五个质子泵抑制剂对映体的分离及大鼠体内药动学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性药物的生物活性与其立体构型密切相关。目前新药研究的一个发展趋势是研制和生产光学纯的药物。手性药物的研究已成为国际新药研究的方向之一。手性药物分析在手性药物研究中作用越来越重要,已成为国际上分析科学中的热点和难点。本文以质子泵抑制剂泰妥拉唑、泮托拉唑、兰索拉唑、雷贝拉唑和奥美拉唑为研究对象,建立了对映体分离测定的毛细管电泳法和高效液相色谱法,制定了(-)-泰妥拉唑和(-)-泮托拉唑光学纯度的检测方法,初步研究了泰妥拉唑对映体在大鼠体内的立体选择性药物动力学过程,为此类手性药物的研究开发奠定了基础。
     1.毛细管区带电泳法分离四个质子泵抑制剂对映体
     采用以负电的磺丁基醚-β-环糊精(SBE-β-CD)为手性选择剂的毛细管区带电泳法对泰妥拉唑、雷贝拉唑、兰索拉唑和泮托拉唑对映体进行了手性分离研究。考察了环糊精种类和浓度、背景电解质的pH、有机改性剂种类和浓度等因素对分离的影响。在背景电解质为50 mmol/L硼砂—150 mmol/L磷酸二氢钠(含40mg/mL SBE-β-CD, pH6.5),分离电压为10 kV的条件下,四个质子泵抑制剂对映体实现了基线分离。测定了四个质子泵抑制剂对映体与SBE-β-CD的结合常数,证明了两对映体与SBE-β-CD结合常数的不同是实现手性分离的主要机制。对泰妥拉唑对映体的手性分离方法进行了方法学确证,两对映体浓度在0.65~100μg/mL范围内与峰面积呈良好的线性关系(r2≥0.9994),两个对映体的最低检测限和定量限分别为0.2和0.65μg/mL,方法的日内、日间精密度(RSD)均小于3.0%,回收率在91.6~100%之间。该方法应用于(-)-泰妥拉唑样品的对映体过量百分率测定。
     2.手性流动相添加剂高效液相色谱法分离泮托拉唑对映体
     采用以SBE-β-CD为手性流动相添加剂的高效液相色谱法对泮托拉唑对映体进行手性分离研究。考察了SBE-β-CD的浓度,缓冲溶液的种类、浓度和pH,有机改性剂的种类和浓度等因素对分离的影响。最后确定分离条件为:在Spherigel C18色谱柱(150mm×4.6mm,5μm)上,流动相为10 mmol/L磷酸二氢钾(含20 mg/mL SBE-β-CD, pH2.5)—乙腈(85:15,v/v),流速为0.9 mL/min,柱温为室温,检测波长为290 nm的条件下,泮托拉唑对映体在15min内分离度达到2.1。按照ICH指导原则对(-)-泮托拉唑中(+)-异构体杂质的定量测定进行方法学确证,(+)-泮托拉唑的浓度在0.5~6.0μg/mL范围内与峰面积呈良好的线性关系(r2=0.9991),(+)-泮托拉唑的检测限和定量限分别为0.2和0.5μg/mL,方法的日内、日间精密度(RSD)小于3.6%,回收率在92.1~101%之间。该方法应用于(-)-泮托拉唑原料药中(+)-泮托拉唑的定量测定。
     3.手性配体交换高效液相色谱法分离五个质子泵抑制剂对映体.
     采用手性配体交换高效液相色谱法对泰妥拉唑、泮托拉唑、兰索拉唑、雷贝拉唑和奥美拉唑对映体进行手性分离研究。考察了配体的种类、配体与金属离子的比例和浓度、有机改性剂的种类和浓度、流动相pH等因素对手性分离的影响。在流动相为1 mmol/L L-组氨酸,0.5 mmol/L醋酸铜(pH7.0)—乙腈(75:25,v/v),流速1.0 mL/min条件下,奥美拉唑,泮托拉唑,雷贝拉唑和兰索拉唑实现基线分离。在上述条件下,将乙腈含量调整为18%,泰妥拉唑对映体实现基线分离。应用分子模拟构建了三元配合物的最低能量构型,通过量化计算证明了质子泵抑制剂对映体与Cu2+和L-组氨酸形成三元配合物的稳定性差异是实现对映体分离的主要分离机制。
     4.手性固定相高效液相色谱法分离四个质子泵抑制剂对映体
     应用多糖类手性色谱柱Chiralpak AS-H和大环糖肽抗生素类手性色谱柱Chirobiotic V为固定相对泰妥拉唑、泮托拉唑、兰索拉唑和奥美拉唑对映体进行了手性分离研究。采用Chiralpak AS-H手性固定相时,考察了流动相组成和柱温对手性分离的影响。在流动相为正己烷—乙醇—三乙胺(20:80:0.1%,v/v/v),流速为0.4 mL/min,柱温为40℃的条件下,四个质子泵抑制剂对映体在15 min内实现分离度大于3.3的基线分离。考察了此模式下四个质子泵抑制剂对映体的热力学参数的变化,证明了其与固定相之间的相互作用均是焓控过程。质子泵抑制剂与Chiralpak AS-H固定相之间的空间作用是实现对映体分离的最主要分离机制。采用Chirobiotic V手性固定相时,以泰妥拉唑为代表,考察了分离模式、流动相组成和柱温等因素对分离的影响。在流动相为20 mmol/L醋酸铵—四氢呋喃(93:7,v/v,pH6.0),流速为0.5 mL/min,温度为20℃的条件下,泰妥拉唑实现基线分离,其它三个质子泵抑制剂对映体得到部分分离。考察了此模式下泰妥拉唑热力学参数的变化,证明了其与固定相之间的相互作用是焓控过程。比较两种手性固定相的分离结果,Chiralpak AS-H更适合质子泵抑制剂手性药物对映体的分离。
     5.大鼠血浆泰妥拉唑对映体的测定和立体选择性药物动力学初步研究
     建立非手性—手性串联高效液相色谱法定量测定大鼠血浆中泰妥拉唑对映体。初步研究了大鼠单剂量灌胃给予泰妥拉唑消旋体后两对映体的药物动力学过程。结果表明血浆中(+)-泰妥拉唑的AUC0-∞。值高于(-)-泰妥拉唑(p<0.001),两对映体的t1/2和CL/F有显著性不同(p<0.01 and p<0.001),(+)-泰妥拉唑与(-)-泰妥拉唑的Cmax和AUC0-∞的比值分别为2.5和7.6。说明泰妥拉唑对映体在大鼠体内的药物动力学具有立体选择性。
Bioactivity of chiral drugs is closely related to the stereostructures. Nowadays development and production of optically pure drugs is the trend of new drugs research. The study on chiral drugs has become one of the important directions of new drugs research and development internationally. Analysis of chiral drugs, with increasing in importance in pharmaceutical research, is now a hot and difficult topic in analysis science. In this thesis, capillary electrophoresis (CE) and high performance liquid chromatography (HPLC) methods were developed for the chiral separation of proton pump inhibitors (PPIs) including tenatoprazole, pantoprazole, lansoprazole, rabeprazole and omeprazole. The optical determination method for (-)-pantoprazole and (-)-tenatoprazole and the seteroselective pharmacokinetics of tenatoprazole enantiomers in rats provided a reference for the development of optically pure PPIs.
     1. Chiral separation of four PPIs with capillary zone electrophoresis
     The chiral separation of tenatoprazole, pantoprazole, lansoprazole and rabeprazole was studied with capillary zone electrophoresis (CZE) using negatively charged sulfobutyl ether-β-CD (SBE-β-CD) as chiral selector. The influence of type and concentration of CDs, running buffer pH, the type and concentration of organic modifier on the chiral separation was investigated. The separation mechanism was discussed by comparing the chiral separation results and the determination of the complexation binding constant. The chiral recognition mechanism was proposed on the difference of the complexation binding constant between two enantiomers. Under the condition of 50 mmol/L borox-150 mmol/L phosphate buffer (pH6.5) containing 40 mg/mL SBE-P-CD, applied voltage of 10 kV, the enantiomers of all PPIs were baseline separated. The optimized method for determination of tenatoprazole enantiomers was validated. The limits of detection (LOD) and quantification (LOQ) were 0.2 and 0.65μg/mL for both the enatiomers, respectively. The linearity of the method was in the range of 0.65~100μg/mL with r2≥0.9994. The inter-and tra-day assay precision was less than 3.0%(RSD) and recoveries were in the range 91.6~100%. The method was applied to the enantiomeric excess (ee) determination of (-)-tenatoprazole bulk samples.
     2. Chiral separation of pantoprazole enantiomers by HPLC using SBE-β-CD as chiral mobile phase additive
     The chiral separation of pantoprazole enantiomers was studied by HPLC using SBE-β-CD as chiral mobile phase additive (CMPA). The factors affecting the resolution such as concentration of SBE-β-CD, buffer pH, type and concentration of buffer solution, type and concentration of organic modifier were investigated. A baseline resolution of 2.1 was achieved within 15 min on a Spherigel C18 column (150mm×4.6mm,5μm) using acetonitrile and 10 mmol/L phosphate buffer (pH2.5) containing 20 mg/mL SBE-P-CD (15:85, v/v) as mobile phase with a flow rate of 0.9 mL/min at room temprature. The detection wavelength was 290 nm. The optimized method was extensively validated in terms of accuracy, precision and linearity according to the ICH guidelines and proved to be robust. The LOD and LOQ for (+)-pantoprazole were 0.2 and 0.5μg/mL, respectively. The linearity of the method was in the range of 0.5~6.0μg/mL with r2=0.9991 for (+)-pantoprazole. The precision of the method was less than 3.6%(RSD) and recoveries were in the range 92.1~101% for (+)-pantoprazole. The method was applied to the enantiomeric impurity determination of (-)-pantoprazole bulk samples.
     3. Chiral separation of five PPIs with chiral ligand-exchange chromatography
     The chiral separation of tenatoprazole, pantoprazole, lansoprazole, rabeprazole and omeprazole was studied with chiral ligand-exchange chromatography (CLEC). The type of chiral ligand, type and concentration of organic modifier, the concentration ratio of chiral ligand to metal ion and pH were studied for the optimization of separation condition. Under the optimized conditions,1 mmol/L L-His,0.5 mmol/L copper acetate in water (pH7.0)-acetonitrile (75:25, v/v), at flow rate of 1.0 mL/min, the enantiomers of omeprazole, pantoprazole, rabeprazole and lansoprzole were baseline separated, and the enantiomers of tenatoprazole could be resovled with the content of acetonitrile decreased to 18%. The minimal energy configurations were obtained by simulated annealing, and based on that, quantum chemical calculation was performed to discuss the mechanism of chiral recognition. The chiral recognition mechanism was proposed to be on the difference of the stability of ternary complexes between two enantiomers.
     4. Chiral separation of four PPIs by HPLC on chiral stationary phases
     Direct enantioseparation of PPIs including tenatoprazole, pantoprazole, lansoprazole and omeprazole was studied using Amysole (Chiralpak AS-H) and Vancomycin (Chirobiotic V) as chiral stationary phases (CSPs). The effects of the concentration of mobile phase additive, composition of mobile phase and column temperature were investigated with Chiralpak AS-H as CSP. The enantiomers of all PPIs were resolved (Rs>3.3) within 15 min using n-hexane-ethanol-TEA (80:20:0.1%, v/v/v) as mobile phase with a flow rate of 0.4 mL/min at 40℃. The thermodynamic parameters of four PPIs in this mode were investigated, the enantioselectivety was proved to be enthalpocally controlled. The chiral recognition mechanism was discussed, inclusion interaction between the CSP and the analytes was confirmed to be the dramatic interaction responsible for the chiral discrimination. The separation mode, mobile phase and column temperature were also investigated when Chirobiotic V was adopted. Under the optimized conditions,20 mmol/mL ammonium acetate-tetrahydrofuran (93:7, v/v), at a flow rate of 0.5 mL/min and 20℃, the enantiomers of tenatoprazole got baseline separation, and the enantiomers of pantoprazole, lansoprazole and omeprazole got partial separation. The thermodynamic parameters of tenatoprazole in this mode was investigated, the enantioselectively was proved to be enthalpocally controlled. The results of enantiosparation on the two CSPs were compared with each other with Chiralpak AS-H CSP giving better results.
     5. Determination of tenatoprazole enantiomers and their stereoselective pharmacokinetics in rats
     An achiral-chiral sequential HPLC method was developed for the determination of tenatoprazole enantiomers in rat plasma. The method was used for the stereoselective pharmacokinetic study of tenatoprazole in rats after intra gastric administration of tenatoprazole racemate. The AUC0-∞value of (+)-tenatoprazole was significantly greater than that of (-)-tenatoprazole (p<0.001). There are also significant differences in t1/2 and CL/F (p<0.01 and p<0.001, respectively) values between enantiomers. The mean Cmax and AUC0-∞values for (+)-tenatoprazole were 2.5 and 7.6 times of those of (-)-tenatoprazole, which indicated that the pharmacokinetics of tenatoprazole in rats was stereoselective.
引文
[1]尤启冬,林国强.手性药物—研究与应用.化学工业出版社:北京,2004.
    [2]手性药物研发进展.制药原料及中间体信息,2006,11,20-23.
    [3]Kamiya Y, Andoh T, Furuya, et al. Comparison of the effects of convulsant and depressant barbiturate stereoisomers on AMPA-type glutamate receptors. Anesthesiology,1999,90(6):1704-1713.
    [4]Akbar H, Navran SS, Miller DD, et al. Antiplatelet actions of trimetoquinol isomers:evidence for inhibition of a prostaglandin-independent pathway of platelet aggregation. Biochem. Pharmacol.,1982, 31(5):886-889.
    [5]Leander JD, Zimmerman DM. Effects of picenadol and its agonist and antagonist isomers on schedule-controlled behavior. J. Pharmacol. Exp. Then,1983,227(3):671-675.
    [6]Boer R, Grassegger A, Schudt C, et al. (+)-Niguldipine binds with very high affinity to Ca2+ channels and to a subtype of alpha 1-adrenoceptors. Eur. J. Pharmacol.,1989,172(2):131-145.
    [7]Haussermann K, Benz B, Gekeler V, et al. Effects of verapamil enantiomers and major metabolites on the cytotoxicity of vincristine and daunomycin in human lymphoma cell lines. Eur. J. Clin. Pharmacol.,1991, 40(1):53-59.
    [8]Awadallah B, Schmidt PC, Wahl MA. Quantitation of the enantiomers of ofloxacin by capillary electrophoresis in the parts per billion concentration range for in vitro drug absorption studies. J. Chromatogr. A,2003,988(1):135-143.
    [9]Blaschke G, Kraft HP, Fickentscher K, Kohler F. Chromatographic separation of racemic thalidomide and teratogenic activity of its enantiomers. Arzneimittelforschung,1979,29(10):1640-1642.
    [10]Glatt H, Oesch F. Mutagenicity of cysteine and penicillamine and its enantiomeric selectivity. Biochem. Pharmacol.,1985,34(20):3725-3728.
    [11]Ruffolo RR Jr, Spradlin TA, Pollock GD, et al. Alpha and beta adrenergic effects of the stereoisomers of dobutamine. J. Pharmacol. Exp. Ther.,1981,219(2):447-452.
    [12]Blaine EH, Fanelli GM Jr, Irvin JD, et al. Enantiomers of indacrinone:a new approach to producing an isouricemic diuretic. Clin. Exp. Hypertens A,1982,4(1-2):161-176.
    [13]Wilson H, Camp DE. Chiral drugs:the FDA perspective on manufacturing and control. J. Pharm. Biomed. Anal.,1993,11(11/12):1167-1172.
    [14]International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use (ICH). Br. J. Clin. Pharmacol.1994,37(5):401-404.
    [15]李发美.医药高效液相色谱技术.人民卫生出版社:北京,1999.
    [16]Mericko D, Lehotay J, Cizmarik J. HPLC separation of enantiomers using chiral stationary phases. Ceska Slov. Farm.,2007,56(3):107-113.
    [17]Ravelet C, Peyrin E. Recent developments in the HPLC enantiomeric separation using chiral selectors identified by a combinatorial strategy. J Sep. Sci.,2006,29(10):1322-1331.
    [18]Ilisz I, Berkecz R, Peter A. HPLC separation of amino acid enantiomers and small peptides on macrocyclic antibiotic-based chiral stationary phases:a review. J. Sep. Sci.,2006,29(10):1305-1321.
    [19]Schurig V. Practice and theory of enantioselective complexation gas chromatography. J. Chromatogr. A, 2002,965(1-2):315-356.
    [20]Aboul-Enein HY, El-Awady MI, Heard CM, et al. Application of thin-layer chromatography in enantiomeric chiral analysis-an overview. Biomed. Chromatogr.,1999,13(8):531-537.
    [21]Zheng ZX, Wei YL, Lin JM. Chiral separation based on ligand-exchange capillary electrophoresis using a copper(Ⅱ)-L-ornithine ternary complex as selector. Electrophoresis,2004,25:1007-1012.
    [22]Scriba GK. Cyclodextrins in capillary electrophoresis enantioseparations-recent developments and applications. J. Sep. Sci.,2008,31(11):1991-2011.
    [23]Sanchez-Hernandez L, Crego AL, Marina ML, Garcia-Ruiz C. Sensitive chiral analysis by CE:an update. Electrophoresis,2008,29(1):237-251.
    [24]Mangelings D, Vander Heyden Y. Chiral separations in sub-and supercritical fluid chromatography. J. Sep. Sci.,2008,31(8):1252-1273.
    [25]Subramanian G A practical approach to chiral separations by liquid chromatography. Weiheim:VCH, 1994,357.
    [26]Okamoto Y, Yashima E. Polysaccharide Derivatives for Chromatographic Separation of Enantiomers. Angew. Chem. Int. Ed.,1998,37(8):1020-1043.
    [27]Armstrong DW, LiuYB, Erhoryott KH. A covalently bonded teicoplanin chiral stationary phase for HPLC enantioseparations. Chirality,1995,7:474-497.
    [28]谷焕鹏,胡升芳,高明堂.手性固定相在高效液相色谱中的应用研究进展.中国药房,2005,16(18):1421-1423.
    [29]杜会霞,尹大力.色谱手性固定相在手性药物拆分中的应用.中国新药杂志,2006,15(24):2099-2102.
    [30]Yang J, Guan J, Pan L, et al. Enantioseparation and impurity determination of the enantiomers of novel phenylethanolamine derivatives by high performance liquid chromatography on amylose stationary phase. Anal. Chim. Acta,2008,610:263-267.
    [31]Zhang T, Nguyen D, Franco P, et al. Cellulose 3,5-dimethylphenylcarbamate immobilized on silica A new chiral stationary phase for the analysis of enantiomers. Anal. Chim. Acta,2006,557(1-2):221-228.
    [32]Stern E, Goossens L, Vaccher C, et al. Chiral resolution of the enantiomers of new selective CB(2) receptor agonists by liquid chromatography on amylose stationary phases. J. Pharm. Biomed. Anal., 2008,46(5):848-853.
    [33]Jadhav AS, Pathare DB, Shingare MS. Development and validation of enantioselective high performance liquid chromatographic method for Valacyclovir, an antiviral drug in drug substance. J. Pharm. Biomed. Anal.,2007,43:1568-1572.
    [34]Ward TJ, FarrisIII AB. Chiral separations using the macrocyclic antibiotics:a review. J. Chromatogr. A, 2001,906(1-2):73-89.
    [35]Gasper MP, Berthod A, Nair UB, et al. Comparison and Modeling Study of Vancomycin, Ristocetin A, and Teicoplanin for CE Enantioseparations. Anal. Chem.,1996,68(15):2501-2514.
    [36]Chirobiotic Handbook. Whippany, USA:Advanced Separation Technologies,1996.
    [37]曾苏.高效液相色谱手性流动相添加剂法分离药物对映体.色谱,1995,13(1):21-25.
    [38]黄艳艳,刘道杰.HPLC手性流动相拆分法在分离药物对映体中的应用.化学试剂,2007,29(6):345-349.
    [39]Cserhati T. New applications of cyclodextrins in electrically driven chromatographic systems:a review. Biomed. Chromatogr.2008,22:563-571.
    [40]Vadim A, Davankov. Chiral selector with chelating properties in liquid chromatography; fundamental reflections and selective review of recent developments. J. Chromatogr. A,1994,666:55-76.
    [41]Vadim A, Davankov. Enantioselective ligand exchange in modern separation techniques. J. Chromatogr. A,2003,1000:891-915.
    [42]Grobuschek N, Schmid MG, Tuscher C, et al. Chiral separation of beta-methyl-amino acids by ligand exchange using capillary electrophoresis and HPLC. J. Pharm. Biomed. Anal.,2002,27(3-4):599-605.
    [43]Sun SY, Jia YZ, Zeng N. et al. Chiral Ligand-Exchange Chromatography for Separation of Three Stereoisomers of Octahydroindole-2-carboxylic Acid. Chromatographia,2006,63(7-8):331-335.
    [44]Yan H, Row KH. Rapid chiral separation and impurity determination of levofloxacin by ligand-exchange chromatography. Anal Chim Acta,2007,584(1):160-165.
    [45]Huang X, Wang J, Wang Q, et al. Chiral speciation and determination of DL-selenomethionine enantiomers on a novel chiral ligand-exchange stationary phase. Anal. Sci.,2005,21(3):253-257.
    [46]Bi YJ, Yang J, Lu XM, et al. Validated chiral separation of M9, a Mannich ketone compound, by chiral ligand-exchange chromatography. J. Sep. Sci.,2007,30:1839-1843.
    [47]慈薇,柴逸峰,刘荔荔,等.毛细管电泳非环糊精体系拆分手性药物的研究进展.药学学报,2002,37(1):75-80.
    [48]陈义.毛细管电泳技术及应用(第二版).化学工业出版社:北京,2006.
    [49]林炳承.毛细管电泳导论.科学出版社:北京,1996.
    [50]Gubitz G, Schmid MG. Chiral separation by capillary electromigration techniques. J. Chromatogr. A, 2008,1204(2):140-56.
    [51]Bressolle F, Audran M, Pham T-N, et al. Cyclodextrins and enantiomeric separations of drugs by liquid chromatography and capillary electrophresis:basic principles and new developments. J. Chromatogr. B, 1996,687:303-336.
    [52]周英珍,王兴涌,张桂森,等.环糊精及其衍生物在手性药物拆分中的应用.化学试剂,2006,28(10):590-592.
    [53]Shin J M, Munson K, Vagin O, et al. The gastric H+, K+-ATPase:structure, function, and inhibition. Pflugers Arch.,2008, DOI 10.1007/s00424-008-0495-4.
    [54]Robinson M. Proton pump inhibitors:update on their role in acid-related gastrointestinal diseases. Int. J. Clin. Pract.,2005,59:709-715.
    [55]De Milito A, Fais S. Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol.,2005, 1(6):779-786.
    [56]Agranat Ⅱ, Caner H. Intellectual property and chirality of drugs. Drug Discov. Today,1999,4(7):313-321.
    [57]Shina JM, Homerin M, Domagala F, Ficheux H, Sachs G. Characterization of the inhibitory activity of tenatoprazole on the gastric H+, K+-ATPase in vitro and in vivo. Biochem. Pharmacol.,2006, 71:837-849.
    [58]Galmichet JP, Varannes BD, Ducrotte P, et al. Tenatoprazole, a novel proton pump inhibitior with a prolonged plasma halif-life:effects on intragastric pH and comparison with esomeprazole in healthy volunteers. Aliment. Pharmacol. Ther.,2004,19(6):655-662.
    [59]Galmiche JP, Sacher-Huvelin S, Bruley des Varannes S, et al. A comparative study of early effects of tenatoprazole 40 mg and esomeprazole 40 mg on intragastric pH in healthy volunteers. Aliment. Pharmacol. Ther.,2005,21(5):575-582.
    [60]Pai VG, Pai NV, Thacker HP, et al. Comparative clinical trial of S-pantoprazole versus racemic pantoprazole in the treatment of gastro-esophageal reflux disease. World J. Gastroenterol., 2006,12:6017-6020.
    [61]Cao H, Wang MW, Jia JH, Comparison of the effects of pantoprazole enantiomers on gastric mucosal lesions and gastric epithelial cell in rats. J Health Sci.,2004,50(1):1-8.
    [62]贾建辉,王敏伟,曹红,等.左旋泮托拉唑镁对动物实验性十二指肠溃疡的影响.沈阳药科大学学报,2004,21(3):218-221.
    [63]贾建辉,王敏伟,卢方正,等.左旋泮托拉唑镁对动物实验性胃溃疡的影响.沈阳药科大学学报,2004,21(4):294-296.
    [64]Kim KA, Shon JH, Park JY, et al. Enatioselective disposition of lansoprazole in extensive and poor metabolizers of CYP2C19. Clin. Pharmacol. Ther.,2002,72(1):90-99.
    [65]Miura M. Enatioselective disposition of lansoprazole and rabeprazole in human plasma. Yakugaku zasshi, 2006,126(6):395-402.
    [66]Xie Z, Zhang Y, Xu H, et al. Pharmacokinetic differences between pantoprazole enantiomers in rats. Pharm. Res.,2005:22(10):1678-1684.
    [67]Katsuki H, Yagi H, Arimori K, et al. Determination of R(+)-and S(-)-lansoprazole using chiral stationary phase liquid chromatography and their enantioselective pharmacokinetics in human. Pharm Res.,1996, 13(4):611-615.
    [68]Kananzawa H, Okada A, Higaki M, et al.Stereospecific analysis of omeprazole in human plasma as a probe for CYP2C19 phenotype. J. Pharm. Biomed. Anal.,2003,30:1817-1824.
    [69]Tybring G, Bottiger Y, Widen J, et al. Enantioselective hydroxylation of omeprazole catalyzed by CYP2C19 in Swedish white subjects. Clin. Pharmacol. Ther.1997,62:129-137.
    [70]Andersson T, Hassan-Alin M, Hasselgren G, et al. Pharmacokinetic studies with esomeprazole, the (S)-isomer of omeprazole. Clin. Pharmacokinet.2001,40:411-426.
    [71]Masubuchi N, Yamazaki H, Tanaka M, et al. Stereoselective chiral inversion of pantoprazole enantiomers after separate doses to rats. Chirality,1998,10(8):747-753.
    [72]Andersson T, Weidolf L. Stereoselective disposition of proton pump inhibitors. Clin. Drug Investig.,2008, 28(5):263-279.
    [73]Belaz KRA, Coimbra M, Barreiro JC, et al. Multimilligram enantioresolution of suifoxide proton pump inhibitiors by high performance chromatography on polysaccharide-based chiral stationary phase. J. Pharm. Biomed. Anal.,2008,47:81-87.
    [74]Cirilli R, Ferretti R, Gallinella B, et al. High performance chromatography enantioseparation proton pump inhibitiors using the immobilized amylase-based Chiralpak IA chiral stationary phase in normal-phase, polar organic and reversed-phase conditions. J. Chromatogr. A,2008,1177:105-113.
    [75]谢智勇,钟大放,杨炳华,等.α1-酸糖蛋白手性柱拆分泮托拉唑对映体.药物分析杂志,2004,24(1):1-4.
    [76]金薇,杨永键,彭兴盛,等.雷贝拉唑对映体在α1-酸糖蛋白柱上的手性拆分.药物分析杂志,2006,26(12):1715-1717.
    [76]唐淑含,赵荣淑,任洁,等.高效液相色谱纤维素衍生物类手性固定相拆分泮托拉唑对映体.色谱,2006,24(2):207.
    [77]Toribio L, Del Nozal MJ, Bernal JL, et al. Comparative study of the enantioselective separation of several antiulcer drugs by High performance chromatography and supercritical fluid chromatography. J. Chromatogr. A,2005, (1091):118-123.
    [78]Eberle D, Hummel RP, Kuhn, R. Chiral resolution of pantoprazole sodium and related sulfoxides by complex formation with bovine serum albumin in capillary electrophoresis. J. Chromatogr. A,1997, 759:185-192.
    [79]Zhou S, Ouyang J, Baeyens WR, et al. Chiral separation of four fluoroquinolone compounds using capillary electrophoresis with hydroxypropyl-beta-cyclodextrin as chiral selector. J. Chromatogr. A,2006, 1130(2):296-301.
    [80]Jiang Z, Thorogate R, Smith NW. Highlighting the role of the hydroxyl position on the alkyl spacer of hydroxypropyl-beta-cyclodextrin for enantioseparation in capillary electrophoresis. J. Sep. Sci.,2008, 31(1):177-187
    [81]Yi F, Guo B, Peng Z, et al. Study of the enantioseparation of imazaquin and enantioselective degradation in field soils by CZE. Electrophoresis,2007,28(15):2710-2716.
    [82]Mangelings D, Maftouh M, Massart D, et al. Comparison of miniaturized techniques capillary electrochromatography and capillary liquid chromatography and capillary liquid chromatography for the chiral separation of chlorthalidone. J. Pharm. Biomed. Anal.,2004,35:789-799.
    [83]Wang R, Jia ZP, Fan JJ, et al. Separation of cefoperazone enantiomers using beta-cyclodextrin as chiral additive by capillary zone electrophoresis. Chirality,2004,16(1):45-49.
    [84]Amini A, Wiersma B, Westerlund D, et al. Determination of the enantiomeric purity of S-ropivacaine by capillary electrophoresis with methyl-beta-cyclodextrin as chiral selector using conventional and complete filling techniques. Eur. J. Pharm. Sci.,1999,9(1):17-24.
    [85]王伟,张永利,董英茹,等.毛细管电泳法手性分离5种碱性药物.药物分析杂志,2007,27(12):1984-1987.
    [86]Owens PK, Fell AF, Coleman MW, et al. Separation of the voriconazole stereoisomers by capillary electrophoresis and liquid chromatography. Enantiomer,1999,4(2):79-90.
    [87]侯经国,杜红英,高锦章.羟乙基-β-环糊精作为手性选择剂对手性药物的毛细管电泳拆分.分析测试学报,2006,25(2):84-86.
    [88]Carmen C, Rosa C, Carlos PM, et al. Enantioseparation of novel COX-2 anti-inflammatory drugs by capillary electrophoresis using single and dual cyclodextrin systems. Electrophoresis,2002,23(11): 1702-1708.
    [89]陆豪杰,阮宗琴,欧庆瑜.手性选择剂磺丁基-β-环糊精的合成及毛细管电泳手性分离.分析测试学报,2000,19(5):16-19.
    [90]Galaverna G, Sforza S, Tedeschi T, et al. Enantiomeric separation of chiral peptide nucleic acid monomers by capillary electrophoresis with charged cyclodextrins. Electrophoresis,2003,24(15): 2698-2703.
    [91]Perez-Maseda C, Calvet C, Cuberes R, et al. Determination of enantiomeric purity of a novel COX-2 anti-inflammatory drug by capillary electrophoresis using single and dual cyclodextrin systems. Electrophoresis,2003,24(9):1416-1421.
    [92]Ramstad T. Enantiomeric purity methods for three pharmaceutical compounds by electrokinetic cspillary chromatography utilizing highly sulfated-γ-cyclodextrin as the chiral selector. J. Chromatogr. A,2006, 1127:286-294.
    [93]Jin LJ, Li SFY. Comparison of chiral recognition capabilities of cyclodextrins for the separation of basic drugs in capillary zone eletrophoresis. J. Chromatogr. B,1998,708:257-266.
    [94]William JL, David LM. pH hysteresis effect with silica capillaries in capillary zone electrophoresis. Anal. Chem.,1990,62(15):1585-1587.
    [95]Morin P, Bellessort D, Dreux M, Chiral resolution of functionalized piperidine enantiomers by capillary electrophoresis with native, alkylated and anionic β-cyclodextrins. J. Chromatogr. A,1998, 796:375-383.
    [96]刘育,尤长城,张衡益.超分子化学.南开大学出版社:天津,2001.
    [97]赵艳芳,傅崇岗,刘爱林.毛细管电泳法测定结合常数的研究进展.色谱,2003,21(2):126-130.
    [98]李晓峰,李磊,万谦宏.环糊精与中性化合物结合常数的测定.天津理工学院学报,2004,20(1):85-88.
    [99]Zhang G, Shuang S, Dong Z, et al. Investigation on the inclusion behavior of neutral red with β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin. Anal. Chim. Acta, 2002,474(1-2):189-195.
    [100]Lederer M, Sinibaldi M. The chromatography and electrophoresis of the perbromate ion. J. Chromatogr. A,1971,60:280-283.
    [101]Nikolic N, Veselinovic D, et al. Chiral ligand-exchange chromatography for diastereo-enantio separation of exametazime. J. Pharm. Biomed. Anal.,2003,32(6):1159-1166.
    [102]Galaverna G, Corradini R, Dallavalle F, et al. Chiral separation of amino acids by copper(II) complexes of tetradentate diaminodiamido-type ligands added to the eluent in reversed-phase high-performance liquid chromatography:a ligand exchange mechanism. J. Chromatogr. A,2001,922(1-2):151-163.
    [103]Natalini B, Marinozzi M, Bade K, et al. Preparative resolution of 1-aminoindan-1,5-dicarboxylic acid (AIDA) by chiral ligand-exchange chromatography. Chirality,2004,16(5):314-317.
    [104]李新,曾苏.手性配体交换流动相添加剂法拆分对映体.色谱,1996,14(5):335-339.
    [105]Andersson S, Nelander H, Ohlen K. Preparative chiral chromatography and chiroptical characterization of enantiomers of omeprazole and related benzimidazoles. Chirality,2007,19(9):706-715.
    [106]Blackwell JA, Stringham RW, Weckwerth JD. Effect of mobile phase additives in packed-column cubcritical and supercritical fluid chromatography. Anal. Chem.,1997,69(1):409-415.
    [107]Okamoto Y, Karda Y. Resolution by high-performance liquid chromatography using polysaccharide carbamates and benzoates as chiral stationary phases. J. Chromatogr. A,1994,666:403-419.
    [108]Zhao YQ, Pritts W. Chiral separation of selected praline derivatives using a polysaccharide type stationary phase by high-performance liquid chromatography. J. Chromatogr. A,2007,1156:228-235.
    [109]Persson B-A, Andersson S. Unusual effects of separation conditions on chiral separations. J. Chromatogr. A,2001,906(1-2):195-203.
    [110]翁文,姚碧霞,陈秀琴,等.液相色谱手性拆分机理的热力学方法研究.化学进展,2006,18(7/8):1056-1064.
    [111]O'Brien T, Crocker L, Thompson R, et al. Mechanistic Aspects of Chiral Discrimination on Modified Cellulose. Anal. Chem.,1997,69(11):1999-2007.
    [112]Cirill R, Giudice MRD, Ferretti R, et al. Conformational and temperature effects on separation of stereoisomers of a C3,C4-substituted β-lactamic cholesterol absorption inhibitor on amylose-based chiral stationary phases. J. Chromatogr. A,2001,923(1-2):27-36.
    [113]Wainer IW, Stiffin RM. Direct resolution of the stereoisomers of leucovorin and 5-methyltetrahydrofolate using a bovine serum albumin high-performance liquid chromatographic chiral stationary phase coupled to an achiral phenyl column. J. Chromatogr.,1988,424(1):158-162.
    [114]Kusters E, Loux V, Schmid E. Enantiomeric separation of chiral sulphoxides Screening of cellulose-based sorbents with particular reference to cellulose tribenzoate. J, Chromatogr. A,1995, 666(1-2):421-432.
    [115]刘会臣.手性药物的药物动力学立体选择性.中国新药杂志,2004,13(12):1233-1238.
    [116]王娅莉,王乐,赵铭.手性药物的药代动力学.河北化工,2005,4:11-13.
    [117]Liu P, Sun B, Lu X, et al. HPLC determination and pharmacokinetic study of tenatoprazole in dog plasma after oral administration of enteric-coated capsule. Biomed. Chromatogr.,2007,21:89-93.
    [118]Lu X, Liu P, Chen H, et al. Enantioselective pharmcokinetics of mabuterol in rats studied using sequential achiral and chiral HPLC. Biomed. Chromatogr.,2005,19:703-708.
    [119]Arimori K, Yasuda K, Katsuki H, et al. Pharmacokinetic differences between lansoprazole enantiomers in rats. J. Pharm. Pharmacol.,1998,50:1241-1245.
    [120]Kim KA, Kim MJ, Park JY, et al. Stereoselective metabolism of lansoprazole by human liver cytochrome P450 enzymes. Drug Metab. Dispos.,2003,31:1227-1234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700