基于两档双离合器自动变速器的纯电动汽车驱动与换档控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯电动汽车因其具有污染小、噪声低、节约能源、结构和维护简单等优点受到人们的广泛关注,其研发已成为汽车行业的热点。双离合器自动变速器(Dual ClutchTransmission,DCT)既保持了传统手动变速器结构简单、机械传动效率高等优点,又能实现无动力中断换档,提高车辆动力性和经济性,是一种新型自动变速器。因此,DCT已成为现今国际变速器领域研究开发的热点。
     基于以上背景,本文将两档双离合器自动变速器应用到纯电动汽车上,对基于两档双离合器自动变速器的纯电动汽车驱动与换档控制技术进行了深入研究,主要研究内容如下:
     (1)在对所研究的两档DCT纯电动汽车整车控制系统分析的基础上,应用模糊控制算法,以加速踏板开度、加速踏板开度变化率和驱动电机转速为算法输入参数,对纯电动汽车驱动转矩模糊控制策略及两档DCT纯电动汽车的动力性行驶模式和经济性行驶模式进行了较深入研究。应用Matlab/Simulink软件建立了包含驾驶员模型、驱动转矩模糊控制模型、两档DCT控制模型、驱动电机模型、两档DCT模型、动力电池模型、车辆动力学模型等的整车仿真模型,并对两档DCT纯电动汽车进行了ECE、ECE_EUDC循环工况仿真,通过仿真将驱动转矩模糊控制策略下的动力性行驶模式和经济性行驶模式与加速踏板信号线性解析的常规行驶模式进行了对比分析。结果表明两档DCT纯电动汽车按照驱动转矩模糊控制策略的行驶模式在动力性与经济性上优于常规行驶模式。
     (2)在对内燃机汽车坡道起步辅助系统分析的基础上,制定了基于两档DCT的纯电动汽车坡道起步控制策略及坡道起步控制流程;计算出坡道起步过程中不同阶段驱动电机的目标转矩,并推导出制动踏板位移与制动器制动力的关系。应用Matlab/Simulink/stateflow软件建立了纯电动汽车坡道起步控制模块模型,并进行坡道起步仿真,结果表明本文制定的坡道起步控制策略可以完成车辆坡道起步辅助功能。
     (3)对DCT换档过程中离合器的目标转矩确定方法进行了研究,在对双离合器自动变速器不同工况换档过程进行分析的基础上,制定了换档过程中不同阶段的换档策略,建立了各阶段换档动力学模型。根据换档品质评价指标,以冲击度和滑摩功确定了两个目标函数,建立了换档过程优化算法的约束条件,利用Pareto多目标遗传算法对换档过程中离合器目标转矩的轨迹进行优化,得到了换档过程中多组不同的离合器目标转矩变化轨迹,结合Matlab/Simulink模型对不同的离合器目标转矩变化轨迹的换档过程进行了仿真分析,结果表明,利用Pareto多目标遗传算法对换档过程中离合器目标转矩的轨迹进行优化所得到的换档过程中多组不同的离合器目标转矩变化轨迹都能够获得较好的换档品质,为实车换档过程中离合器目标转矩的确定提供多种可选择方案。
     (4)对基于两档DCT的纯电动汽车换档过程的干式离合器位移控制方法进行了研究。建立了干式离合器转矩传递模型,并对杠杆弹簧的负荷特性和比例流量阀特性进行了分析。鉴于传统的控制方法在非线性控制中存在的问题,将广义回归神经网络应用到离合器位移控制中,制定了基于GRNN的离合器位移智能控制方法,并建立了仿真模型,结果表明采用离合器位移GRNN智能控制方法进行离合器位移控制,位移跟随精度高,控制误差小,能够满足干式双离合器位移控制精度要求。
     (5)设计了基于两档DCT的纯电动汽车的控制系统,并进行了整车试验,通过试验验证了本文提出的控制策略的有效性。
     本文通过理论分析与试验研究相结合的方法,对基于两档双离合器自动变速器的纯电动汽车驱动与换档控制技术进行了较深入研究,仿真与试验结果表明在提高整车动力性与经济性、坡道起步性能、换档品质方面获得了较好的效果,本文对纯电动汽车驱动与换档控制技术的研究具有一定的参考价值。
Because of low pollution and noise, energy conservation, simple structure andmaintenance, pure electric vehicles is widespread concerned and has become a hot spot inthe development of automotive industry. Dual clutch automatic transmission (Dual ClutchTransmission, DCT) maintaining the traditional manual transmission simple structure andhigh mechanical efficiency advantages, achieving uninterrupted power shift and improvingvehicle dynamics and economy performace, is a new automatic transmission. Therefore,DCT has become a hot spot in the field of research and development of gearbox.
     Based on the above background, this paper applies two speed dual clutch transmissionto pure electric vehicle, and research on drive and shift control technology for electricvehicle with two speed dual clutch transmission. the main contents are as follows:
     (1) Based on the analysis of control system for pure electric vehicle with two speedDCT, drive torque fuzzy control strategy for pure electric vehicle is developed using fuzzycontrol algorithm according to accelerator pedal opening degree, the accelerator openingchange rate and the drive motor speed and two driving modes including power mode andeconomy mode is proposed. The driver model, accelerator pedal fuzzy analytical model,two speed DCT control model, drive motor model, two speed DCT model, battery model,vehicle dynamics model and simulation model of vehicle are established using the Matlab/Simulink software, and simulation tests for pure electric vehicle with two speed DCT underthe ECE, ECE_EUDC cyclie are carried out.The simulation comparative analysis in powermode, economy mode and the normal linear analytic mode are carried out. The results showthat the power and economy performance of pure electric vehicle with two speed DCTbased on drive torque fuzzy control strategy are better than the normal linear analytic mode.
     (2) Based on the analysis of hill-start assist system of internal combustion enginevehicle, the hill-start control strategy and control flow of pure electric vehicle with twospeed DCT are presented, drive motor target torque of different hill-start process stage iscalculated, the brake pedal and braking force displacement relationship is derived, hill-startof pure electric vehicle is obtained by adjusting motor torque according to braking force.Pure electric car hill-start control model is established using Matlab/Simulink/stateflow,and hill-start simulation results show that the proposed control strategy can assist vehicle complete hill-start with no slip, small jerk, and good starting results.
     (3) Methods for determining the clutch target torque during shift process of DCT areresearched based on the analysis of different stages of the shift, and dynamic model of eachshift phase is established. According shift quality evaluation indicators, two objectivefunctions is determined using jerk and friction work, the shift process optimizationconstraints are established, clutch target torque is optimized during shift using paretomulti-objective genetic algorithm, different sets of clutch target torque trajectory areobtained, and the simulation of shfit is carried out. The simulation resluts show that usingpareto multi-objective genetic algorithm for the target torque trajectory optimization ofclutch during shift can obtain different sets of clutch target torque trajectory, recieve a bettershift quality, and supply more selectable programs for clutch target torque control duringshift.
     (4) Dry clutch torque model is established based on the analysis of dry dual clutchstructure, lever spring load characteristics and proportional flow valve characteristics areanalyzed. Because the traditional control methods has problems in nonlinear control, thegeneralized regression neural network is applied to the clutch shift control. GRNNintelligent control method for the displacement of clutch is proposed, and simulation modelis established. The simulation results show that the displacement is controlled with highprecision and small error by using clutch displacement GRNN control algorithm which canmeet the control accuracy requirements of dry dual clutch shift.
     (5) Electronic control system of electric vehicle with two speed dual clutchtransmission is designed, hardware and software for pure electric vehicle electronic controlsystem are developed, and vehicle test is carried out to verify the proposed control strategy.
     Through theoretical analysis and experimental study, drive and shift control technologyfor electric vehicle with two speed dual clutch transmission are researched. The test resultsshow that dynamics and economy, hill-start performance, shift quality of vehicle areimproved, and this paper has a certain reference value for pure electric vehicle drive andshift technology research.
引文
[1]李兴虎.电动汽车概论[M].北京:北京理工大学出版社,2005.
    [2]刘润生.全球电动汽车展望[J].科学中国人,2013(7):16-18.
    [3]甄翠敏,胡天娇,张丽丽,等.国外电动汽车发展战略及对我国的启示[J].河北能源职业技术学院学报,2013(3):48-51.
    [4]贾伟.美国电动汽车普及计划蓝图[J].科学中国人,2013(7):19-20.
    [5] Ehsani, M., Gao, Y., Emadi, A..Modern Electric, Hybrid Electric, and Fuel CellVehicles.2nd Edition, Routledge,2009.
    [6] Husani, I.. Electric and Hybrid Vehicles[M].CRC Press,2003.
    [7] James Larminie, John Lowry. Electric Vehicle Technology Explained [M].2003.
    [8] Turner, A., Cavallino, C..Multi-Speed EV/FCV Transmission with SeamlessGearshift[C]. Berlin CTI Conference,2009.
    [9] Knodel, U..Electric Axle Drives for Axle-Split-Hybrids and EVApplications[C].9th European All-Wheel Drive Congress, Graz,2009.
    [10] T. Hofman, C.H. Dai. Energy Efficiency Analysis and Comparison ofTransmission Technologies for an Electric Vehicle[C]. Vehicle Power andPropulsion Conference,2010.
    [11] Qinglian Ren,David A.Crolla,Adrian Morris. Effect of Geared Transmissions onElectric Vehicle Drivetrains[C]. IEEE Design Engineering TechnicalConferences and Computers and Information in EngineeringConference(IDETC/CIE), California, USA, August30-September2,2009.
    [12] Aldo Sorniotti, Marco Boscolo, Andy Turner, et al. Optimization of aMulti-Speed Electric Axle as a Function of the Electric Motor Properties [C].IEEE Vehicle Power and Propulsion Conference (VPPC), September1-3,2010.
    [13] B. Eberleh, Th. Hartkopf. A high speed induction machine with two speedtransmission as drive for electric vehicles [C]. International Symposium onPower Electronics, Electrical Drives, Automation and Motion,2006.
    [14] Francesca Di Nicola, Aldo Sorniotti.Optimization of a Multiple-SpeedTransmission for Downsizing the Motor of a Fully Electric Vehicle[J]. SAE2012-01-0630.
    [15] http://www.vocis.co.uk/news.
    [16] Aldo Sorniotti,Saviyen Subramanyan,Andy Turner, Carlo Cavallino, et al.Selection of the Optimal Gearbox Layout for an Electric Vehicle [J]. SAE2011-01-0946.
    [17] Aldo Sorniotti, Thomas Holdstock, Gabriele Loro Pilone, et al. Analysis andsimulation of the gearshift methodology for a novel two-speed transmissionsystem for electric powertrains with a central motor [J]. Proceedings of theInstitution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2012.
    [18] Aldo Sorniotti,Gabriele Loro Pilone, Fabio Viotto, et al. A Novel Seamless2-Speed Transmission System for Electric Vehicles: Principles and SimulationResults [J]. SAE2011-37-0022.
    [19]姬芬竹,高峰.电动汽车驱动电机和传动系统的参数匹配[J].华南理工大学学报(自然科学版),2006(4):33-37.
    [20]曾虎,黄菊花.纯电动汽车的电机与变速器匹配[J].装有与制作技术,2012(2):40-42.
    [21]曾慧平,吴旭峰,李传海,等.电动汽车三档变速动力装置:中国,201020297747.5[P].2010-08-19[2011-05-11].
    [22]孙玲,张志华.电动汽车用2+1档位变速箱:中国,201110041113.2[P].2011-02-21[2011-05-25].
    [23]朱振宇,张寅,袁一卿.一种电动汽车的动力总成:中国,201010156847.0[P].2010-04-25[2010-09-01].
    [24] Xi Junqiang,Xiong Guangming,Zhang Yan. Application of Automatic ManualTransmission Technology in Pure Electric Bus [C]. IEEE Vehicle Power andPropulsion Conference(VPPC), Harbin,China, September3-5,2008.
    [25]唐永琪.纯电动汽车两档自动变速器换档品质研究[J].新能源汽车,2013(1):3-7.
    [26]王方.微型纯电动汽车动力性能参数匹配及仿真研究[D].合肥:合肥工业大学,2011.
    [27]周兵,江青华,杨易.两挡变速器纯电动汽车动力性经济性双目标的传动比优化[J].汽车工程,2011(9):792-797.
    [28]胡明辉,秦大同,谢红军,等.用于纯电动汽车的CVT传动调节系统:中国,201110021764.5[P].2011-01-19[2011-06-15].
    [29]席军强,王雷,付文清,等.纯电动客车自动机械变速器换挡过程控制[J].北京理工大学学报,2010,30(1):42-45.
    [30]王雷,席军强.无离合器纯电动客车机械式自动变速器换挡评价的研究[J].汽车工程学报,2012,2(1):35-39.
    [31]刘吉顺,李骏,刘明辉,等.纯电动轿车整车控制策略开发与试验研究[C].第七届国际节能与新能源汽车创新发展论坛,中国,北京,2011:178-186.
    [32]王立国.纯电动客车动力总成控制策略研究[D].长春:吉林大学汽车工程学院,2009.
    [33]王佳,杨建中,蔡志标,等.基于模糊控制的纯电动轿车整车优化控制策略[J].汽车工程学报,2009,31(4):362-365.
    [34]秦大同,周孟喜,胡明辉,等.电动汽车的加速转矩补偿控制策略[J].公路交通科技,2012,29(5):146-151.
    [35] Yamadan, Nagaea,Takiy, etal. Development of brake control system for drivinghills applying active wheel speed sensor[J].JSAE review,2004,25(3).
    [36]赵育良.车辆电子驻车制动系统_EPB_的软件设计研究[D].南京:南京理工大学,2009.
    [37]郇钲.汽车电子驻车制动_EPB_控制系统设计与实现[D].南京:南京理工大学,2012.
    [38]崔海峰,刘昭度,王国业,等.基于扭矩传感器的汽车坡道起步辅助系统[J].仪器仪表学报,2006,27(10):1191-1193.
    [39]蒋学锋.重型商用车AMT坡道起步系统研究与开发[D].武汉:华中科技大学,2011.
    [40]王洪亮,赵熙俊,刘海鸥.重型汽车AMT电控气动坡起辅助控制[J].山东大学学报(工学版),2009,39(5):79-83.
    [41]秦大同,陈淑江,胡明辉,等.纯电动汽车电机与制动器协调起步控制[J].中国机械工程,2012,23(14):1758-1763.
    [42]陈淑江,秦大同,胡明辉,等.纯电动汽车坡道自适应起步控制策略[J].重庆大学学报,2012,35(9):1-7.
    [43]杜瑞.纯电动汽车起步控制策略研究[D].重庆:重庆大学机械工程学院,2012.
    [44]周孟喜.电动汽车驱动工况下的整车控制策略研究[D].重庆:重庆大学机械工程学院,2012.
    [45]王颖颖. DCT汽车起步过程离合器热负荷仿真研究[D].重庆:重庆大学机械工程学院,2008.
    [46]刘玺.湿式双离合器自动变速器换档过程关键技术研究[D].长春:吉林大学汽车工程学院,2011.
    [47] H. Flegl, R. Wüest, N. Stelter, etal.Das Porsche-Doppelkupplungs(PDK)Getriebe[J].ATZ Automobiltechnische Zeitschrift,1987,89(9):439-452.
    [48]朱华.双离合器自动变速器及其研究现状[J].液压气动与密封,2012,(8):1-5.
    [49]赵春明,乔旭彤,马宁,等.基于CAN总线的电动汽车分布式控制系统的故障诊断研究[J].车辆与动力技术,2005,98(2):41-45.
    [50]万仁君.电动汽车分布式控制系统的总线调度与整车控制策略的研究[D].天津:天津大学电气与自动化工程学院,2004.
    [51] Wen Ru Chun, Han Shu Ren, Liang Ling. Design of electric vehicle batterymanagement system based on CAN bus[C]. International Conference onElectrical Insulating Materials and Electrical Engineering, EIMEE2012,Shenyang,China, May25-27,2012.
    [52]诸静.模糊控制原理与应用[M].北京:机械工业出版社,2005.
    [53]章卫国,杨向忠.模糊控制理论与应用[M].西安:西北工业大学出版社,2000.
    [54] Zang Huaiquan, Li Dongdong. A study on clutch multi-modal fuzzy control inAMT vehicle starting process [J]. Journal of Computational Information Systems,2013,9(6):2121-2129.
    [55]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [56]刘杰,翁公羽,周宇博.基于模型的设计:MCU篇[M].北京:北京航空航天大学出版社,2011.
    [57] Harold Klee,Randal Allen.Simulation of Dynamic Systems with MATLAB andSimulink[M].Florida:CRC Press,2007.
    [58]张建国.双离合器式自动变速器控制品质评价与优化[D].长春:吉林大学汽车工程学院,2011.
    [59]王印束.基于动力传动系统一体化的双离合器自动变速器控制技术研究[D].长春:吉林大学汽车工程学院,2012.
    [60] Genta, G., Motor Vehicle Dynamics: Modeling and Simulation[M], Singapore,World Scientific,1997.
    [61]余志生.汽车理论[M].北京:机械工业出版社,2004.
    [62] Manfred Mitschke,Henning Wallentowitz,陈荫三,等.汽车动力学[M].北京:清华大学出版社,Spring,2009.
    [63]严进辉.电控机械式自动变速器坡道起步控制研究[D].长春:吉林大学汽车工程学院,2009.
    [64]崔海峰,刘昭度,吴利军,等.基于ABS/ASR集成控制系统的汽车坡道起步辅助装置[J].农机化研究,2006(8):193-195.
    [65]胥向欣.汽车制动主缸与踏板行程知识库的建立[D].长春:吉林大学汽车工程学院,2007.
    [66]王举.汽车制动系统试验处理分析与仿真[D].南京:南京理工大学,2001.
    [67]李力.汽车制动系统性能分析及优化设计[D].南京:南京理工大学,2011.
    [68] Christian von Albrichsfeld, Jürgen Karner. Brake System for Hybrid and ElectricVehicles [J]. SAE2009-01-1217.
    [69]金伦.双离合器自动变速器建模与控制策略的研究[D].长春:吉林大学汽车工程学院,2006.
    [70]秦大同,赵玉省,胡建军,等.干式双离合器系统换挡过程控制分析[J].重庆大学学报,2009,32(9):1016-1023.
    [71] Mikael Holgerson.Optimizing the smoothness and temperatures of a wet clutchengagement through control of the normal force and drive torque[J].Journal ofTribology,2000,122(1):119-123.
    [72]翁晓明.湿式双离合器变速器换档品质的研究[J].汽车工程,2009,31(10):927-931.
    [73] M-X Wu,J-W Zhang,T-L Lu,etal. Research on optimal control for dry dual-clutchengagement during launch[J]. Proceedings of the Institution of MechanicalEngineers, Part D: Journal of Automobile Engineering,2010(224):749-763.
    [74] Hongbo Liu,Yulong Lei,Jianguo Zhang,etal. Shift Quality Optimization Based onAssessment System for Dual Clutch Transmission[J]. SAE2012-01-0060.
    [75] Paul D.Walker,Nong Zhang,Richard Tamba. Control of gear shifts in dual clutchtransmission powertrains[J]. Mechanical Systems and Signal Processing,2011(5):1923-1936.
    [76]马小妹,李宇龙,严浪.传统多目标优化方法和多目标遗传算法的比较综述[J].电气传动自动化,2010,32(3):48-50.
    [77]董威.基于Pareto遗传算法的起重机主梁优化设计[D].大连:大连理工大学,2005.
    [78]毕书东.多目标优化遗传算法的研究[D].淮南:安徽理工大学,2007.
    [79] Fang Lincun,Qin Shiyin,Xu Gang, etal.Simultaneous optimization for hybridelectric vehicle parameters based on multi-objective geneticalgorithms[J].Energies,2011,3(4):532-544.
    [80]饶江.基于Pareto最优的悬架参数多目标优化[D].杭州:浙江大学,2010.
    [81] Fang Li-Cun,Qin Shi-Yin. Concurrent optimization for parameters of powertrainand control system of hybrid electric vehicle based on multi-objective geneticalgorithms[J].2006SICE-ICASE International Joint Conference,2006:2424-2429.
    [82]李倩,詹浩,朱军.基于Pareto遗传算法的机翼多目标优化设计研究[J].西北工业大学学报,2010,28(1):134-137.
    [83]童晶.多目标优化的Pareto解的表达与求取[D].武汉:武汉科技大学,2009.
    [84]李丽荣.求解ParetoFront多目标遗传算法的研究[D].湘潭:湘潭大学,2003.
    [85]庞辉,方宗德,李红艳,等.基于PARETO最优解的重型汽车传动系速比优化[J].汽车技术,2012(2):39-42.
    [86] Desai Chirag,Williamson, Sheldon S.Optimal design of a parallel hybrid electricvehicle using multi-objective genetic algorithms[C].5th IEEE Vehicle Power andPropulsion Conference, VPPC,2009:71-76.
    [87]杨观赐,李少波,璩晶磊,等.基于Pareto最优原理的混合动力汽车多目标优化[J].上海交通大学学报,2012,46(8):1297-1303.
    [88]房立存,秦世引.基于多目标遗传算法的混合电动汽车参数优化[J].汽车工程,2007,29(12):1036-1040.
    [89]覃俊,康立山.基于遗传算法求解多目标优化问题Pareto前沿[J].计算机工程与应用,2003(23):42-44.
    [90]史峰,王辉,胡裴,等.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2011.
    [91]陈德民,麻越艮,凌超,刘国强.基于压力控制的常分离式双离合器膜片弹簧设计与仿真[J].装甲兵工程学院学报,2011(25):30-34.
    [92] Chunsheng Ni, Tongli Lu, Jianwu Zhang. Gearshift control for dry dual-clutchtransmissions [J]. WSEAS TRANSACTIONS on SYSTEMS,2009,11(8):1177-1186.
    [93]李喜娟.汽车膜片弹簧离合器扭矩传递特性建模与计算方法研究[D].北京:北京交通大学,2010.
    [94]张铁山.膜片弹簧Almen-Lazslo公式假设的探讨[J].汽车技术,2003(12):12-14.
    [95]温诗铸,黄平.摩擦学原理(第二版)[M].北京:清华大学出版社,2002(2):284-285.
    [96]王磊.干式DCT双离合器传递扭矩控制与仿真研究[D].重庆:重庆大学机械工程学院,2012.
    [97]衣超,姜宏暄.比例流量阀在离合器控制系统中的应用[J].液压与气动,2008(12):63-65.
    [98]刘凯.电磁比例流量阀的本体设计研究[D].沈阳:东北大学,2005.
    [99] N D Vanghan,J B Gamble.The modeling and simulation of a proportionalsolenoid valve [J].ASME Journal of dynamic system Measurement and Control,1996,118(2):120-125.
    [100]张齐.基于Ansoft的比例电磁铁电磁力的有限元分析[J].沈阳师范大学学报(自然科学版),2009,27(3):306-309.
    [101]陆中华.基于纯电动轿车的两档双离合器式自动变速器控制技术研究
    [D].长春:吉林大学汽车工程学院,2010.
    [102]王印束.基于动力传动系统一体化的双离合器自动变速器控制技术研究
    [D].长春:吉林大学汽车工程学院,2012.
    [103]杨小辉,徐颖强,李世杰,等.广义回归神经网络_GRNN_在AMT挡位判别中的应用[J].机械设计与制造,2009(5):72-74.
    [104]刘庆华,张为公,龚宗洋.广义回归神经网络在汽车换档机械手运动轨迹测量中的应用[J].仪器仪表学报,2008,29(2):361-364.
    [105]俞明,林冬燕,孙国斌,等.基于广义回归神经网络的发动机排放预测[J].华南理工大学学报(自然科学版),2003,31(1):51-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700