可中温固化的覆铜板用氰酸酯树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子工业的迅速发展,电子信息数据处理以及通信系统的电子整机产品不断地向多功能、微型化、集约化方向发展,要求作为电子元器件和电子产品关键基础材料的覆铜板(CCL)必须满足―高频、高速‖的信息处理与传输的目标,从而使得所制备的覆铜板不再仅仅具备支撑功能,而且兼具信号传输以及强化电子产品高可靠性的功能,这就意味着CCL用树脂基体必须具有优良工艺性、更高的力学性能和耐湿性、超低介电常数、低膨胀性等性能特点。
     氰酸酯(CE)树脂是一种具有优异的综合性能的树脂,在宽广的温度和频率范围有着低且稳定的介电常数(ε)和介电损耗正切值(tanδ),高的耐热性和低的吸湿率等。然而其固化反应温度高、时间长以及固化后高度交联的三嗪环的脆性较大,限制了其在高频CCL领域的应用。
     本文采用对CE树脂固化有着良好催化活性的二月桂酸二丁基锡(DBTDL)和三羰基环戊二烯锰(CpMn(CO)_3),设计了由DBTDL与CpMn(CO)_3按照不同配比组成的复配催化剂(HC),研究了不同配比的HC对CE固化催化效应以及性能的影响。研究结果表明,HC对CE的固化有着高效的催化作用,且两种组分DBTDL和CpMn(CO)_3之间有着一定的协同作用,固化后的树脂有着高的耐热性及优异的介电性能;当DBTDL与CpMn(CO)_3的摩尔配比为1:20,即为HC2时,相比与未加催化剂的CE,CE/HC2的凝胶时间仅为CE的1/20,其DSC反应峰顶温度向低温方向移动了118.7℃,反应活化能仅为CE的1/2,达到了CE树脂可中温固化的目标;其固化后树脂的玻璃化转变温度(Tg)提高了14℃,并保持CE树脂原有的优异的介电性能与热稳定性。
     同时,本文展开探讨了不同含量的单一CpMn(CO)_3催化剂对CE树脂固化后的性能的影响,研究结果表明,随着CpMn(CO)_3催化剂含量的增加,其催化效应更加明显;当CpMn(CO)_3催化剂的含量为1.00wt%时,其力学性能、介电性能、耐热性等综合性能最为突出。
     针对CE树脂中高度交联的三嗪环脆性较大,将具有高的耐热与优异介电性能的环氧改性甲基苯基硅树脂(EPMPS)用来改性CE树脂,制备了高韧性低介电损耗的EPMPS-n/CE树脂,系统研究了改性CE树脂的固化反应性以及固化物的冲击强度、热性能、吸湿率和介电性能。研究结果表明,EPMPS不仅显著加速了CE单体的固化反应,而且有效提高了CE固化树脂的冲击强度和耐湿性。含15wt%EPMPS的改性树脂体系的冲击强度达17.8kJ/m~2(约为纯CE树脂冲击强度的3倍),吸水率和介电损耗正切值分别仅为纯CE树脂的50%和79%。
     将具有一定长径比的碳酸钙(CaCO_3)晶须引入CE树脂中,制备了CaCO_3-n/ CE复合材料,研究了材料的力学性能、热性能及介电性能等。研究结果表明,在CE树脂中加入经KH-550处理的CaCO_3晶须(记为CaCO_3(KH-550)),可以在保持CE树脂优异介电性能的基础上,提高树脂的弯曲强度、冲击强度及600℃的残碳率,并降低树脂的平均线膨胀系数。当CaCO_3(KH-550)晶须的含量为16wt%时,复合材料的弯曲强度和冲击强度分别达到最大值。
With the rapid development of electronic industry, electronic information processing and communication electronic products have been going to the direction of multi-functions, micro-oriented and intension, suggesting that copper clad laminates (CCLs), the key basic material of electronic components and electronic products, must meet the target of information processing and transmission with―high-frequency, high-speed‖. Hence CCLs play the role of supporting, but the transmission of signals and the enhancement of reliability on electronic products also, reflecting that the resin matrices for CCLs should possess excellent processing characteristics, high mechanical properties, good moisture resistance, low dielectric constant and loss as well as low expansion.
     Cyanate ester (CE) resin is a typical thermosetting resin with outstanding integrat properties including low and stable dielectric constant (ε) and loss tangent (tanδ) over wide temperature and frequency ranges, high heat-resistant and low moisture absorption. However, it needs to be cured at high temperature for a long time; moreover, the cured CE resin has poor toughness due to the presence of highly cross-linked triazine rings.
     The two drawbacks greatly limit the application in the field of high-frequency CCLs. In this thesis, a novel kind of hybrid catalysts (HC) consisiting of dibutyl tin dilaurate (DBTDL) and u.v. activated tricarbonyl cyclopentadienyl manganese (CpMn(CO)3) with different moral ratios were developed to catalyze the curing of CE. The catalytic effect of HC on the properties of CE was investigated. Results show that: HC has an attractive synergy effect on the curing of CE over its two separate components. In addition, cured HC/CE resins exhibit high thermal stability and outstanding dielectric properties. When the mole ratio of DBTDL and CpMn(CO)3 is 1:20, coded HC2, the gel time of CE/HC2 is only 1/20 as that of CE, the curing peak temperature in DSC curves shifts to low temperature with a gap of about 119℃; moreover the activity energy of CE/HC2 is only 1/2 as that of CE, suggesting that CE/HC2 can be cured at medium temperature. Interestingly, the glass transition temperature (Tg) of cured CE/HC2 resin is 14℃higher than neat CE resin, while dielectric and thermal properties of cured CE/HC2 resin is as the same as that of CE resin.
     Besides, the effect of the CpMn(CO)3 content on the properties of CE is investigated. Results show that the effect is much more obvious with the increase of CpMn(CO)3 content, when the content is 1.00wt%, the resultant CE resin has the best mechanical, dielectric and thermal properties.
     A novel resin system with improved toughness and low dielectric loss based on CE and epoxy modified methyl phenyl silicone (EPMPS), coded as EPMPS-n/CE, was developed in this thesis. The curing behavior and the integrate properties such as impact strength, thermal and dielectric properties as well as water absorption are systematically investigated in detail. Results show that EPMPS can not only catalyze the curing reaction of CE, but also significantly improve the toughness and moisture-resistance of cured CE resin. In case of EPMPS/CE with 15wt%EPMPS, its impact strength is 17.8kJ/m2 (about 3 times of that of pure CE resin). In addition, the water absorption and dielectric loss of the former are only about 50%, and 79% of those of pure CE resin, respectively.
     The calcium carbonate (CaCO_3) whiskers are introduced into CE resins to prepare CaCO_3-n/CE composites. The mechanical, thermal and dielectric properties of the composites are investigated. Results show that the addition of surface treated CaCO_3 whiskers by KH-550 (coded as CaCO_3(KH-550)) into CE resin can not only improve the flexural and impact strength as well the char yield at 600℃, but also decrease the average linear thermal expansion coefficient with the maintaining of outstanding dielectric and thermal properties of original CE resin. The composite with 16wt% CaCO_3(KH-550) has the maximum flexural and impact strengths.
引文
[1] Fehrer, F; Haddick, G. Thermal-mechanical processing and repairability observations for FR-4, cyanate ester and cyanate ester/epoxy blend PCB substrates[J]. Circuit World, 1993, 19(2): 39-44.
    [2] Hong, Lee; Field Ill, Frank R. Materials for printed circuit boards. Past usage and future prospects [J]. Materials and society, 1989, 13(3): 301-318.
    [3]刘莎莎,范和平,庄永兵,石玉界.叔丁基二胺的合成及其扩链双马来酰亚胺应用研究[J].绝缘材料, 2009, 2: 21-25.
    [4]田勇,程江,皮丕辉,文秀芳,杨卓如.高性能覆铜板用交联性聚苯醚树脂[J].绝缘材料, 2004, 37(5): 49-54.
    [5]李胜方,王洛礼.几种高性能树脂在覆铜板中的应用[J].粘接, 2005, 26(4): 48-51.
    [6]孟季茹,梁国正,赵磊.聚苯醚结构的官能化[J].中国塑料, 2001, 12: 8-11.
    [7]霍刚.热固性聚苯醚树脂基高频印刷电路板[J].工程塑料应用, 2000, 14(5): 14-22.
    [8]孟季茹,梁国正,赵磊,何洋.聚苯醚/环氧树脂体系在覆铜板中的应用[J].热固性树脂, 2001, 5: 20-24.
    [9]田勇,程江,皮丕辉,文秀芳,杨卓如.高性能覆铜板用热固性树脂[J].热固性树脂, 2004, 19(6): 24-27.
    [10] Huub A M van Aert, Milko E M Burkard.Functional Oligomers, Telechelics, and Graft and Star-shaped Poly(2,6-dimethyl-1,4-phenylene ethers)s Prepared by Redistribution [J]. Macromolecules,1995, 2: 7967-7969.
    [11] Chung, Y M; Jung, W S; Moon, C S; Han, J G. A study of interfacial layer effect synthesized by high energy ion cascade on adhesion strength deterioration between copper thin film and polyimide substrates[J]. Proceedings, Annual Technical Conference - Society of Vacuum Coaters, 739-743, 2005, SVC, Society of Vacuum Coaters - 48th Annual Technical Conference Proceedings.
    [12] Mikroyannidis, John A. Soluble aromatic polyamide and polyimides derived fromdi(aminophenyl)acetylenediurea[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1996, 34(16), 3389-3397.
    [13]吕升华,吕庆莉.聚酰亚胺树脂合成及应用研究的新进展[J].西北轻工业学院学报, 2002, 20(2): 73-78.
    [14]宋晓峰.聚酰亚胺的研究与进展[J].纤维复合材料, 2007, 3: 33-37.
    [15]杨永森,杨娟,程晓农.低膨胀聚酰亚胺复合薄膜的制备及应用研究进展[J].材料导报, 2007, 21(F11): 214-216.
    [16]徐庆玉,范和平,王洛礼.低热膨胀聚酰亚胺研究进展[J].高分子材料科学与工程, 2002, 18(6): 29.
    [17]房红强,梁国正,周文胜,刘海林.高性能PTFE基透波复合材料的研究进展[J].化工新型材料, 2004, 32(5): 20-23.
    [18]顾军渭,张秋禹,谢超,孔杰,韩颖,唐玉生.聚四氟乙烯的表面改性及粘接性能研究[J].西安石油大学学报(自然科学版), 2007, 22(4): 79.
    [19]梁国正,顾嫒娟.双马来酰亚胺树脂[M].北京:化学工业出版社, 1993.
    [20]赵静,李玲.双马来酰亚胺树脂增韧改性研究进展[J].中国胶粘剂, 2009, 18(12): 48-52.
    [21] Hamerton I. Chemistry and Technology of Cyanate Ester Resins[M]. Glasgow:Chapman and Hall. 1994.
    [22] Hamerton I,Hay J N. Recent developments in the chemistry of cyanate esters[J]. Polymer. International, 1998, 47 (4): 465-473.
    [23] Chaplin A, Hamerton I, Howlin Brendan J, Barton John M. Development of novel functionalized aryl cyanate ester oligomers 1. Synthesis and thermal characterization of the monomers[J]. Macromolecules, 1994, 27(18): 4927-4935.
    [24]王结良,梁国正,杨洁颖等.高频氰酸酯基覆铜板基板的研制[J].中国塑料, 2004, 18(1): 46.
    [25] Chaplin A,Hamerton I,Herman H,et al. Studying water uptake effects in resins based on cyanate ester/bismaleimide blends[J]. Polymer, 2000, 41(11): 3945- 3956.
    [26] Taylor A . RTM material developments for improved processability and performance[J]. Sampe Journal, 2000, 36(4): 17-24.
    [27] Simon S L,Gillham J K.Cure kinetics of a thermosetting liquid dicyanate ester monomer/high-Tg polycyanurate material[J]. J Appl Polym Sci., 1993, 47(3): 461-485.
    [28] Chang J Y,Hong J L. Polycyanurates modified with hydroxyl-terminated or cyanated poly(ether sulfone) [J]. Polymer, 2000, 42(4): 1525-1532.
    [29] Liu M C,Hong J L.Cure kinetics and gravimetric analysis of a flexible aromatic dicyanate, cyanated phenylene sebacate oligomer[J]. Polymer, 1994, 35(13): 2822-2827.
    [30] McCormick F B, Brown-Wensley K A, DeVoe R J.Energy-curable cyanate compositions [P] USP 5, 215, 860, 1993.
    [31] Bauer M, Bauer J.Aspect of the kinetics, modeling and simulation of network build-up during cyanate ester cure[A].In: Hamerton I.Chemistry and Technology of Cyanate Esters[M].Glasgow: Chapman and Hal1, 1994.
    [32] Gaku M,Kimbara H.Process for producing polyfunctional cyanate ester polymer [P].USP 4, 820, 855, 1989.
    [33] Owusu A O, Martin G C, Gotro J T. Triazine formation in cyanate-based resin systems at room temperature conditions [J].Polymer, 1996, 37(21): 4869-4872.
    [34] Shimp D A. Metal carboxylate/alcohol curing catalyst for polycyanate ester of polyhydric phenol [P]. USP 4, 608, 434, 1986.
    [35] Liu H P,George G A.Mechanism and kinetics of polymerization of a dicyanate ester resin photocatalysed by an organometallic compound[J].Polymer, 1996, 37(36): 3675-3682.
    [36] Jakubek V, Lees A J, Fuerniss S J, Papathomas K I. Photocatalytic and photoinitiating properties of iron organometallic complexes in solution and aromatic dicyanate esters[A]. American Chemical Society, Polymer Priprints, Division of Polymer Chemistry, 1997, 38(1): 195-196.
    [37] Liu H P,George G A,Halley P J.Studies on the gelation of photocatalyzed dicyanate ester resins[J]. Polymer, 1997, 38(12): 2997-3002.
    [38] Mathew D, Nair C P R, Krishnan K, Ninan K N. Catalysis of the cure reaction of bisphenol A dicyanate. A DSC study[J]. J Polym Sci Part A: Polym Chem, 1999,37(8): 1103-1114.
    [39] Li Wenfeng, Liang Guozheng, Xin Wenli. Triazine reaction of cyanate ester resin systems catalyzed by organic tin compound: Kinetics and mechanism. Polymer International, 2004, 53(7): 869-876.
    [40]李文峰,刘建勋,辛文利,梁国正,王志强,轩立新.有机锡化合物催化氰酸树脂的性能[J].航空学报, 2004, 25(5): 513-515.
    [41] Gomez C M. Kinetic parameters of a cyanate ester resin catalyzed with different proportions of nonylphenol and cobalt acetylacetonate catalyst[J]. European Polymer Journal, 2005, 41(11): 2734-2741.
    [42]李文峰,辛文利,梁国正,马晓燕,朱光明.氰酸酯树脂的固化反应及其催化剂[J].航空材料学报, 2003, 23(2): 56-62.
    [43] Hong Shinn-Gwo. Catalytic effects of copper oxides on the curing and degradation reactions of cyanate ester resin[J]. Journal of Applied Polymer Science, 2007, 104 (1): 442-448.
    [44] Chang J Y, Hong J L. Morphology and fracture toughness of poly(ether sulfone)-blended polycyanurates [J]. Polymer, 2000, 41(12): 4513-4521.
    [45] Gu Aijuan. High performance bismaleimide/cyanate ester hybrid polymer networks with excellent dielectric properties[J]. Composites Science and Technology, 2006, 66: 1749-1755.
    [46] Koh Henry C. Y, Dai Jie, Tan Eileen, Liang Weirong. Catalytic effect of 2,2 prime -diallyl bisphenol A on thermal curing of cyanate esters[J]. Journal of Applied Polymer Science, 2006, 101(3): 1775-1786.
    [47] Wooster T J, Abrol S, MacFarlane D R. Cyanate ester polymerization catalysis by layered-silicates[J]. Polymer, 2004, 45(23): 7845-7852.
    [48] Grenier-Loustalot, Marie-Florence. Influence of the stoichiometry of epoxy-cyanate systems (non-catalyzed and catalyzed) on molten state reactivity [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1997, 35(15): 3101-3115.
    [49] Chen Ping. Study on the properties of cured compound in cyanate/epoxy co-curing system[J]. Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, 2000, 2: 915-917.
    [50]黄丽,王琛,洪旭辉.环氧树脂/氰酸酯共固化体系热性能的研究[J].北京化工大学学报, 2007, 34 (2): 164-168.
    [51]杨洁颖,梁国正,房红强,宫兆合.环氧改性氰酸酯树脂的研究[J].工程塑料应用, 2004, 32(2): 64-66.
    [52]孟季茹,赵磊,梁国正,贾巧英.无机晶须在聚合物中的应用[J].化工新型材料, 2001, 29(12): 1-6.
    [53]徐兆瑜.晶须的研究和应用新进展[J].化工技术与开发, 2005, 34(2): 11-17.
    [54]任鹏刚,梁国正,卢婷利,房红强,杨洁颖,周文胜. ZnO晶须改性石墨纤维/双酚A二氰酸酯复合材料[J].复合材料学报, 2005, (22)2: 46-51.
    [55] Zhengping Fang, Jianguo Wang, Aijuan Gu. Structure and properties of multiwalled carbon nanotubes/cyanate ester composites[J]. Polymer Engineering & Science, 2006, 46(5): 670-679.
    [56] Jieliang Wang, Guozheng Liang, Wen Zhao, Shenghua Lu, Hongxia Yan. Modification of bisphenol A dicyanate ester by carboxyl-terminated liquid butadiene-acrylonitrile and its composites[J]. Polymer Engineering & Science, 2006, 46(5): 581-587.
    [57] I. Hamerton, A.M. Emsleya, B.J. Howlina, P. Klewpatinonda, S. Takeda. Studies on a dicyanate containing four phenylene rings and polycyanurate copolymers. 3. Application of mathematical models to determine the kinetics of the thermal degradation processes[J]. Polymer, 2004, 45(7): 2193-2199.
    [58] K. Schulze, U. Schuldt, O. Kahle, S.E. Schulz, M. Uhlig, C. Uhlig, C. Dreyer, M. Bauer, T. Gessner. Novel low-k polycyanurates for integrated circuit (IC) metallization[J]. Microelectronic Engineering, 2005, 82, 356-361.
    [59] A. Osei-Owusu, G. C. Martin, J. T. Gotro. Catalysis and kinetics of cyclotrimerization of cyanate ester resin systems[J]. Polymer Engineering & Science, 1992, 32(8): 535-541.
    [60] A. Osei-Owusu, G. C. Martin, J. T. Gotro. Analysis of the curing behavior of cyanate ester resin systems[J]. Polymer Engineering & Science, 1991, 31(22): 1604-1609.
    [61] W. Kern, R. Schroder, K. Hummel, C. Mayer, M. Hofstotter. Polymers withpendant cyanate ester groups: Synthesis, thermal curing and photocrosslinking[J]. European Polymer Journal, 1998, 34(7): 987-995.
    [62] T.J. Wooster, S. Abrol, D.R. MacFarlane. Cyanate ester polymerization catalysis by layered-silicates[J]. Polymer, 2004, 45(23): 7845-7852.
    [63] H. E. Kissinger. Analytical Chemistry. 1957, 291, 1702.
    [64] X. Sheng, M. Akinc, M. R. Kessler. Cure kinetics of thermosetting bisphenol E cyanate ester[J]. Journal of Thermal Analysis and Calorimetry, 2008, 93(1): 77-85.
    [65] L.W. Crane. J. Polym. Sci., 1972, 12, 120.
    [66] L. Qi, B.I. Lee, W.D. Samuels, G.J. Exarhos, S.G. Parler Jr. Three-phase percolative silver-BaTiO3-epoxy nanocomposites with high dielectric constants[J]. Journal of Applied Polymer Science, 2006, 102(2): 967-971.
    [67] S.G. Hong, C.S. Yeh. The effects of copper oxides on the thermal degradation of bismaleimide triazine prepreg[J]. Polymer Degradation and Stability, 2004, 83(3): 529-537.
    [68] G. Hougham, G. Tesoro, J. Shaw. Polymeric Materials Science and Engineering, 1989, 61: 369.
    [69] Dinakaran, K. Alagar, M. Preparation and characterization of epoxy-cyanate ester interpenetrating network matrices/organoclay nanocomposites[J]. Polymers for Advanced Technologies, 2003, 14(8): 574-585.
    [70] Mathew D, Nair C P R, Ninan K N. Effect of polymeric additives on properties of glass bisphenol A dicyanate laminate composites[J]. Journal of Applied Polymer Science, 2000, 77(1): 75-88.
    [71] Das, Sajal, Castelli, Lauren M. Falchetto, Alessandro. Novel use of cyanate esters: VARTM, filament winding and pultrusion [J]. International SAMPE Symposium and Exhibition (Proceedings), v 49, SAMPE 2004 Conference Proceedings-Materials and Processing Technology - 60 Years of SAMPE Progress, 2004, 3438-3447.
    [72] Lau C, Mi Y L. A study of blending and complexation of poly (acrylicacid) /poly ( vinyl pyrrolidone)[J]. Polymer, 2002, 43: 823.
    [73] Ghosh P, Sid hanta S K, Chakrabarti A. Characterization of poly (vinyl pyrrolidone)modified polyaniline prared in stable aqueous medium[J]. European Polymer Journal, 1999, 35: 699.
    [74] M. Suguna Lakshmi, B.S.R. Reddy. Synthesis and characterization of new epoxy and cyanate ester resins[J]. European Polymer Journal, 2002, 38: 795-801.
    [75] Martin M D, Ormaetxea M, Harismendy I, Remiro P M, Mondragon I. Cure chemo-rheology of mixtures based on epoxy resins and ester cyanates [J]. European Polymer Journal 1999, 35: 57-68.
    [76] Hwang H J, Li C H, Wang C S. Dielectric and thermal properties of dicyclopentadiene containing bismaleimide and cyanate ester. Part IV [J]. Polymer 2006, 47: 1291–1299.
    [77] Rong-Hsien Lina, Wei-Hua Lub, Chih-Wei Lina. Cure reactions in the blend of cyanate ester with maleimide [J]. Polymer, 2004, 45: 4423-4435.
    [78] John N. Suman, John Kathi, Shekharam Tammishetti. Thermoplastic modi?cation of monomeric and partially polymerized Bisphenol A dicyanate ester[J]. European Polymer Journal, 2005, 41: 2963-2972.
    [79]罗运军,桂红星[M].有机硅树脂及其应用,化学工业出版社, 2002.
    [80]沈新春,王大喜,栗秀刚.聚倍半硅氧烷的研究现状和发展趋势[J].有机硅材料, 2004, 18(1): 22-26.
    [81] Yang C Z, Gu A J, Song H W, Xu Z H, Fang Z H, Tong L F. Novel Modification of Cyanate Ester by Epoxidized Polysiloxane [J]. Journal of Applied Polymer Science, 2007, 105: 2020-2026.
    [82] Sunil K. Karad, David Attwood, Frank R. Jones. Moisture absorption by cyanate ester modi?ed epoxy resin matrices Part III. Effect of blend composition[J]. Composites: Part A, 2002, 33: 1665-1675.
    [83]谢择民,王金亭,李其山.硅氮化合物在改进聚硅氧烷热稳定性中的作用[J].高分子学报. 1989, 1: 46-51.
    [84] Ching Hsuan Lin. Synthesis of novel phosphorus-containing cyanate esters and their curing reaction with epoxy resin[J].Polymer, 2004, 45(32): 7911-7926.
    [85]周文君,杨辉.甲基苯基硅树脂的制备工艺优化及阻燃性能[J].化工学报, 2006, 57(9): 2218-2222.
    [86]过梅丽.高聚物与复合材料的动态力学热分析[M].化学化工出版社, 2002.
    [87] Matsuoka S. In Relaxation phenomena in polymers[M]. Hanser, C. ed. Spring Verlag: Munich, 1992.
    [88]金日光,华幼卿.高分子物理[M].化学化工出版社, 2005.
    [89] I. Sedat Gunes, Feina Cao, Sadhan C. Jana. Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites[J]. Polymer, 2008, 49(9): 2223-2234.
    [90] Yusheng Tang, Guozheng Liang, Zengping Zhang, Jing, Han. Performance of aluminum borate whisker reinforced cyanate ester resin[J]. Journal of Applied Polymer Science, 2007, 106(6): 4131-4137.
    [91]唐玉生,梁国正,孔杰,顾军渭.硼酸铝晶须改性氰酸酯树脂体系的研究[J].材料工程, 2006, 7: 28-30, 34.
    [92]唐玉生,顾军渭,孔杰,梁国正.晶须改性氰酸酯树脂/玻璃纤维布复合材料的研究[J].西安石油大学学报:自然科学版, 2007, 22(5): 65-68, 73.
    [93] Yun, Yeon-Hum; Yoon, Chung-Han; Kim, Yun-Ho; Kim, Chi-Kyoon; Kim, Sang-Bok; Kwon, Jeong-Tae; Kang, Bo-An; Hwang, Kyu-Seog.Glass-ceramics prepared by waste fluorescent glass[J]. Ceramics International, 2002, 28(5): 503-505.
    [94]杨明山,何成汉.碳酸钙晶须制备及其对聚丙烯的改性[J].现代塑料加工应用, 2008, 20(6): 21-24.
    [95]尚文宇,谢大荣,刘庆峰,陈寿田。晶须状碳酸钙填充聚合物材料性能的研究[J].中国塑料, 2000, 14 (3):24-27.
    [96]尚文宇,刘庆峰,陈寿田.文石型碳酸钙晶须及其复合体系介电性能的研究[J].电工电能新技术, 2001, 1: 62-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700