-141.
     Considering that PTEN be participated in the signaling pathway of proliferation and apoptosis mainly through regulating Akt pathway, we assessed the activation of Akt in SPLUNC1-overexpressed NPC cells and revealed that Akt phosphorylation were inhibited by SPLUNC1. The downstream molecule, phosphorylated MDM2, was also inhibited by SPLUNC1, but GSK3β and total MDM2. Then we used the PTEN inhibitor BVP and found that the activity of BVP was partly inhibited by SPLUNC1.
     Next we detected that SPLUNC1can result in tumor cell growth arrest at the G1to S transition of the cell cycle, increase critical cell cycle regulatory proteins p27expression significantly and decrease the expression of cyclin D1, D2, D3, E2, and cyclin-dependent kinase2(CDK2). We revealed that SPLUNC1could efficiently inhibit the BVP-induced proliferation. We also observed that SPLUNC1could inhibit tumorgenesis through PTEN-Akt pathway in vivo.
     [SPLUNC1is involvement in the miR-141-PTEN-Akt pathway and its expression interference by EBV/LMP1]
     To clarify the mechanism that SPLUNC1was down-regulated by EBV, We determined the effects of EBV major tumorgenetic gene LMP1on the expression of SPLUNC1. The results showed that LMP1could inhibit the expression of SPLUNC1, up-regulate the level of miR141. And then PTEN expression was decreased and the Akt pathway was activated. However, when SPLUNC1was re-expressed in the LMP1-overexpressed cells, LMP1expression was inhibited and PTEN was increased again.
     In conclusion, the carcinogenesis of EBV could be inhibited by SPLUNC1, and in turn, EBV and its major tumorgenetic gene LMP1also could suppress the expression of SPLUNC1in NPC cells. SPLUNC1could regulate NPC cell proliferation or apoptosis through PTEN-Akt pathway by targeting miR-141. Thus EBV/LMP1regulated cell progression and apoptosis probably through SPLUNC1and its downstream molecules.
引文
[1]Chan AS, To KF, Lo KW, et al. High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from southern Chinese. Cancer Res,2000,60(19):5365-5370.
    [2]Huang DP, Lo KW, van Hasselt CA, et al. A region of homozygous deletion on chromosome 9p21-22 in primary nasopharyngeal carcinoma. Cancer Res,1994, 54(15):4003-4006.
    [3]Mutirangura A, Tanunyutthawongese C, Pornthanakasem W, et al. Genomic alterations in nasopharyngeal carcinoma:loss of heterozygosity and Epstein-Barr virus infection. Br J Cancer,1997,76(6):770-776.
    [4]Raab-Traub N. Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol,2002,12(6):431-441.
    [5]Xiong W, Zeng ZY, Xia JH, et al. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res,2004,64(6): 1972-1974.
    [6]Thompson MP, Kurzrock R. Epstein-Barr virus and cancer. Clin Cancer Res, 2004,10(3):803-821.
    [7]Park SG, Min JY, Chung C, et al. Tumor suppressor protein p53 induces degradation of the oncogenic protein HBx. Cancer Lett,2009,282(2):229-237.
    [8]Zhang B, Nie X, Xiao B, et al. Identification of tissue-specific genes in nasopharyngeal epithelial tissue and differentially expressed genes in nasopharyngeal carcinoma by suppression subtractive hybridization and cDNA microarray. Genes Chromosomes Cancer,2003,38(1):80-90.
    [9]He Y, Zhou G, Zhai Y, et al. Association of PLUNC gene polymorphisms with susceptibility to nasopharyngeal carcinoma in a Chinese population. J Med Genet,2005,42(2):172-176.
    [10]周后德.固有免疫分泌蛋白SPLUNC1的鉴定及其参与鼻咽癌细胞凋亡与分化的作用机制研究.博士学位论文.长沙:中南大学,2005.
    [11]Beamer LJ. Structure of human BPI (bactericidal/permeability-increasing protein) and implications for related proteins. Biochem Soc Trans,2003,31(Pt 4):791-794.
    [12]Chu HW, Thaikoottathil J, Rino JG, et al. Function and regulation of SPLUNC1 protein in Mycoplasma infection and allergic inflammation. J Immunol,2007, 179(6):3995-4002.
    [13]Levy O, Ooi CE, Elsbach P, et al. Antibacterial proteins of granulocytes differ in interaction with endotoxin. Comparison of bactericidal/permeability-increasing protein, p15s, and defensins. J Immunol,1995,154(10):5403-5410.
    [14]Zhou HD, Li XL, Li GY, et al. Effect of SPLUNC1 protein on the Pseudomonas aeruginosa and Epstein-Barr virus. Mol Cell Biochem,2008,309(1-2):191-197.
    [15]Mattick JS. Non-coding RNAs:the architects of eukaryotic complexity. EMBO Rep,2001,2(11):986-991.
    [16]Mattick JS. Challenging the dogma:the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays,2003,25(10):930-939.
    [17]Calin GA, Croce CM. MicroRNA-cancer connection:the beginning of a new tale. Cancer Res,2006,66(15):7390-7394.
    [18]Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer,2006,6(4):259-269.
    [19]Kiss AM, Jady BE, Bertrand E, et al. Human box H/ACA pseudouridylation guide RNA machinery. Mol Cell Biol,2004,24(13):5797-5807.
    [20]Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res,2007,67(18):8699-8707.
    [21]Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol,2008,110(1): 13-21.
    [22]Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology,2006,130(7):2113-2129.
    [23]Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A,2008, 105(30):10513-10518.
    [24]Betel D, Wilson M, Gabow A, et al. The microRNA.org resource:targets and expression. Nucleic Acids Res,2008,36(Database issue):D149-153.
    [25]Griffiths-Jones S. miRBase:the microRNA sequence database. Methods Mol Biol,2006,342:129-138.
    [26]Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet,2005,37(5):495-500.
    [27]Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell,2003,115(7):787-798.
    [28]Zhang L, Deng T, Li X, et al. microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network. Carcinogenesis,2010,31(4):559-566.
    [29]Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet,1997,15(4):356-362.
    [30]Stocker H, Andjelkovic M, Oldham S, et al. Living with lethal PIP3 levels: viability of flies lacking PTEN restored by a PH domain mutation in Akt/PKB. Science,2002,295(5562):2088-2091.
    [31]Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet,2006,7(8): 606-619.
    [32]Cully M, You H, Levine AJ, et al. Beyond PTEN mutations:the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer,2006, 6(3):184-192.
    [33]Manning BD, Cantley LC. AKT/PKB signaling:navigating downstream. Cell, 2007,129(7):1261-1274.
    [34]She QB, Solit DB, Ye Q, et al. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell,2005,8(4):287-297.
    [35]Fan SQ, Ma J, Zhou J, et al. Differential expression of Epstein-Barr virus-encoded RNA and several tumor-related genes in various types of nasopharyngeal epithelial lesions and nasopharyngeal carcinoma using tissue microarray analysis. Hum Pathol,2006,37(5):593-605.
    [36]Liu YY, Liu GX, Li ZX, et al. Expression and clinical significance of PTEN and Bcl-2 in nasopharyngeal carcinoma tissue. Cancer prevention and control research,2009,36(2):115-118.
    [37]谷化平.Survivin和PTEN在鼻咽癌组织表达及其临床意义.青岛大学医学院学报,2008,44(4):331-334.
    [38]陈英杰,刘建,陶雅君,等.PTEN和P13K在鼻咽癌中的表达及意义.中国老年学杂志,2008,28(12).
    [39]Mosialos G, Birkenbach M, Yalamanchili R, et al. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell,1995,80(3):389-399.
    [40]Kaye KM, Izumi KM, Kieff E. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A, 1993,90(19):9150-9154.
    [41]Lin CT, Kao HJ, Lin JL, et al. Response of nasopharyngeal carcinoma cells to Epstein-Barr virus infection in vitro. Lab Invest,2000,80(8):1149-1160.
    [42]Maria V, Stacie LL, Sheri MK, et al. EBV-encoded LMP1 indirectly activates the Jak/STAT pathway through production of IFN-{gamma}. The FASEB Journal,2008,22:856.816.
    [43]Dawson CW, Laverick L, Morris MA, et al. Epstein-Barr virus-encoded LMP1 regulates epithelial cell motility and invasion via the ERK-MAPK pathway. J Virol,2008,82(7):3654-3664.
    [44]宋立兵,汪慧民,曾木圣,等.鼻咽癌细胞株SUNE-1异质性研究.癌症,1998,17(5):324-327.
    [45]宋立兵,鄢践,汪慧民,等.鼻咽癌细胞亚株不同成瘤与转移潜能的分子机制.癌症,2002,21(2):158-162.
    [46]Tsao SW, Wang X, Liu Y, et al. Establishment of two immortalized nasopharyngeal epithelial cell lines using SV40 large T and HPV16E6/E7 viral oncogenes. Biochim Biophys Acta,2002,1590(1-3):150-158.
    [47]Chang Y, Tung CH, Huang YT, et al. Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol,1999,73(10):8857-8866.
    [48]He YW, Zeng J, Ou XL, et al. [Proliferation cycle changes of Epstein-Barr virus in nasopharyngeal carcinoma cell line CNE after infection]. Ai Zheng,2008, 27(5):455-459.
    [49]江培洲,沈新明,吕丽春,等.细胞间接触是EB病毒自发感染人类上皮细胞的有效途径.中国病毒学,2004,19(1):1-5.
    [50]Chan AT, Teo PM, Johnson PJ. Nasopharyngeal carcinoma. Ann Oncol,2002, 13(7):1007-1015.
    [51]Wei WI, Sham JS. Nasopharyngeal carcinoma. Lancet,2005,365(9476): 2041-2054.
    [52]Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol,2002,12(6):421-429.
    [53]Faivre S, Janot F, Armand JP. Optimal management of nasopharyngeal carcinoma. Curr Opin Oncol,2004,16(3):231-235.
    [54]Guo X, Zeng Y, Deng H, et al. Genetic Polymorphisms of CYP2E1, GSTP1, NQO1 and MPO and the Risk of Nasopharyngeal Carcinoma in a Han Chinese Population of Southern China. BMC Res Notes,2010,3:212.
    [55]Lo KW, To KF, Huang DP. Focus on nasopharyngeal carcinoma. Cancer Cell, 2004,5(5):423-428.
    [56]Ma BB, Chan AT. Recent perspectives in the role of chemotherapy in the management of advanced nasopharyngeal carcinoma. Cancer,2005,103(1): 22-31.
    [57]Manavis J, Sivridis L, Koukourakis MI. Nasopharyngeal carcinoma:the impact of CT-scan and of MRI on staging, radiotherapy treatment planning, and outcome of the disease. Clin Imaging,2005,29(2):128-133.
    [58]O'Meara WP, Lee N. Advances in nasopharyngeal carcinoma. Curr Opin Oncol, 2005,17(3):225-230.
    [59]Ren ZF, Liu WS, Qin HD, et al. Effect of family history of cancers and environmental factors on risk of nasopharyngeal carcinoma in Guangdong, China. Cancer Epidemiol,2010,34(4):419-424.
    [60]Hu LF, Qiu QH, Fu SM, et al. A genome-wide scan suggests a susceptibility locus on 5p 13 for nasopharyngeal carcinoma. Eur J Hum Genet,2008,16(3): 343-349.
    [61]Li Y, Fu L, Wong AM, et al. Identification of genes with allelic imbalance on 6p associated with nasopharyngeal carcinoma in southern Chinese. PLoS One, 2011,6(1):e14562.
    [62]Bei JX, Li Y, Jia WH, et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet, 2010,42(7):599-603.
    [63]Peng C, Liu HY, Zhou M, et al. BRD7 suppresses the growth of Nasopharyngeal Carcinoma cells (HNE1) through negatively regulating beta-catenin and ERK pathways. Mol Cell Biochem,2007,303(1-2):141-149.
    [64]Zheng MZ, Qin HD, Yu XJ, et al Haplotype of gene Nedd4 binding protein 2 associated with sporadic nasopharyngeal carcinoma in the Southern Chinese population. J Transl Med,2007,5:36.
    [65]Li W, Miao X, Qi Z, et al. Hepatitis B virus X protein upregulates HSP90alpha expression via activation of c-Myc in human hepatocarcinoma cell line, HepG2. Virol J,2010,7:45.
    [66]Chung TW, Lee YC, Ko JH, et al. Hepatitis B Virus X protein modulates the expression of PTEN by inhibiting the function of p53, a transcriptional activator in liver cells. Cancer Res,2003,63(13):3453-3458.
    [67]Sugimoto M, Tahara H, Ide T, et al. Steps involved in immortalization and tumorigenesis in human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. Cancer Res,2004,64(10):3361-3364.
    [68]Benlloch S, Galbis-Caravajal JM, Alenda C, et al. Expression of molecular markers in mediastinal nodes from resected stage Ⅰ non-small-cell lung cancer (NSCLC):prognostic impact and potential role as markers of occult micrometastases. Ann Oncol,2009,20(1):91-97.
    [69]Cheng M, Chen Y, Yu X, et al. Diagnostic utility of LunX mRNA in peripheral blood and pleural fluid in patients with primary non-small cell lung cancer. BMC Cancer,2008,8:156.
    [70]Wang WB, Cui YG, Yao SY. [Message RNA expression of LUNX, CK19 and CEA genes in NSCLC with micrometastasis in lymph nodes]. Zhonghua Zhong Liu Za Zhi,2008,30(2):121-124.
    [71]Sentani K, Oue N, Sakamoto N, et al. Gene expression profiling with microarray and SAGE identifies PLUNC as a marker for hepatoid adenocarcinoma of the stomach. Mod Pathol,2008,21(4):464-475.
    [72]Yasui W, Oue N, Sentani K, et al. Transcriptome dissection of gastric cancer: identification of novel diagnostic and therapeutic targets from pathology specimens. Pathol Int,2009,59(3):121-136.
    [73]Garcia-Caballero A, Rasmussen JE, Gaillard E, et al. SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage. Proc Natl Acad Sci U S A,2009,106(27):11412-11417.
    [74]Rollins BM, Garcia-Caballero A, Stutts MJ, et al. SPLUNC1 expression reduces surface levels of the epithelial sodium channel (ENaC) in Xenopus laevis oocytes. Channels (Austin),2010,4(4):255-259.
    [75]McGillivary G, Bakaletz LO. The multifunctional host defense peptide SPLUNC1 is critical for homeostasis of the mammalian upper airway. PLoS One,2010,5(10):e13224.
    [76]Chu HW, Gally F, Thaikoottathil J, et al SPLUNC1 regulation in airway epithelial cells:role of Toll-like receptor 2 signaling. Respir Res,2010,11:155.
    [77]Brooks L, Yao QY, Rickinson AB, et al. Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells:coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol,1992,66(5):2689-2697.
    [78]Luo B, Wang Y, Wang XF, et al. Expression of Epstein-Barr virus genes in EBV-associated gastric carcinomas. World J Gastroenterol,2005,11(5): 629-633.
    [79]Westphal EM, Mauser A, Swenson J, et al. Induction of lytic Epstein-Barr virus (EBV) infection in EBV-associated malignancies using adenovirus vectors in vitro and in vivo. Cancer Res,1999,59(7):1485-1491.
    [80]Vaysberg M, Lambert SL, Krams SM, et al. Activation of the JAK/STAT pathway in Epstein Barr virus+-associated posttransplant lymphoproliferative disease:role of interferon-gamma. Am J Transplant,2009,9(10):2292-2302.
    [81]Wang C, Deng X, Li X, et al. [Matrix metalloproteinase 9 expression is induced by Epstein-Barr virus LMP1 via NF-kappa B or AP-1 signaling pathway in nasopharyngeal carcinoma cells]. Zhonghua Zhong Liu Za Zhi,2002,24(1): 9-13.
    [82]李瑞玉,陈明.EB病毒潜伏膜蛋白LMP1和基质金属蛋白酶MMP9表达与鼻咽癌转移的关系.福建医药杂志,2010,32(5):76-79.
    [83]Dreyfus DH, Liu Y, Ghoda LY, et al. Analysis of an ankyrin-like region in Epstein Barr Virus encoded (EBV) BZLF-1 (ZEBRA) protein:implications for interactions with NF-kappaB and p53. Virol J,2011,8:422.
    [84]Oh KJ, Kalinina A, Bagchi S. Destabilization of Rb by human papillomavirus E7 is cell cycle dependent:E2-25K is involved in the proteolysis. Virology, 2010,396(1):118-124.
    [85]Gammoh N, Isaacson E, Tomaic V, et al. Inhibition of HPV-16 E7 oncogenic activity by HPV-16 E2. Oncogene,2009,28(23):2299-2304.
    [86]Xian L, Zhao J, Wang J, et al. p53 Promotes proteasome-dependent degradation of oncogenic protein HBx by transcription of MDM2. Mol Biol Rep,2010, 37(6):2935-2940.
    [87]Snowdon J, Zhang X, Childs T, et al. The microRNA-200 family is upregulated in endometrial carcinoma. PLoS One,2011,6(8):e22828.
    [88]Cheng H, Zhang L, Cogdell DE, et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One, 2011,6(3):e17745.
    [89]Mainou BA, Everly DN, Jr., Raab-Traub N. Epstein-Barr virus latent membrane protein 1 CTAR1 mediates rodent and human fibroblast transformation through activation of PI3K. Oncogene,2005,24(46):6917-6924.
    [90]Mainou BA, Everly DN, Jr., Raab-Traub N. Unique signaling properties of CTAR1 in LMP1-mediated transformation. J Virol,2007,81(18):9680-9692.
    [91]Campos MA, Abreu AR, Nlend MC, et al. Purification and characterization of PLUNC from human tracheobronchial secretions. Am J Respir Cell Mol Biol, 2004,30(2):184-192.
    [92]Chen HC, Chen GH, Chen YH, et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer,2009,100(6):1002-1011.
    [93]Lindahl M, Stahlbom B, Tagesson C. Identification of a new potential airway irritation marker, palate lung nasal epithelial clone protein, in human nasal lavage fluid with two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight. Electrophoresis,2001,22(9):1795-1800.
    [94]Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphor-ylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem,1998,273(22):13375-13378.
    [95]Parsons R. Human cancer, PTEN and the PI-3 kinase pathway. Semin Cell Dev Biol,2004,15(2):171-176.
    [96]杨勇,魏强,姚启盛.PTEN, PI3K和Akt蛋白在膀胱移行细胞癌中的表达及临床意义.Journal of Clinical Urology,2008,23(3):30-34.
    [97]Leslie NR, Gray A, Pass I, et al. Analysis of the cellular functions of PTEN using catalytic domain and C-terminal mutations:differential effects of C-terminal deletion on signalling pathways downstream of phosphoinositide 3-kinase. Biochem J,2000,346 Pt 3:827-833.
    [98]Simpson L, Parsons R. PTEN:life as a tumor suppressor. Exp Cell Res,2001, 264(1):29-41.
    [99]Waite KA, Eng C. Protean PTEN:form and function. Am J Hum Genet,2002, 70(4):829-844.
    [100]Stambolic V, MacPherson D, Sas D, et al. Regulation of PTEN transcription by p53. Mol Cell,2001,8(2):317-325.
    [101]Di YP, Harper R, Zhao Y, et al. Molecular cloning and characterization of spurt, a human novel gene that is retinoic acid-inducible and encodes a secretory protein specific in upper respiratory tracts. J Biol Chem,2003,278(2): 1165-1173.
    [102]Bingle L, Cross SS, High AS, et al. SPLUNC1 (PLUNC) is expressed in glandular tissues of the respiratory tract and in lung tumours with a glandular phenotype. J Pathol,2005,205(4):491-497.
    [103]Hettinger K, Vikhanskaya F, Poh MK, et al. c-Jun promotes cellular survival by suppression of PTEN. Cell Death Differ,2007,14(2):218-229.
    [104]Han B, Dong Z, Liu Y, et al. Regulation of constitutive expression of mouse PTEN by the 5'-untranslated region. Oncogene,2003,22(34):5325-5337.
    [105]Okahara F, Ikawa H, Kanaho Y, et al. Regulation of PTEN phosphorylation and stability by a tumor suppressor candidate protein. J Biol Chem,2004,279(44): 45300-45303.
    [106]Wang X, Trotman LC, Koppie T, et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell,2007,128(1):129-139.
    [107]Okahara F, Itoh K, Nakagawara A, et al. Critical role of PICT-1, a tumor suppressor candidate, in phosphatidylinositol 3,4,5-trisphosphate signals and tumorigenic transformation. Mol Biol Cell,2006,17(11):4888-4895,
    [108]Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J, 1996,10(9):940-954.
    [109]Bingle L, Barnes FA, Cross SS, et al. Differential epithelial expression of the putative innate immune molecule SPLUNC1 in cystic fibrosis. Respir Res,2007, 8:79.
    [110]Cho SH, Lee CH, Ahn Y, et al. Redox regulation of PTEN and protein tyrosine phosphatases in H(2)O(2) mediated cell signaling. FEBS Lett,2004,560(1-3): 7-13.
    [111]Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res,1997,57(11):2124-2129.
    [112]Knobbe CB, Reifenberger G. Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3'-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol,2003,13(4): 507-518.
    [113]Goberdhan DC, Wilson C. PTEN:tumour suppressor, multifunctional growth regulator and more. Hum Mol Genet,2003,12 Spec No 2:R239-248.
    [114]Hagenbeek TJ, Naspetti M, Malergue F, et al. The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J Exp Med,2004,200(7):883-894.
    [115]Stambolic V, Tsao MS, Macpherson D, et al. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/-mice. Cancer Res,2000,60(13):3605-3611.
    [116]Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol,2004,22(14):2954-2963.
    [117]Stiles B, Gilman V, Khanzenzon N, et al. Essential role of AKT-1/protein kinase B alpha in PTEN-controlled tumorigenesis. Mol Cell Biol,2002,22(11): 3842-3851.
    [118]Whang YE, Yuan XJ, Liu Y, et al. Regulation of sensitivity to TRAIL by the PTEN tumor suppressor. Vitam Horm,2004,67:409-426.
    [119]Weng LP, Smith WM, Brown JL, et al. PTEN inhibits insulin-stimulated MEK/MAPK activation and cell growth by blocking IRS-1 phosphorylation and IRS-1/Grb-2/Sos complex formation in a breast cancer model. Hum Mol Genet, 2001,10(6):605-616.
    [120]Liu JL, Sheng X, Hortobagyi ZK, et al. Nuclear PTEN-mediated growth suppression is independent of Akt down-regulation. Mol Cell Biol,2005,25(14): 6211-6224.
    [121]Murthy SS, Tosolini A, Taguchi T, et al. Mapping of AKT3, encoding a member of the Akt/protein kinase B family, to human and rodent chromosomes by fluorescence in situ hybridization. Cytogenet Cell Genet,2000,88(1-2):38-40.
    [122]Carracedo A, Pandolfi PP. The PTEN-PI3K pathway:of feedbacks and cross-talks. Oncogene,2008,27(41):5527-5541.
    [123]Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol, 2006,18(1):77-82.
    [124]Yuan TL, Cantley LC. PI3K pathway alterations in cancer:variations on a theme. Oncogene,2008,27(41):5497-5510.
    [125]Erkanli S, Kayaselcuk F, Kuscu E, et al. Expression of survivin, PTEN and p27 in normal, hyperplastic, and carcinomatous endometrium. Int J Gynecol Cancer, 2006,16(3):1412-1418.
    [126]Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal,2002,14(5):381-395.
    [127]Jeong SJ, Pise-Masison CA, Radonovich MF, et al. Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene,2005,24(44):6719-6728.
    [128]Lee SH, Kim HS, Park WS, et al. Non-small cell lung cancers frequently express phosphorylated Akt; an immunohistochemical study. APMIS,2002, 110(7-8):587-592.
    [129]Mei YP, Zhou JM, Wang Y, et al. Silencing of LMP1 induces cell cycle arrest and enhances chemosensitivity through inhibition of AKT signaling pathway in EBV-positive nasopharyngeal carcinoma cells. Cell Cycle,2007,6(11): 1379-1385.
    [130]Yip WK, Leong VC, Abdullah MA, et al. Overexpression of phospho-Akt correlates with phosphorylation of EGF receptor, FKHR and BAD in nasopharyngeal carcinoma. Oncol Rep,2008,19(2):319-328.
    [131]Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell, 2002,2(2):103-112.
    [132]Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta,2002,1602(1):73-87.
    [133]Kong G, Zhang J, Zhang S, et al. Upregulated microRNA-29a by hepatitis B virus X protein enhances hepatoma cell migration by targeting PTEN in cell culture model. PLoS One,2011,6(5):e19518.
    [134]Ha HL, Yu DY. HBx-induced reactive oxygen species activates hepatocellular carcinogenesis via dysregulation of PTEN/Akt pathway. World J Gastroenterol, 2010,16(39):4932-4937.
    [135]Yamasaki L. Role of the RB tumor suppressor in cancer. Cancer Treat Res,2003, 115:209-239.
    [136]Sherr CJ. Cell cycle control and cancer. Harvey Lect,2000,96:73-92.
    [137]Kang-Park S, Im JH, Lee JH, et al. PTEN modulates hepatitis B virus-X protein induced survival signaling in Chang liver cells. Virus Res,2006,122(1-2): 53-60.
    [1]Weston WM, LeClair EE, Trzyna W, et al. Differential display identification of plunc, a novel gene expressed in embryonic palate, nasal epithelium, and adult lung. J Biol Chem,1999,274:13698-13703.
    [2]Bingle CD, Bingle L. Characterisation of the human plunc gene, a gene product with an upper airways and nasopharyngeal restricted expression pattern. Biochim Biophys Acta,2000,1493:363-367.
    [3]LeClair EE:Four reasons to consider a novel class of innate immune molecules in the oral epithelium. J Dent Res,2003,82(12):944-950.
    [4]Bingle CD, Gorr SU. Host defense in oral and airway epithelia:chromosome 20 contributes a new protein family. Int J Biochem Cell Biol,2004, 36(11):2144-2152.
    [5]LeClair E. Four reasons to consider a novel class of innate immune molecules in the oral epithelium. J Dent Res,2003,82(12):943-949
    [6]Zhang B, Nie X, Xiao B, et al. Identification of tissue2specific genes in nasopharyngeal epithelial tissue and differentially expressed genes in nasopharyngeal carcinoma by suppression subtractive hybridization and cDNA microarray. Genes Chromosomes Cancer,2003,38 (1):80-90.
    [7]Weston W M, LeClair E E, Trzyna W, et al. Differential display identification of plunc, a novel gene expressed in embryonic palate, nasal epithelium, and adult lung. J Biol Chem,1999,274 (19):13698-13703.
    [8]Sung Y K, Moon C, Yoo J Y, et al. Plunc, a member of the secretory gland protein family, is up2regulated in nasal respiratory epithelium after olfactory bulbectomy. J Biol Chem,2002,277 (15):12762-12769.
    [9]B. Ghafouri, B. Stahlbom, C. Tagesson, et al. Newly identified proteins in human nasal lavage fluid from non-smokers and smokers using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteomics,2002(1):112-120.
    [10]Bingle C D, Craven C J. Comparative analysis of the PLUNC (palate,lung and nasal epithelium clone) protein families. Biochem Soc Trans,2003,31(Pt4): 806-809.
    [11]Wheeler T T, Haigh B J, McCracken J Y, et al. The BSP30 salivary proteins from cattle, LUNX/PLUNC and von Ebnerp s minor salivary gland protein are members of the PSP/LBP superfamily of proteins.Biochim Biophys Acta,2002, 1579(2-3):92-100.
    [12]张必成,朱诗国,向娟娟,等.鼻咽癌表达下调基因NASG 3'UTR可变剪接分析及其在多种肿瘤中表达.癌症,2003,22(5):477-480.
    [13]Bingle C D, Craven C J. PLUNC:a novel family of candidate host defence proteins expressed in the upper airways and nasopharynx. Hum Mol Genet, 2002, 11(8):937-943.
    [14]Egland, K.A., Vincent, J.J., Strausberg, R., et al. Discovery of the breast cancer gene BASE using a molecular approach to enrich for genes encoding membrane and secreted proteins. Proc. Natl. Acad. Sci. U.S.A.2003,100,1099-1104.
    [15]Bingle C D, Leclair E E, Havard S, et al. Phylogenetic and evolutionary analysis of the PLUNC gene family. Protein Sci,2004,13(2):422-430.
    [16]Ghafouri B, Kihlstrom E, Stahlbom B, et al. PLUNC (palate, lung and nasal epithelial clone) proteins in human nasal lavage fluid. Biochem Soc Trans,2003, 31:810-814.
    [17]Di YP, Harper R, Zhao Y, et al. Molecular cloning and characterization of spurt, a human novel gene that is retinoic acid-inducible and encodes a secretory protein specific in upper respiratory tracts. J Biol Chem,2003,278:1165-1173.
    [18]Karl G Kohlgraf, Abbey R Ackermann, Kindra K Burnell,et al. Quantitation of SPLUNC1 in saliva with an xMAP particle-based antibody capture and detection immunoassay. Archives of oral biology,2011, DOI:10.1016.
    [19]Campos, M. A., A. R. Abreu, M. C. Nlend, et al. Purification and characterization of PLUNC from human tracheobronchial secretions. Am. J. Respir. Cell Mol. Biol,2004,30:184-192.
    [20]Di YP, Harper R, Zhao Y, et al. Molecular cloning and characterization of spurt, a human novel gene that is retinoic acid inducible and encodes a secretory protein specific in upper respiratory tracts. J Biol Chem,2003,278:1165-1173.
    [21]Bingle L, Cross SS, High AS, et al. SPLUNC1 (PLUNC) is expressed in glandular tissues of the respiratory tract and in lung tumours with a glandular phenotype. J Pathol,2005,205:491-497.
    [22]Bingle L, Barnes FA, Cross SS, et al. Differential epithelial expression of the putative innate immune molecule SPLUNC1 in cystic fibrosis. Respir Res,2007, 8:79.
    [23]Beamer L J. Structure of human BPI bactericidal/permeability-increasing protein and implications for related proteins. Biochem SocTrans,2003,31(Pt 4):791-794
    [24]Levy, O., C. E. Ooi, P. Elsbach, et al. Antibacterial proteins of granulocytes differ in interaction with endotoxin:comparison of bactericidal/permeability-increasing protein, pl5s, and defensins.J. Immunol,1995,154:5403-5410.
    [25]Hou-De Zhou, Song-Qin Fan, Jin Zhao, et al. Tissue distribution of the secretory protein, SPLUNC1, in the human fetus. Histochem Cell Biol,2006, 125:315-324
    [26]张必成,吕红斌,周后德,等.人鼻咽组织特异性表达基因NASG编码产物在细胞中的融合表达.生命科学研究.2003,7(1):84-88.
    [27]Zhou HD, Li XL, Li GY, et al. Effect of SPLUNC1 protein on the Pseudomonas aeruginosa and Epstein-Barr virus. Mol Cell Biochem.2008,309:191-197.
    [28]Hong Wei Chu, Jyoti Thaikoottathil, John G. Rino, et al. Function and Regulation of SPLUNC1 Protein in Mycoplasma Infection and Allergic Inflammation. J Immunol,2007,179:3995-4002.
    [29]Yeh TH, Lee SY, Hsu WC. Expression of SPLUNC1 protein in nasal polyp epithelial cells in air-liquid interface culture treated with IL-13. Am J Rhinol Allergy,2010,24(4):17-20.
    [30]Gally F, Di YP, Smith SK, et al. SPLUNC1 promotes lung innate defense against Mycoplasma pneumoniae infection in mice. Am J Pathol.2011, 178(5):2159-67.
    [31]Louise Fornander, Bijar Ghafouri, Erik Kihlstrom, et al. Innate immunity proteins and a new truncated form of SPLUNC1 in nasopharyngeal aspirates from infants with respiratory syncytial virus infection.2011, DOI:10.1002.
    [32]Zhou, H.D., Li, G.Y., Yang, Y.X., et al. Intracellular co-localization of SPLUNC1 protein with nanobacteria in nasopharyngeal carcinoma epithelia HNE1 cells depended on the bactericidal permeability increasing protein domain. Mol. Immunol,2006,43,1864-1871.
    [33]Kajander EO, Ciftcioglu N. Nanobacteria:an alternative mechanism for pathogenic intra-and extracellular calcification and stone formation. Acad Sci U SA.1998;95(14):8274-8279.
    [34]Kajander EO, Ciftcioglu N, Aho K, et al. Characteristics of nanobacteria and their possible role in stone formation. Urol Res.2003; 31:47-54.
    [35]Hjelle JT, Miller-Hjelle MA, Poxton IR, et al. Endotoxin and nanobacteria in polycystic kidney disease. Kidney Int.2000; 57(6):2360-2374.
    [36]Rahman NU, Meng MV, Stoller ML. Infections and urinary stone disease. Curr Pharm Des.2003; 9(12):975-981.
    [37]Ciftcioglu N, Miller-Hjelle MA, Hjelle JT, et al. Inhibition of nanobacteria by ilution method. antimicrobial drugs as measured by a modified microdilution method. Antimicrob Agents Chemother.2002; 46(7):2077-2086.
    [38]Rossier BC, Stutts MJ. Activation of the Epithelial Sodium Channel (ENaC) by Serine Proteases. Annu Rev Physiol.2009,71:361-379.
    [39]Gaillard EA, Kota P, Gentzsch M, et al. Regulation of the epithelial Na(+) channel and airway surface liquid volume by serine proteases. Pflugers Arch, 2010,460(1):1-17.
    [40]Pflugers Arch; Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon:mechanisms and implications for disease. Physiol Rev,2002, 82:245-289.
    [41]Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest,2002,109:571-577;
    [42]Chmiel JF, Davis PB. State of the art:why do the lungs of patients with cystic fibrosis become infected and why can't they clear the infection? Respir Res, 2003,4:8.
    [43]Matsui H, Grubb BR, Tarran R, et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell.1998,95:1005-1015.
    [44]Mall M, Grubb BR, Harkema JR, et al. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med,2004, 10:487-493.
    [45]Planes C, Caughey GH. Regulation of the epithelial Nachannel by peptidases. Curr Top Dev Biol,2007,78:23-46.
    [46]Rossier BC. The epithelial sodium channel:Activation by membrane-bound serine proteases. Proc Am Thorac Soc,2004,1:4-9.
    [47]Vallet V,etal. An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature,1997,389:607-610.
    [48]Chraibi A, Vallet V, Firsov D, et al. Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes. J Gen Physiol,1998, 111:127-138.
    [49]Garcia-Caballero A, Rasmussen JE, Gaillard E, et al. SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage. Proc Natl Acad Sci U S A,2009,106:11412-11417.
    [50]Rollins BM, Garcia-Caballero A, Stutts MJ, et al. SPLUNC1 expression reduces surface levels of the epithelial sodium channel (ENaC) in Xenopus laevis oocytes. Channels.2010,4(4):255-259.
    [51]Bakaletz LO Otitis Media; Brogden KA, JM Guthmiller, eds. Washington DC: ASM Press.2002,259-298.
    [52]Fischer M, Ehlers M. Toll-like receptors in autoimmunity. Ann NY Acad Sci, 2008,1143:21-34.
    [53]Markus Schnare, Martin Rollinghoff, Salman Qureshi. Toll-Like Receptors: Sentinels of Host Defence against Bacterial Infection. Int Arch Allergy Immunol, 2006,139:75-85.
    [54]Hong Wei Chu, Fabienne Gally, Jyoti Thaikoottathil, et al. SPLUNC1 regulation in airway epithelial cells:role of toll-like receptor 2 signaling. Chu et al. Respiratory Research 2010,11:155.
    [55]Thaikoottathil J, Chu HW. et al. MAPK/AP-1 activation mediates TLR2 agonist-induced SPLUNC1 expression in human lung epithelial cells. Mol Immunol.2011.
    [56]He Y, Zhou G, Zhai Y. Association of PLUNC gene polymorphisms with susceptibility to nasopharyngeal carcinoma in a Chinese population. J Med Genet.2005; 42(2):172-176.
    [57]Zhang, L., Deng, T., Li, X., et al. microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network. Carcinogenesis,2010,31, 559-566.
    [58]Yuan TL, Cantley LC. PI3K pathway alterations in cancer:Variations on a theme. Oncogene,2008,27:5497-5510.
    [59]Carracedo A, Pandolfi PP. The PTEN-PI3K pathway:Of feedbacks and cross-talks. Oncogene,2008,27:5527-5541.
    [60]Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol, 2006,18:77-82.
    [61]Yang yun L, Geng xun L, Zheng xian L, et al. Expression and clinical significance of PTEN and Bcl-2 in nasopharyngeal carcinoma tissue. Cancer prevention and control research,2009,36(2):115-118.
    [62]谷化平Survivin和PTEN在鼻咽癌组织表达及其临床意义.青岛大学医学院学报,2008,44(4).
    [63]Fan SQ, Ma J, Zhou J, et al. Differential expression of Epstein-Barr virus-encoded RNA and several tumor-related genes in various types of nasopharyngeal epithelial lesions and nasopharyngeal carcinoma using tissue microarray analysis. Hum Pathol.2006,37:593-605.
    [64]陈英杰,刘健,陶雅君,贾心善.PTEN和PI3K在鼻咽癌中的表达及意义.中国老年学杂志,2008,28(12).
    [65]Yip WK, Leong VC, Abdullah MA, et al. Overexpression of phospho-Akt correlates with phosphorylation of EGF receptor, FKHR and BAD in nasopharyngeal carcinoma. Oncol Rep,2008,19:319-328.
    [66]Mei YP, Zhou JM, Wang Y, et al. Silencing of LMP1 induces cell cycle arrest and enhances chemosensitivity through inhibition of AKT signaling pathway in EBV-positive nasopharyngeal carcinoma cells. Cell Cycle,2007,6:1379-1385.
    [67]Benlloch S, Galbis-Caravajal JM, Alenda C, et al. Expression of molecular markers in mediastinal nodes from resected stage I non-small-cell lung cancer (NSCLC):prognostic impact and potential role as markers of occult micrometastases. Ann Oncol.2009,20(1):91-97.
    [68]Wang WB, Cui YG, Yao SY. Message RNA expression of LUNX, CK19 and CEA genes in NSCLC with micrometastasis in lymph nodes. Zhonghua Zhong Liu Za Zhi,2008,30(2):121-124.
    [69]Cheng M, Chen Y, Yu X, et al. Diagnostic utility of LunX mRNA in peripheral blood and pleural fluid in patients with primary non-small cell lung cancer. BMC Cancer.2008,31(8):156.
    [70]Sentani K, Oue N, Sakamoto N, et al. Gene expression profiling with microarray and SAGE identifies PLUNC as a marker for hepatoid adenocarcinoma of the stomach. Mod Pathol,2008,21(4):464-475.
    [71]Yasui W, Oue N, Sentani K, et al. Transcriptome dissection of gastric cancer: identification of novel diagnostic and therapeutic targets from pathology specimens. Pathol Int.2009,59(3):121-136.
    [1]Medzhitov R et al. Nature,1997,388-394
    [2]Doyle S L, O'Neil L A J. Toll-like receptors:From the discobery of NF-κB to new insights into transcriptional regulations in innate immunology. Biochemical Pharmacology,2006, (72):1102-1113.
    [3]Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell,2006,124:783-801.
    [4]Nomuria N, Miyajima N, Sazuka T, et al. Prediction of the coding sequences of unidentified human genes(I):the coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG21. DNA Res,1994,1:27-35.
    [5]Terry K M, Douglas T G, Matt hew J F. Structure and Function of Toll-like receptor proteins. Life Science,2000, (68):241-258.
    [6]Michael R. Of mice and men:Species variations of Toll-like receptor expression. Trends in Immunology,2002,23(6):375-379.
    [7]J anssens S, Beyaert R. Role of Toll-like receptors in pathogenrecognition. Clin Microbiol Rev,2003,16(4):637-646.
    [8]McGettrick A F, O'Neill L A. Toll-like receptors:Key activators of leukocytes and regulator of haematopoiesis. Brit J Haematology,2007,139:185-193.
    [9]Uematsu S, Akira S. Toll-like receptors and type I interferons. J Biol Chem, 2007,282:15319-15323.
    [10]Akira S. Mammalian Toll-like receptors. Curr Opin Immun,2003,15:5-11
    [11]HGhosh S. Transcription Factor NF-kappa B. London:CRC Press, Taylor & Francis Group,2007:107-129
    [12]Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of toll-like receptors(TLR)in human leukocytes:selective expression of TLR3 in dendritic cells. JImmunol,2000,164(11):5998-6004.
    [13]Vives PM, Somoza N, Fernandez Alvarez J, et al. Evidence of expression of endotoxin receptors CD 14, Toll-like receptors TLR4 and TLR2 and associated molecule MD22 and of sensitivity to endotoxin (LPS) in islet beta cells. J Clin Explmmunol,2003,133(2):208-218.
    [14]Rehli M. Of mice and men:species variations of Toll-like receptor expression. Trends Immunol,2002,23(8):375-378.
    [15]Torok NJ, Apoptotic cell death takes its toll. Hepatology,2007,46(5):1323-1325.
    [16]Watanabe A, Hashmi A, Gomes DA, et al. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology,2007, 46(51):509-1518.
    [17]Ishii KJ, Akira S. Innate immune recognition of, and regulation by, DNA. TRENDS in Immunology,2006,27(11):525-532.
    [18]Saikh K U, Kissner T L, Sultana A, et al. Human monocytes infected with Yersinia pestis express cell surface TLR9 and differentiate into dendritic cells. J Immunol,2004,173(12):7426-7434.
    [19]Zarember KA, Godowski PJ. Tissue expression of human Toll like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol,2002, 168(3):554-561.
    [20]Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol,2005, 17(1):12-14.
    [21]何维.医学免疫学.北京:人民卫生出版社,2005:145-147.
    [22]Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol,2003, 21:335.
    [23]Akira S, Takeda K. Toll-like receptor signalling. Nat Immunol,2004,4:499
    [24]Kopp E, Medzhitov R. Recognition ofmicrobial infection by Toll-like recep tors. Trends Immunol,2003,15:396
    [25]Shi Y, White D, He L, et al. Toll-like receptor tolerizes malignant B cells and enchances killing by cytotoxic agents. Cancer Res,2007,67:1823-1831.
    [26]Inoue J, Gohda J, Akiyama T, Semba K. NF-κB activation in development and progression of cancer. Cancer Sci,2007,98(3):268-274.
    [27]Chen R, Alvero AB, Silasi DA, et al. Inflammation, cancer and chemoresistance: taking advantage of the toll-like receptor signaling pathway. AmJ Reprod Immunol,2007,57(2):93-107.
    [28]Yamamoto M, Akira S. Mechanisms of innate immune response mediated by Toll like receptors. Applied Immunol Rev,2005, (5):167-183.
    [29]O'Neill LA, Bowie AG. The family of five:TIR-domain- containing adaptors in Toll-like receptor signalling. Nat Rev Immunol,2007,7(5):353-364.
    [30]Jeyaseelan S, Young SK, Fessler MB, et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta(TRIF)-mediated signaling contributes to innate immune responses in the lung during Escherichia coli pneumonia. J Immunol,2007,178(5):3153-3160.
    [31]杨再兴,仲人前.Toll样受体3与自身免疫性疾病.现代免疫学,2006,26(6):520-522.
    [32]Kawai T, Akira S. TLR signaling. Seminar in Immunology,2007, (19):24-32.
    [33]Kawai T, Akira S. TLR signalling. Cell Death Differ,2006,13:816-825.
    [34]Heil F, Hemmi H, Hochrein H, et al. Species specific recognition of singlest randed RNA via Toll-like receptor 7and 8. Science,2004,303(5):1526-1529.
    [35]Wang J, Shao Y, Bennett T A, et al. The functional effects of physical interactions among Toll-like receptors 7,8,9. J Biol Chem,2006,281: 37427-37434.
    [36]Kurt Jones EA, Popova L, Kwinn L, et al. Pattern recognition receptors TLR4 and CD 14 mediate response to respiratory syncytial virus. N at Imm unol,2000, 1 (5):398-401.
    [37]Rassa J C, Meyers JL, Zhang Y, et al. Murine retroviruses activate B cells via interaction with Toll-like receptor 4. Proc Natl Acad Sci USA,2002,99(4): 2281-2286.
    [38]Burzyn D, Rassa JC, Kim D, et al. Toll-like receptor 4 dependent activation of dendritic cells by a retrovirus. J V irol,2004,78(2):576-584.
    [39]Kurt-Jones, E. A., M. Chan, S. Zhou, et al. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci USA,2004,101:1315-1320.
    [40]Wang, J. P., E. A. Kurt-Jones, O. S. Shin, et al. Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J. Virol.2005.79:12658-12666.
    [41]Eric Gaudreault, Ste'phanie Fiola, Martin Olivier, et al. Epstein-Barr Virus Induces MCP-1 Secretion by Human Monocytes via TLR2. JOURNAL OF VIROLOGY,2007,81(15):8016-8024.
    [42]Stack J, Haga IR, Schroder M, et al. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med,2005,201(6):1007-1018.
    [43]Li K, Chen Z, Kato N, et al. Distinct poly(I-C)and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J Biol Chem, 2005,280(17):16739-16747.
    [44]Alexopoulou L, Holt A, Medzhitov R, et al. Recognition of double stranded RNA and activation of NF-kappa B by Toll-like receptor 3.Nature,2001, 413(6857):732-738
    [45]Doyle S E, Oconnell R, Vaidayasa S A, et al. Toll-like receptor 3 mediates a more potent antiviral resonse than toll-like receptor 4. J Immunol,2003, 170(7):3565-3571.
    [46]Tabeta K, Georgel P, Janssen E, et al. Toll-like receptors 9 and 3 as essential components of innate immune defense againstmouse cyto-megalovirus infection. Natl Acad Sci U S A,2004,101(10):3516-3521.
    [47]Hewson C A, J ardine A, Edwards M R, et al. Toll-like receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells. Journal of Virology,2005,79(19):122273-122279.
    [48][48]Abujamra AL, Spanjaard RA, Akinsheye I, et al. Leukemia virus long terminal repeat activates NF-kappa B pathway by a TLR3-dependent mechanism. Virology,2006,345(2):390-403.
    [49]Schulz O, Diebold SS, Chen M, et al. Toll-like receptor 3 promotes cross priming to virus infected cells. N ature,2005,433(7082):887-892.
    [50]Sarkar SN, Smith HL, Rowe TM, et al. Doublest randed RNA signaling by Toll-like receptor 3 requires specific tyrosine residues in it s cytoplasmic domain. J Biol Chem,2003,278(7):4398-4396.
    [51]Sarkar S N, Peters K L, Elco C P, et al. Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double stranded RNA signaling. Nat Struct Mol Biol,2004,11(11):1060-1067.
    [52]Sun R, Gao B, Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon gamma).Gast roenterology,2004,127 (5):1525-1539.
    [53]Rudd BD, Burstein E, Ucket t CS, et al. Differential role for TLR3 in respiratory syncytial virus induced chemokine expression. J Virol,2005,79(6):3350-3357.
    [54]阳凯,王琛.宿主细胞应答病毒感染的细胞信号转导研究进展.生物化学与生物物理进展,2006,33(12):1138-1145.
    [55]Zhou S, Kurt-Jones EA, Mandell L, et al. MyD88 is critical for the development of innate and adaptive immunity during acute lymphocytic choriomeningitis virus infection. Eur J Immunol,2005,35(3):822-830.
    [56]Schlaepfer E, Audiqe A, JollerH, et al. TLR7/8 triggering exerts opposing effects in acute versus latent HIV infection. J Immunol,2006,176(5): 2888-2895.
    [57]Triantafilou K, Orthopoulos G, Vakakis E, et al. Human cardiac inflamematory responses triggered by Coxsakie B viruses are mainly Toll-like receptor(TLR) 8 dependent. Cell Microbiol,2005,7(8):1117-1126.
    [58]JurkM, Heil F, Vollmer J, et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R2848. Nat Immunol,2002,3(2): 196-200.
    [59]Heil F, Hemmi H, Hochrein H, et al. Species2specific recognition of single stranded RNA via toll-like receptor 7 and 8. Science,2004,303(5663):1526-1529.
    [60]Diebold SS, Kaisho T, Hemmi H, et al. Innate antiviral responses by means of TLR7 mediated recognition of single stranded RNA. Science,2004,303(5663): 1529-1531.
    [61]Diebold SS, Massacrier C, Akira S, et al. Nucleic acid agonists for toll-like receptor 7 are defined by the p resence of uridine ribonucleotides. Eur J Imm unol,2006,36(12):3256-3267.
    [62]Hemmi H, Takeuchi O, Kawai K, et al. Toll like receptor recognizes bacterial DNA. Nature,2000,408(6813):740-745.
    [63]蔡怡华,施若非,郑捷.链球菌CpG DNA对寻常型银屑病患者T细胞活化的 影响.现代免疫学,2006,5(22):403-406.
    [64]Ishii KJ, Akira S. Innate immune recognition of, and regulation by, DNA. TRENDS in Immunology,2006,27(11):525-532
    [65]Ishii KJ, Coban C, Akira S. Manifold mechanisms of toll-like receptor ligand recognition. J Clin Immunol,2005,25(6):511-521.
    [66]Bafica A, Scanga CA, Feng CG, et al. TLR9 regulates Thl responses and cooperates with TLR2 in mediating optimal resistante to Mycobacterium tuberculosis. J Exp Med,2005,202(12):1715-1724.
    [67]Huang LY, Ishii KJ, Akira S, et al. Thl like cytokine induction by heat killed Brucella abortus is dependent on triggering of TLR9. J lmnmnol,2005,175(6): 3964-3970
    [68]Tabeta K, Georgel P, Janssen E, et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA,2004,101(10):3516-3521.
    [69]nave U, Magnusson M, Eloranta MI, et al. FcTRⅡa is expressed on natural IFN-a producing cells(plasmacytoid dendritic cells) and is required for the IFN-(3 production induced by apoptotic cells combined with lupus IgG. J Immunol,2003,171(6):3296-3302.
    [70]Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation by DNAcontaining immune complexes is mediated by HMGB1 and RAGE. Nat Immunol,2007,8(5):487-496.
    [71]Lande R, Gregorio J, Facchinetti V, et al. Plasmacytoid dendritic ceils sense self-coupled with antimicrobial peptide. Nature,2007,449(7162):564-569.
    [72]Yang Y, Zhou H, Yang Y, et al. Lipopolysaccharide(LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5-8F via NF-kappa B and MAPKs signaling pathways. Mol Immunol,2007,44(5):984-992.
    [73]Ulrichts P, Peelma F, Beyaert R, et al. MAPPIT analysis of TLR adaptor complexes. FEBS Lett,2007,581(4):629-636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700