具有二芳醚结构的L—左旋甲状腺素钠中间体的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,合成L-左旋甲状腺素钠的难点在于具有二芳醚结构的关键中间体的制备。采用Ullmann反应制备二芳醚中间体突破了L-左旋甲状腺素钠合成中存在的这一瓶颈。本文对该合成过程进行了详细研究。
     本论文的前期工作主要集中在以磷酸钾为缚酸剂、CuI为催化剂、N,N-甲基甘氨酸为配体的反应体系中,L-酪氨酸及其衍生物同对溴苯甲醚的偶联反应,结果只有N-乙酰-L-酪氨酸乙酯能得到相应的二芳醚结构的产物。进一步研究发现尽管该底物能获得中等的产率,但所得的二芳醚中间体的比旋光值为零。
     我们推测手性传递失败的原因可能是由含有强吸电子能力的乙酰基促使氨基酸手性中心发生互变异构所致。于是我们采用具有给电子能力的苄基对氨基进行保护,希望能使手性得以保持,最终我们获得了光学活性保持、产率适中的预想产物。初步的研究结果告诉我们,该方法是可行的,因此我们进一步考察了各种影响转化率及产物e.e.值的因素。
     我们使用普通液相色谱柱及手性色谱柱,通过峰面积积分的方法分别定量分析了反应体系中产物的含量和其e.e.%值。考察了碱、催化剂及反应溶剂的种类;配体、对溴苯甲醚、碱及催化剂的用量;此外还包括温度和时间等各种影响因素。结果发现,使用有机碱作为缚酸剂的反应体系无法获得目标产物,采用无机碱为反应的缚酸剂,其中以价廉且缚酸能力强的磷酸钾为最佳选择,但其用量与值密切相关。时间对e.e%值的影响较小,而达到最优产率的条件为8小时。相比之下,温度的影响较为复杂,较为合理的反应温度为90℃,在100~110~(e.e%)产率达到最高,但e.e.%值显著下降。对于配体而言,虽然其用量达到一定时,产率不再提高,但继续增加用量可以获得更高的e.e.%值。尽管碘化亚铜的催化活性最高,但并不是最好的选择,因为它不仅价格昂贵且使反应产物的e.e.%下降。在考察了一系列溶剂后发现,醇溶剂效果最差,偶联反应在其中不发生,而DMF及NMP最为出色,两者在产率及产物e.e.%值方面均表现出近似结果。
     在优化后的反应条件下,我们以47%产率和94.7%的e.e.值获得了目标产物O-对甲氧苯基-N,N-二苄基酪氨酸乙酯。这表明通过Ullmann反应来制得二芳醚中间体可以进一步开辟新的合成L-左旋甲状腺素钠的有效途径。
It has been elucidated by the literature that the difficulty in the multi-step synthesis of L-Thyroxine lies in the preparation of the key intermediate with diaryl ether structure. In order to break through such bottle neck, Ullmann coupling reaction is utilized to obtain the diaryl ether. The thesis has studied in detail the process in access to such compound.
     The primary research is focused on the coupling of 4-bromoanisole and L- tyrosine and its derivatives under the conditions that N, N-dimethylglycine, potassium phosphate and cuprous iodide are to be as the ligand, base and catalyst, respectively. It is found that L-tyrosine without protections of its amino and carboxyl groups is hardly the effective candidate for the Ullmann coupling, only its derivative with double protections on amino and carboxyl groups can be carried out the desired reaction. Therefore, we adopt the strategy to turn amino and carboxyl into corresponding acetamide and ester. However, the extraordinarily low specific rotating value of the product demonstrates that the derivative of L-tyrosine with the above double protective groups has lost its potential as the substrate in route to L-Thyroxine, despite of the reasonable chemical yield involved with it.
     We has attributed the above failure to the strong electron-withdrawing capacity of acetyl, which leads to the facilitation of the tautomerism at theα-carbon on amino acid and the resulting racemization of the substrate. Hence, we design the alternative candidate derivative of L-tyrosine with double benzyls at the N atom, and it is hoped their electron-donating effect will contribute to the maintenance of optical activity for the coupling product. The primary result is in our expectation that not only the chemical yield is acceptable, but also the e.e% value is high enough. Then the detailed survey of those factors influencing the reaction conversion and the product’s e.e% value are executed.
     We use the common and chiral HPLC analysis of peak integrals to quantitatively detect the product content in reaction system and the e.e% value of the product mixture, respectively. Various effecting factors have been investigated such as the species of bases, catalysts and solvents, the amounts of ligand, 4-bromoanisole, base and catalyst, the reaction time and temperature. It is found that organic bases are ineffective for the coupling, only inorganic ones can be useful. Among them, potassium phosphate is the suitable one due to its cost and performance, but its amount is closely linked with the e.e% value of the product. Moreover, it is determined that the optimal reaction time for the coupling is around 8h, and there is little relationship with the e.e% value and the reaction time. However, the case is not the same for reaction temperature, although the best yield can be gained at about 100~110oC, the e.e% value at this temperature is dropped dramatically. The compromised temperature of the reaction is decided to be at 90oC. Although the yield is stabilized when the amount of the ligand is used at low percentage, the pretty good e.e% value can only be achieved for high percentage usage of the ligand. Despite of its good reaction conversion, CuI is not selected as our optimal catalyst owning to its high cost and poor performance on the product’s e.e% value. Among the screened solvents, it is found that alcohols are the poor ones without any target compound while DMF and NMP are both the best with the approximately the same reaction yield and product’s e.e% value.
     Under the optimal conditions, the product of O-anisoly-N, N-dibenzyltyrosine ethyl ester can be isolated in 47% yield and XXXX e.e% value. It is exhibited that the approach to the significant intermediate for the synthesis of L-Thyroxine has been established via the Ullmann coupling. The further work based on such method to explore the novel route to L-Thyroxine is under the due course.
引文
[1] Evans D. A.; Katz J. L. and West T. R.“Synthesis of diaryl ethers through the copper-promoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine”, Tetrahedron Letters, 1998, 39, 2937-2940.
    [2] Chalmers J. R.; Dickson G. T.; Elks, J. and Hems B. A.“The synthesis of thyroxine and related substances. Part V. A synthesis of L-thyroxine from L-tyrosine”, J. Chem. Soc., 1949, 3424-3433.
    [3] Matsuura T. and Cahnmann H. J.“Model Reactions for the Biosynthesis of Thyroxine. I. Structural Influence of the Side Chain in Analogs of Diiodotyrosine on their Conversion to Analogs of Thyroxine”, J. Am. Chem. Soc., 1959, 81, 871-878.
    [4] Salamonczyk G. M.; Oza, V. B. and Sih C. J.“A concise synthesis of thyroxine (T4) and 3,5,3′-Triiodo- -thyronine (T3)”, Tetrahedron Lett., 1997, 38, 6965-6968.
    [5] Ginger L. G.; Skokle and Paul Z.“Process For Producing Thyroxine”, US Pat. 2889363, 1959, Jun., 2.
    [6] Paul Frederick Coe, Nottingham, United Kingdom“Process For Producing Sodium 1-Thyroxine Comprising The Oxidative Coupling Of A Diido-1-throsine Catalysed By A Manganese Salt In The Presence Of An Amine”, US Pat. 5917087, 1999, Jun., 29.
    [7] Aranyos A.; Old D. W. Kiyomori A., Wolfe J. P.; Sadighi J. P. and Buchwald S. L.“Novel Electron-Rich Bulky Phosphine Ligands Facilitate the Palladium-Catalyzed Preparation of Diaryl Ethers”, J. Am. Chem. Soc., 1999, 121, 4369-4378.
    [8] Bistri O.; Correa A. and Bolm C.“Iron-Catalyzed C-O Cross-Couplings of Phenols with Aryl Iodides”, Angew. Chem. Int. Ed., 2008, 47, 586–588.
    [9] Niu J. J.; Guo P. R.; Kang J. T; Li Z. G.; Xu J. W and Hu S. J.“Copper(I)-Catalyzed Aryl Bromides To Form Intermolecular and Intramolecular Carbon?Oxygen Bonds”, J. Org. Chem., 2009, 74,5075–5078.
    [10] Chang J. W. W.; Chee S.; Mak S.; Buranaprasertsuk P.; Chavasiri W. and Chan P. W. H.“Copper-catalyzed Ullmann coupling under ligand- and additive-free conditions. Part I: O-Arylation of phenols with aryl halides”, Tetrahedron Lett., 2008, 49, 2018–2022.
    [11] Zhu X. H.; Chen G.; Ma Y. Song H. C.; Xu Z. L. and Wan Y. Q.“A General, Highly Efficient Ullmann C-O Coupling Reaction under Microwave Irradiation and the Effects of Water”, Chin. J. Chem., 2007, 25, 546-552.
    [12]冯荣秀,陈立功,张顺霞,宋健.“配位催化法合成3-碘噻吩及碘代偶合反应的研究”,《石油化工》,2007,36(11),1139-1143
    [13] Wang B. A.; Zeng R. S.; Wei H. Q.; Jia A. Q. and Zou J. P.“Copper(II) and 2,2'-Biimidazolyl-promoted Ullmann Coupling Reaction of Phenols and Aryl Iodides”, Chin. J. Chem., 2006, 24, 1062-1065.
    [14] Naidu A. B.; Raghunath O. R.; Prasad D. J. C. and Sekar G.“An effcient BINAM–copper(II) catalyzed Ullmann-type synthesis of diaryl ether”, Tetrahedron Lett., 2008, 49, 1057–1061.
    [15] Kalinin A. V.; Bower J. F.; Riebel P. and Snieckus V. J.“The Directed Ortho Metalation?Ullmann Connection. A New Cu(I)- Catalyzed Variant for the Synthesis of Substituted Diaryl Ethers”, J. Org. Chem., 1999, 64, 2986-2987.
    [16] Gujadhur R. K. and Venkataraman D.“Synthesis of diaryl ethers using an easy- to-prepare, air-stable, soluble copper(I) catalyst”, Synth. Commun. 2001, 31, 2865–2879
    [17] Gujadhur R. K.; Bates G. C. and Venkataraman D.“Formation of Aryl?Nitrogen, Aryl?Oxygen, and Aryl?Carbon Bonds Using Well-Defined Copper(I)-Based Catalysts”, Org. Lett.., 2002, 3, 4315-4317.
    [18] Kidwai M.; Mishra N. K.; Bansal V.; Kumar A. and Mozumdar S.“Cu-nanoparticle catalyzed O-arylation of phenols with aryl halides via Ullmann coupling”, Tetrahedron Lett., 2007, 48, 8883–8887.
    [19] Zhang J. T.; Zhang Zu. H.; Wang Y.; Zheng X. Q. and Wang Z. Y.“Nano-CuO-Catalyzed Ullmann Coupling of Phenols with Aryl Halides under Ligand-Free Conditions”, Eur. J. Org. Chem., 2008, 5112–5116.
    [20] Eeikga H.“Mechanism of the Ullmann Condensation”, December, 1964, 29, 3624-3626.
    [21] Williams A. L.; Kinney R. E. and Berdge R. F.“Solvent-Assisted Ullmann Ether Synthesis Reactions of Dihydric Phenols”, J. Org. Chem., 1967, 32, 2501–2505.
    [22] Paine A. J.“Mechanisms and Models for Copper Mediated Nucleophilic Aromatic Substitution. 2. A Single Catalytic Species from Three Different Oxidation States of Copper in an Ullmann Synthesis of Triarylamines”, J. Am. Chem. Soc., 1987, 109, 1496-1502.
    [23] Marcoux J. F.; Doye S. and Buchwald S. L.“A General Copper-Catalyzed Synthesis of Diaryl Ethers”, J. Am. Chem. Soc., 1997, 119, 10539-10540.
    [24] Buck E.; Song Z. J.; Tschaen D.; Dormer P. G.; Volante R. P. and Reider P. J.“Ullmann Diaryl Ether Synthesis: Rate Acceleration by 2,2,6,6-Tetramethylheptane-3,5-dione”, Org. Lett., 2002,4, 1623-1626.
    [25] Lv X. and Bao W. L.“Aβ-Keto Ester as a Novel, Efficient, and Versatile Ligand for Copper(I)-Catalyzed C-N, C-O, and C-S Coupling Reactions”, J. Org. Chem., 2007, 72, 3863-3867.
    [26] Fagan P. J.; Hauptman E.; Shapiro R. and Casalnuovo A.“Using Intelligent/RandomLibrary Screening To Design Focused Libraries for the Optimization of Homogeneous Catalysts: Ullmann Ether Formation”, J. Am. Chem. Soc., 2000, 122, 5043-5051.
    [27] Ma D. W. and Cai Q.“N, N-Dimethyl Glycine-Promoted Ullmann Coupling Reaction of Phenols and Aryl Halides”, Org. Lett., 2003, 5 ,3799–3802.
    [28] Cristau H. J.; Cellier P. P.; Hamada S.; Spindler J. F. and Taillefer M.“A General and Mild Ullmann-Type Synthesis of Diaryl Ethers”, Org. Lett., 2004, 6, 6913-916.
    [29] Benyahya S.; Monnier F.; Taillefer M.; Man M. W. C., Bied C. and Ouazzanib F.“Efficient and Versatile Sol-Gel Immobilized Copper Catalyst for Ullmann Arylation of Phenols”, Adv. Synth. Catal, 2008, 350, 2205-2208.
    [30] Benyahya S.; Monnier F.; Man M. W. C.; Bied C.; Ouazzanib F. and Taillefer M.“Sol–gel immobilized and reusable copper-catalyst for arylation of phenols from aryl bromides”, Green Chem., 2009, 11, 1121-1123.
    [31] Niu J. J.; Zhou H.; Li Z. G.; Xu J. W. and Hu S.J.“An Efficient Ullmann-Type C-O Bond Formation Catalyzed by an Air-StableCopper(I)-Bipyridyl Complex”, J. Org. Chem., 2009, 74 ,950.
    [32] Xia N. and Taillefer M.“Copper- or Iron-Catalyzed Arylation of Phenols from respectively Aryl Chlorides and Aryl Iodides”, Chem. Eur. J., 2008, 14, 6037-6039.
    [33] Wipf .P. and Jung J. K.“Formal Total Synthesis of (+)-Diepoxinσ”, J. Org. Chem., 2000, 65, 6319-6337.
    [34] Cai Q.; Zou B. L. and Ma D. W.“Mild Ullmann-Type Biaryl Ether Formation; Reaction by Combination of ortho-Substituent and Ligand Effects”, Angew. Chem. Int. Ed., 2006, 45, 1276-1279.
    [35] Nicolaou K. C.; Boddy C. N. C.; Natarajan S.; Yue T. Y.; Li H.; Brase S. and Ramanjulu J. M.“New Synthetic Technology for the Synthesis of Aryl Ethers: Construction of C-O-D and D-O-E RingModel Systems of Vancomycin”, J. Am. Chem. Soc., 1997, 119, 3421-3422.
    [36] Sagar A. D.; Tale R. H. and Adude R. N.“Synthesis of symmetrical diaryl ethers from arylboronic acids mediated by copper(II) acetate”, Tetrahedron Lett., 2003, 44, 7061-7603.
    [37] Salzbrann S.; Prakash G. K. S.; Petasis N. A. and Olah G. A.“Regioselective Conversion of Arylboronic Acids to Phenols and Subsequent Coupling to Symmetrical Diaryl Ethers”, J. Org. Chem., 2001, 66, 633-634.
    [38] Theil F.“Synthesis of Diaryl Ethers: A Long-Standing Problem Has Been Solved”, Angew. Chem. Int. Ed.; 1999, 38, 2345-2347.
    [39] Lam P. Y. S.; Vincent G.; Clark C. G.; Deudon S. and Jadhav P. K.“Copper-catalyzed general C-N and C-O bond cross-coupling with arylboronic acid”, Tetrahedron Lett., 2001, 42, 3415-3418.
    [40] Decicco C. P.; Song Y.and Evans D. A.“Intramolecular O-Arylation of Phenols with Phenylboronic Acids: Application to the Synthesis of Macrocyclic Metalloproteinase Inhibitors”, Org. Lett., 2001, 3, 1029-1032.
    [41] Beringer F. M.; Brierley A., Drexler M.; Gindler E. M. and Lumpki C. C.“Diaryliodonium Salts.11.The Phenylation of Organic and Inorganic Bases”, J. Am. Chem. Soc., 1953, 75, 2708-2712.
    [42] Barton D. H. R.; Blazejewski J. C.; Charpiot B. and Motherwe W. B.“Tetraphenylbismuth Monotrifluoroacetate: a New Reagent for Regioselective Aryl Ether Formation”, Chem. Comm., 1981, 503-504.
    [43] Quach T. D. and Batey R. A.“Copper(II)-Catalyzed Ether Synthesis from Aliphatic Alcohols and Potassium Organotrifluoroborate Salts”, Org. Lett., 2003, 5, 81381-1384.
    [44] Weston P. E. and Adkins H.“Catalysis With Copper in The Ullmann Reaction”, J. Am. Chem. Soc., 1928, 50, 859-866
    [45] Brewster R. Q. and Groening T.“p-Nitrodiphenyl Ether”, Organic Syntheses, Coll. Vol. 2,445.
    [46] Bates R. B., Kim J. D.;“High-yield benzyne synthesis of diaryl ethers”, J. Org. Chem., 1982, 47, 4374–4376
    [47] Palomo C., Oiarbide M., López R. and Enrique G. B.“Phosphazene P4-But base for the Ullmann biaryl ether synthesis”, Chem. Commun., 1998, 2091-2902.
    [48] Naidu A. B.; Raghunath O. R.; Prasad D. J. C.; Sekar G.“An e?cient BINAM–copper(II) catalyzed Ullmann-typesynthesis of diaryl ethers”, Tetrahedron Lett., 2008,49,1057-1061.
    [49] Naidu A. B.; Jaseer E. A. and Sekar G.“General, Mild, and Intermolecular Ullmann-Type Synthesis of Diaryl and Alkyl Aryl Ethers Catalyzed by Diol-Copper(I) Complex”, J. Org. Chem., 2009, 74, 3675-3679.
    [50] Jogdand N. R.; Shingate B. B. and Shingare M. S.“Tris-(2-aminoethyl) amine as a novel and efficient tripod ligand for a copper(I)-catalyzed C–O coupling reaction”, Tetrahedron Lett., 2009, 50, 4019–4021
    [51] Chen Y. J. and Chen H. H.“1,1,1-Tris(hydroxymethyl)ethane as a New, Efficient, and Versatile Tripod Ligand for Copper-Catalyzed Cross-Coupling Reactions of Aryl Iodides with Amides, Thiols, and Phenols”, Org. Lett., 2006, 8, 5609–5612
    [52] Rao H. h.; Jin Y.; Fu H.; Jiang Y. Y. and Zhao Y. F.“A Versatile and Efficient Ligand for Copper-Catalyzed Formation of C-N, C-O, and P-C Bonds: Pyrrolidine-2-Phosphonic Acid Phenyl Monoester”, Chemistry - A European Journal, 2006, 12, 3636-3646
    [53] Ouali A.; Spindler J. F.; Cristau H. J. and Taillefera M.“Mild Conditions for Copper-Catalyzed Coupling Reaction of Phenols and Aryl Iodides and Bromides”, Adv.Synth. Catal. 2006, 348, 499–505.
    [54] Liu X. H.; Hua F.; Jiang Y. Y. and Zhao Y. F.“Efficient Copper-Catalyzed O-Arylation Using Readily Available (S)-N-Methylpyrrolidine-2-Carboxamide as the Ligand”, Synlett, 2008, 221-224.
    [55] Liu Y. h.; Li G. and Yang L. M.“Cu(I)-catalyzed Synthesis of Diaryl Ether Using a Simple Hydrazone as Promoter”, Chin. J. Chem., 2009, 27, 423-427.
    [56] Hosseinzadeh R.; Tajbakhsh M.; Mohadjerani M. and Alikarami M.“Copper-Catalyzed Etherification of Aryl Iodides Using KF/Al2O3”, Synlett, 2005, 1101-1104.
    [57] Xu L.W.; Xia C. G.; Li J. W. and Hu X. X.“Highly Efficient C–O Cross-Coupling Reactions with Unactivated Halides by Ligandless, Heterogeneous Raney Ni-Al Alloy/Copper (I) Salts”, Synlett, 2003, 13, 2071–2073.
    [58]潘元佳.“铜催化的Ullmann反应研究进展评价”,《化工之友》,2007, 344-345.
    [59] Miao T. and Wang L.“Immobilization of copper in organic–inorganic hybrid materials: a highly effcient and reusable catalyst for the Ullmann diaryl etherification”, Tetrahedron Lett., 2007, 48, 95–99.
    [60] Liu Y. H.; Li G. and Yang L. M.“Glyoxal bis(phenylhydrazone) as promoter for CuI- catalyzed O-arylation of phenols with bromoarenes”, Tetrahedron Letters, 2009, 50, 343-346.
    [61] Ma D. W. and Cai Q.“Copper/Amino Acid Catalyzed Cross-Couplings ofAryl and Vinyl Halides with Nucleophiles”, Acc. Chem. Res., 2008,41, 1450-1460.
    [62]黄惟德,陈常庆,“多肽合成”,北京,科学出版社,1985.
    [63]谢文磊,“以L-酪氨酸为原料合成Tamsulosin”,2006年博士学位论文,天津大学.
    [64]武汉武大宏远药业有限公司,“N-乙酰-L-酪氨酸的制备方法”, CN Pat, 1594283,2005,3,16
    [65]陈超,“西弗碱氨基醇-Zn复合物在低催化剂用量下催化末端炔烃对酮的不对称加成反应的研究”,2007年博士学位论文,兰州大学.
    [66] Li Y. Y.; Zhang H.; Chen J. S.; Liao X. L.; Dong Z. R. and Gao J. X.“A new efficient chiral iridium catalyst for asymmetric transfer”, J. Mol. Catal. A: Chem., 2004, 218, 153–156.
    [67]朱守非,“手性螺环单膦和膦-氮配体的合成及应用研究”,2005年博士学位论文,南开大学
    [68] Evans D. A.; Rovis T.; Kozlowski M. C. and Tedrow J. S.“C2-Symmetric Cu(II) Complexes as Chiral Lewis Acids. Catalytic Enantioselective Michael Addition of Silylketene Acetals to Alkylidene Malonates”, J. Am. Chem. Soc., 1999, 121, 1994-1995
    [69]薛屏,吴涛.“Fe-壳聚糖/SBA-15催化潜手性酮不对称氢转移反应”,《石油化工》2006, 35, 859-862.
    [70](a)徐洲,“N,O-手性配体的设计合成及其在不对称加成反应中的研究应用”,2009年博士学位论文,苏州大学.; (b). Xu Z.; Mao J. C,; Zhang Y.W.; Guo J. and Zhu J. L.“Inversion of stereochemistry in the asymmetric transfer hydrogenation of ketones performed in tap water and in open-vessel”, Catal. Commun., 2008, 9, 618–623.
    [71] (a).谭蓉,“溶剂控制相转移Schiff碱配合物的合成与不对称催化作用研究”,2009年博士学位论文,湖南师范大学; (b). Tan R.; Yin D. H.; Yu N. Y.; Tao L.; Fu Z. H. and Yin D. L.“A novel polymeric chiral salen Mn(III) complex as solvent-regulated phase transfer catalyst in the asymmetric epoxidation of styrene”, J. Mol. Catal. A: Chem., 2006, 259, 125–132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700