雷达频率调制信号脉内细微特征分析技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂雷达信号的检测和分类一直是电子战的关键技术。随着雷达发射机和波形种类的增加,采用到达方位、载频、到达时间、脉宽及脉幅的传统方法已经不能满足电子战信号处理的要求。为了有效地识别雷达信号,必须对雷达信号脉内细微特征进行分析和提取。本论文研究了雷达频率调制信号的脉内细微特征提取方法,对低信噪比下多分量频率调制信号的快速高精度参数估计和检测进行了深入的研究。论文内容包括:
     1.介绍了电子战的概念和组成结构,以及现代战争中的雷达信号脉内细微特征分析技术研究现状,总结了非平稳信号分析的内容、发展过程和现状。从信号表示的角度回顾了时频分析的起源,介绍了它的发展趋势。
     2.提出了平滑伪多项式Wigner-Ville分布(SP-PWVD)以减少低阶多项式Wigner-Ville分布(PWVD)表示高阶多项式相位信号(PPS)信号时出现的交叉项,总结了SP-PWVD的有关性质,利用最优化方法来设计高阶PWVD,采用快速傅立叶变换(FFT)插值来实现PWVD的高阶瞬时矩中非均匀采样信号相乘时的尺度变换。
     3.深入分析了交叉项和自适应扩散局部扩散行为的特点,利用差分法来去除自适应扩散无法去除的交叉项,采用Hesse矩阵代替梯度平方张量来获取局部扩散方向以提高时频分布可读性,给出了扩散算法的一种数字实现方案。
     4.采用FFT插值和二次插值来提高乘积高阶模糊函数(PHAF)估计精度,将逐次滤波和RELAX结合起来改进PHAF,以实现低信噪比(SNR)下多分量高阶PPS的高精度参数估计。讨论了用PHAF实现多分量高阶PPS检测时遇到的困难,对基于PHAF模的检测算法作了分析,提出了基于逐次滤波和PHAF模最大值的PPS检测方法,可以在较低SNR下实现多分量高阶PPS的检测。研究了PPS阶数和延时组的选择。
     5.分析了在低SNR下基于Radon-模糊变换(RAT)模的检测器存在的问题,利用二阶差分法来改进RAT以提高线性调频信号(LFM)的检测概率,采用二次搜索方法改进RAT来实现LFM的快速高精度参数估计,采用FFT插值和二次插值来提高解调法的估计精度,对Radon Wigner变换(RWT)、解线调、PHAF和乘积三次相位函数进行了比较,并重点分析了解线调方法和PHAF方法的运行时间、信噪比门限和样本个数之间的关系。
     6.对全文进行了总结,指出了频率调制信号参数估计中有待进一步研究的问题。
The detection and classification of complex radar signal has been a keytechnology for electronic warfare.The traditional method employing direction ofarrival,carrier frequency,time arrival,pulse width and amplitude can not meet therequirements of application in signal processing of electronic warfare withever-increasing number of radar emitters and different radar waveforms.It isnecessary to analyze and extract the in-pulse fine features of radar signals forefficient recognition of radar signals.In this thesis,the extraction of in-pulse finefeature of frequency modulated signals in radar is investigated,and the fast andaccurate parameter estimation and detection of multicomponent frequencymodulated signals are studied extensively.The main results are as follows:
     1.The conception and construction of electronic warfare are introduced.Thepresent research of in-pulse fine feature analysis of radar signals in modern warfareis presented.And the content,evolution and present status of nonstationary signalanalysis are concluded.The origin of time frequency analysis in the point of signalrepresentation is reviewed.And the development trend of time frequency analysis isintroduced.
     2.Smoothed pseudo polynomial Wigner-Ville distribution (SP-PWVD) isproposed to reduce interference terms which present when higher order polynomialphase signal (PPS) is represented by lower order polynomial Wigner-Villedistribution (PWVD).The properties of SP-PWVD are concluded.High orderPWVD is designed by optimal method.The scale transformation of the non-uniformsampling of the signals in the high order instantaneous moment of PWVD isperformed by fast Fourier transform (FFT) interpolation.
     3.After making an in-depth analysis of the interference terms and localdiffusion behavior of the adaptive diffusion process,we combine the adaptivediffusion with difference method to eliminate the stubborn interference terms.Andwe substitute the Hesse matrix for the gradient square tensor to obtain the local diffusion direction,and thus improve the readability of the adaptive diffusiondistribution.A scheme of digital realization is provided.
     4.The FFT and quadratic interpolation are used to improve the precision ofproduct high order ambiguity function (PHAF).A method based on iterativefiltering and RELAX is proposed to provide accurate parameter estimation for highorder muticomponent PPS at low signal to noise ratio (SNR).Difficulties indetection of higher order and multi-component PPS by PHAF are discussed.Adetector based on iterative filtering and maximum magnitude of PHAF is proposedafter an analysis of detector based on PHAF magnitude.And the selection of orderand delay sets is studied.
     5.A detector based on second order difference of Radon ambiguity transform(RAT) is proposed to improve detection probability of linear frequency modulatedsignal (LFM) after analysis of problems with detector based on magnitude of RATin low SNR.A secondary search strategy of RAT is proposed for fast and accurateparameter estimation of LFM.Dechirp based on FFT and quadratic interpolation isproposed to analyze LFM at low SNR.Comparisons of Radon Wigner transform,dechirp,PHAF and product cubic phase function are performed and the emphasis isplace on time collapsed,signal to noise ratio threshold and number of samplesbetween dechirp and PHAF.
     6.At last,the whole dissertation is concluded.And some further researchfrontiers of frequency modulated signal detection and parameters estimation arepointed out.
引文
[1]滕哲,张永刚.美军电子战定义的演变与未来发展.舰船电子工程,2007,27(6):34-37
    [2]梁百川.综合电子战系统共用技术.舰船电子对抗,2007,30(3):5-8
    [3]王跃鹏,同武勤.现代雷达电子对抗技术.舰船电子对抗,2005,4(2):3-5
    [4]吴晓飞,高东华.电子战及其理论的发展与我们的思考.舰船电子工程,1997,5:50-53
    [5]史彦斌,张安,侯慧群.电子战系统工程概述.电光与控制,2007,14(3):69-72
    [6]孙青,陶建锋,张宁.电子战技术的发展现状与趋势.航天电子对抗,2005,21(5):28-31
    [7]姚德金.21世纪电子战技术发展展望.舰船电子对抗,2006,29(3):10-12
    [8]董晖,顾善秋.电子战接收机的发展历程及其面临的挑战.电子对抗,2006,5:43-48
    [9]刘棱,胡辉,刘尚富.现代电子战系统发展趋势.舰船电子对抗,2005,28(3):6-10
    [10]顾耀平.电子战发展趋势分析.航天电子对抗,2006,22(2):24-27
    [11]孙德海.国外电子战发展综述及对我国电子战研究的思考.舰船电子对抗,2003,26(1):1-6
    [12]张澍范,宛东生,黄岩泉.雷达对抗战术发展趋势浅析.电子对抗技术,2002,17(5):3-7
    [13]杨世荣,陈儒辉.电子侦察和反侦察的物理原理.现代物理知识,2002,14(5):32-33
    [14]熊峰.战场侦察雷达技术概述.电讯技术,2007,47(2):6-11
    [15]何青益,李淳.临近空间无人作战平台电子侦察定位技术.通信对抗,2007,(3):19-23
    [16]王冲,夏冬玉,张永顺.JTIDS信号侦察干扰机实现研究.通信对抗,2006,(1):47-50
    [17]林锦顺,徐张英,张东坡.一体化侦察体系建设.通信对抗,2006,(2):44-46
    [18]何立萍.国外空间侦察监视系统的发展.航天电子对抗,2007,23(6):7-11
    [19]李春玲,林象平.现代战场侦察雷达的体制及其技术性能.舰船电子工程,2000,(4):57:62
    [20]王洪先,寇朋韬.LPI雷达技术及其在战场侦察雷达上的应用.火控雷达技术,2006,35(1):30-34
    [21]任毅,李国华.对英、美机载电子侦察设备的研究.舰船电子对抗,2002,25(4):1-3
    [22]王秀春.EP-3E电子侦察机.现代雷达,2001,(3):59
    [23]孙寒星,黄洁,赵拥军.雷达辐射源识别专家系统中的推理机设计.现代雷达,2005,27(1):10-15
    [24]张小飞,徐大专.基于知识库的雷达辐射源识别专家系统.现代雷达,2003,25(10):1-4
    [25]祝正威.雷达辐射源识别专家系统.电子对抗技术,2000,15(6):20-24
    [26]柴勇,何友,关欣.一种新的雷达辐射源识别专家系统.火力与指挥控制,2005,30(7):11-13
    [27]刘晓东,谭营.雷达体制识别专家系统的研究,电子对抗技术,1998,13(3):27-31
    [28]陈锡明,祝正威,卢显良.新型雷达辐射源识别专家系统的研究与实现.系统工程与电子技术,2000,22(8):58-62
    [29]陈婷,罗景青.一种基于神经网络调整权值的雷达信号识别法.现代防御技术,2007,35(2):105-108
    [30]Chen Xiaolong,Wang Jiali,Li Xin.A New Automatic Modulation Recognition Method in Test and Measurement Technology.The Eighth International Conference on Electronic Measurement and Instruments,2007,Vol.1:622-625
    [31]牛海,马颖.小波-神经网络在辐射源识别中的应用研究.系统工程与电子技术,2002,24(5):55-57
    [32]何明浩,朱元清,冒燕.一种雷达辐射源信号分选新方法.武汉理工大学学报(交通科学与工程版),2007,31(3):430-433
    [33]黄贤锋,陈卫,谭营.雷达信号识别的GANN方法.电子对抗技术,2004,19(1):1-10
    [34]黄高明,苏国庆,张琪,等.基于神经网络的雷达辐射源智能识别系统.雷达科学与技术,2005,3(2):86-90
    [35]张国柱,姜文利,周一宇.基于神经网络的辐射源识别系统设计.系统工程与电子技术,2004,26(2):269-272
    [36]张国柱,姜文利,周一宇.神经网络在辐射源识别系统中的应用.电子对抗技术,2004,19(1):11-13
    [37]王建华,赵莉萍,虞平良,等.模糊神经网络的舰载雷达辐射源识别方法.哈尔滨理工大学学报,1999,4(2):68-69
    [38]张勇强,叶志铨,黄文龙.基于Log-Sigmoid型径向基神经网络的雷达辐射源识别.航空计算技术,2002,32(3):22-25
    [39]Wong M L D and Nandi A K.Automatic digital modulation recognition using artificial neural network and genetic algorithm.Signal Processing,2004,84(2):351-365
    [40]唐健仁,朱元清,徐庆,等.用神经网络进行雷达辐射源识别研究.空军雷达学院学报,2007,2l(1):25-27
    [41]陈锡明,祝正威,卢显良.用AUTES实现雷达辐射源识别专家系统.电子科技大学学报,2000,29(3):297-301
    [42]袁学华,李仙茂,俞红兵.雷达信号识别技术研究.电子工程,2003,1:1-6
    [43]刁鸣,薛伟,李作宴,等.一种实用的雷达类型识别系统.应用科技,2001,28(4):14-15
    [44]柳征,姜文利,周一宇.基于小波包变换的辐射源信号识别.信号处理,2005,21(5):460-464
    [45]张葛祥,荣海娜,金炜东.基于小波包变换和特征选择的雷达辐射源信号识别.电路与系统学报,2006,11(6):45-49
    [46]Roe J,Cussons S,Feltham A.Knowledge-based signal processing for radar ESM system.IEE Pro.,1990,137(5):293-301
    [47]陈根华.脉冲多普勒雷达识别方法的研究:[博士学位论文].西安:西安电子科技大学,2005
    [48]杨博,徐晖,姜文利.辐射源识别中的决策融合方法研究.火控雷达技术,2005,34(1):5-8
    [49]吕铁军.通信信号调制识别研究:[博士学位论文].成都:电子科技大学,2000
    [50]荣海娜.复杂体制雷达辐射源信号脉冲重复间隔调制识别:[博士学位论文].成都:西南交通大学,2006
    [51]孟伟.雷达辐射源识别算法研究:[博士学位论文].西安:西安电子科技大学,2002
    [52]张国柱.雷达辐射源识别技术研究:[博士学位论文].长沙:国防科学技术大学,2005
    [53]张葛祥.雷达辐射源信号智能识别方法研究:[博士学位论文].成都:西南交通大学,2005
    [54]L(?)pez-Risue(?)o G,Grajal J,and Yeste-Ojeda O.Atomic decomposition-based radar complex signal interception.Proc.Inst.Elect.Eng.,Radar,Sonar,Navig.,2003,150(4):vol.323-331
    [55]Lunden J,Koivunen V.Automatic radar waveform recognition.IEEE Transactions on Signal Processing,2007,45(2):316-327
    [56]L(?)pez-Risue(?)o G,Grajal J,and Sanz-Osorio (?).Digital channelized receiver based on time-frequency analysis for signal interception.IEEE Transactions on Aerospace and Electronic Systems,2005,41 (3):879-898
    [57]Louis C and Sehier P.Automatic modulation recognition with a hierarchical neural network.1994 Military Communications Conference on processing,vol.3:713-717
    [58]解文斌,姜文利,黄勇杰,等.脉冲编码信号的辐射源分类.电子对抗技术,2004,19(3):23-28
    [59]巫胜洪.雷达脉内特征提取方法的研究.舰船电子对抗,2002,25(1):25-28
    [60]沙祥.脉内分析综述.现代电子,1998,65(4):1-8
    [61]路后兵,陈卫,冯子腾.一种雷达信号特征参数提取方法及其高速实现.航天电子对抗,2005,21(5):43-45
    [62]沈杰.典型通信信号细微特征的小波分析与提取:[硕士学位论文].成都:四川大学,2003
    [63]张葛祥,胡来招,金炜东.雷达辐射源信号脉内特征分析.红外与毫米波学报,2004,23(6):476-480
    [64]陈昌孝,何明浩,程柏林.低信噪比下非线性调频信号脉内特征提取新算法.探测与控制学报,2007,29(2):12-15
    [65]陈海忠,朱伟强.雷达相位编码信号的脉内调制特征分析.舰船电子对抗,2006,29(2):8-11
    [66]曹俊纺,陈建军,宋虎.雷达信号脉内细微特征参数分析.雷达对抗,2006,(1):48-51
    [67]吴江标,万方,郁春来.基于小波变换法的相位编码信号脉内特征提取.航天电子对抗,2005,21(3):38-40
    [68]张华娣,赵国庆.低信噪比的相位编码信号细微特征检测方法.现代雷达,2005,27(9):40-43
    [69]顾燕铧.二相编码雷达信号的细微特征分析.扬州大学学报(自然科学版),2003,6(4):43-46
    [70]顾东铧.几种新体制雷达信号脉内提取和识别仿真.舰船电子对抗,2003,26(2):14-18
    [71]邹顺,靳学明,张群飞.一种雷达信号脉内调制特征分析方法.航天电子对抗,2006,22(1):52-54
    [72]王勇,张欣.雷达信号脉内特征参数提取技术.中国雷达,2006,(1):13-21
    [73]刘爱霞,赵国庆.一种新的雷达信号识别方法.航天电子对抗,2003,(1):14-16
    [74]曾志伟,冯小平.雷达信号脉内调制特征分析.雷达对抗,2005,(4):22-26
    [75]胡波.脉内特征提取在信号调制形式识别中的应用.雷达对抗,2005,(2):35-38
    [76]朱振波,何明浩.基于中频直接采样正交相干检波技术的信号脉内特征提取.电子对抗技术,2002,17(4):3-7
    [77]韩国成,吴顺君.雷达信号脉内调制特征的时频分析.航天电子对抗,2004,(3):34-37
    [78]赵拥军,黄洁.雷达信号细微特征时频分析法.现代雷达,12003,(12):26-28
    [79]朱振波,何明浩.一种低信噪比下雷达脉内特征提取方法.航天电子对抗,2003,(3):30-33
    [80]朱振波,何浩,王玉生.基于近似小波变换的信号脉内特征分析.空军雷达学院学报,2002,16(4):8-10
    [81]魏东升,巫胜洪,唐斌.雷达信号脉内细微特征的研究.舰船科学技术,1994,(3):23-30
    [82]Mingquan Li,XianCi X,Lemin L.Cyclic spectral features based modulation recognition.Communications Technology Proceedings,International Conference,Beijing,1996,Vol.2:792-795
    [83]科卞.信号细微特征提取分析技术.电子科技大学学报,2000,(2):125
    [84]Margaris N,Petridis V.Voltage Pump Phase-Locked Loops.IEEE Transactions on Industrial Electronics,1985,32(1):41-49
    [85]DiClemente D,Fei Yuan.Current-Mode Phase-Locked Loops—A New Architecture.IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs,2007,54(4):303-307
    [86] Tretter S. Estimating the frequency of a noisy sinusoid by linear regression. IEEE Transactions on Information Theory, 1985, 31(6): 832-835
    [87] Djuri'c P M and Kay S M. Parameter estimation of chirp signals. IEEE Transactions on Acoustics, Speech, Signal Processing, 1990, 38(12): 2118-2126
    [88] Golden S, Friedlander B. Maximum likelihood estimation, analysis, and applications ofexponential polynomial signals. IEEE Transactions on Signal Processing, 1999,47(6): 1493-1501
    [89] Ghogho M, Nandi A K, and Swami A. Cram(?)r-Rao bounds and maximum likelihood estimation for random amplitude phased-modulated signals. IEEE Transactions on Signal Processing, 1999, 47(11): 2905-2916
    [90] Abatzoglou T J. Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(6): 708-715
    [91] Yongmei Wei and Guoan Bi. Fast algorithms for polynomial time frequency transform.Signal Processing, 2007, 87(5): 789-798
    [92] Yingtuo Ju and Guoan Bi. Generalized Fast Algorithms for the Polynomial Time-Frequency Transform. IEEE Transactions on Signal Processing, 2007, 55(1):4907-4915
    [93] Guoan Bi and Yongmei Wei. Split-Radix Algorithms for Arbitrary Order of Polynomial Time Frequency Transforms. IEEE Transactions on Signal Processing, 2007, 55(1):134-141
    [94] GUOAN BI, YONGMEI WEI, GANG LI. Radix-2 DIF Fast Algorithms for Polynomial Time-Frequency Transforms. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4): 1540-1546
    [95] Wei Y and Bi G. Efficient analysis of time-varying multicomponent signals with LPTFT. J. Appl. Signal Process., 2005, Vol. 8: 1261-1268
    [96] Hory C, Mellet C, Valiere J C, et al. Local polynomial-time-frequency transform formulation of the pseudo-L-Wigner distribution. Signal Processing, 2001, 81(1):233-237
    [97] Knowles H S and Waltman W B. Linear least squares determination of Doppler time derivative for NAVSPASUR-like signals. IEEE Transactions on Instrument Measures,1985, 34(1): 64-69
    [98] Peleg S and Friedlander B. The discrete polynomial phase transform. IEEE Transactions on Signal Processing, 1995, 43(8): 1901-1914
    [99] Peleg S and Porat B. Estimation and classification of polynomial phase signals. IEEE Transactions on Information Theory, 1991, 37(2): 422-430
    [100] Barbarossa S, Porchia A, Scaglione A. Multiplicative multi-lag high order ambiguity function. IEEE International Conference on Acoustics, Speech, and Signal Processing,ICASSP-96. Conference Proceedings, 1996, Vol. 5: 3022-3025
    [101] Porat B and Friedlander B. Accuracy analysis of estimation algorithms for parameters of multiple polynomial-phase signals, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Detroit, MI, 1995, Vol. 3: 1800-1803
    [102] Peleg S, Porat B, and Friedlander B. The achievable accuracy in estimating the instantaneous phase and frequency of a constant amplitude signal. IEEE Transactions on Signal Processing, 1993, 41(6): 2216-2224
    [103] Porat B and Friedlander B. Blind deconvolution of polynomial phase signals using the high-order ambiguity function. Signal Processing, 1996, 53(2-3): 149-163
    [104] Barbarossa S, Petrone V. Analysis of polynomial-phase signals by the integrated generalized ambiguity function. IEEE Transactions on Signal Processing, 1997, 45(2):316-327
    [105] Porat B and Friedlander B. Asymptotic statistical analysis of the high order ambiguity function for parameter estimation of polynomial-phase signals. IEEE Transactions on Information Theory, 1996,42(3): 995-1001
    [106] Pham D S, Zoubir A M. Analysis of Multicomponent Polynomial Phase Signals. IEEE Transactions on Signal Processing, 2007, 55(1): 56-65
    [107] Peleg S and Friedlander B. The discrete polynomial-phase transform. IEEE Transactions on Signal Processing, 1995, 43(8): 1901-1914
    [108] Peleg S and Friedlander B. Multicomponent signal analysis using the polynomial phase transform. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1):378-387
    [109] Barbarossa S and Petrone V. Analysis of polynomial-phase signals by the integrated generalised ambiguity function. IEEE Transactions on Signal Processing, 1997, 45(2):316-327
    [110] Tao Ran, Shan Tao, Zhou Siyong, et al. Analyzing of multicomponent undersampled signals by HAF. Journal of Electronic, 2001, 18(2): 121-126.
    [111] Barbarossa S, Scaglione A, and Giannakis G B. Product high-order ambiguity function for multicomponent polynomial phase signal modeling. IEEE Transactions on Signal Processing, 1998, 46(3): 691-708
    [112] Angrisani L, D'Arco M, Schiano Lo Moriello R, et al. On the use of the warblet transform for instantaneous frequency estimation. IEEE Transactions on Instrumentation and Measurement, 2005, 54(4): 1374-1380
    [113] Sejdic E, Stankovic L, Dakovic M, et al. Instantaneous Frequency Estimation Using the S-Transform. IEEE Signal Processing Letters, 2008, Vol. 15: 309-312
    [114] Ivanovi(?) V N, Dakovi(?) M, and Stankovi(?) L. Performance of quadratic time-frequency distributions as instantaneous frequency estimators. IEEE Transactions on Signal Processing, 2003, 51(1): 77-89
    [115] Stockwell R G, Mansinha L, and Lowe R P. Localization of the complex spectrum: The S-transform. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001
    [116] Pinnegar C R and Mansinha L. The S-transform with windows of arbitrary and varying shape. Geophysics, 2003, 68(1): 381-385
    [117] Schimmel M, Gallart J.The inverse S-transform in filters with time-frequency localization. IEEE Transactions on Signal Processing, 2005, 53(11): 4417 - 4422
    [118] Jie Cui, Willy Wong. The adaptive chirplet transform and visual evoked potentials.IEEE Transactions on Biomedical Engineering, 2006, 53(7): 1378-1384
    [119] Mann S and Haykin S. The chirplet transform: Physical considerations. IEEE Transactions on Signal Processing, 1995, 43(1): 2745-2761
    [120] Jie Cui, Willy Wong, Mann S. Time-frequency analysis of visual evoked potentials using chirplet transform. Electronics Letters, 2005, 41(4): 217-218
    [121] Plett M I. Transient Detection With Cross Wavelet Transforms and Wavelet Coherence.IEEE Transactions on Signal Processing, 2007, 55(5): 1605-1611
    [122] Min Han, Yuhua Liu, Jianhui Xi, et al. Noise Smoothing for Nonlinear Time Series Using Wavelet Soft Threshold. IEEE Signal Processing Letters, 2007, 14(1): 62-65
    [123]McEwen J D,Hobson M P,Mortlock D J,et al.Fast Directional Continuous Spherical Wavelet Transform Algorithms.IEEE Transactions on Signal Processing,2007,55(2):520-529
    [124]Selesnick I W.A Higher Density Discrete Wavelet Transform.IEEE Transactions on Signal Processing,2006,54(8):3039-3048
    [125]汉国栋,蔡斌,邬江兴.调制分析与识别的谱相关方法.系统工程与电子技术,2001,23(3):34-36
    [126]Vucic D,Obradovic M.Spectral correlation evaluation of MSK and offset QPSK modulation.Signal Processing,1999,78(3):363-367
    [127]柳征,黄知涛,周一宇.调幅调频信号的循环平稳特性分析.系统工程与电子技术,2002,24(1):21-23
    [128]Yang Shaoquan,Chen Weidong.Classification of MPSK signals using cumulant invariants.Journal of Electronics,2002,19(1):100-103
    [129]Ravier P,Amblard P O.Combining an adapted wavelet analysis with fouth-order statistics for transient detection.Signal Processing,1998,79(2):115-128
    [130]Ravier P,Amblard P O.Wavelet packets and de-noising based on higher-order-statistics for transient detection.Signal Processing,2001,81(9):1909-1926
    [131]Hock K M.Narrowband weak signal detection by higher order spectrum.IEEE Transactions on Signal Processing,44(4):874-879
    [132]Rosa J J G,Piotrkowski R,Ruzzante,J E.Higher Order Statistics and Independent Component Analysis for Spectral Characterization of Acoustic Emission Signals in Steel Pipes.IEEE Transactions on Instrumentation and Measurement,2007,56(6):2312-2321
    [133]Nazarpour K,Sharafat A R,Firoozabadi S M P.Application of Higher Order Statistics to Surface Electromyogram Signal Classification IEEE Transactions on Biomedical Engineering,2007,54(10):1762-1769
    [134]Lin B S,Chong F C,Lai F.A Functional Link Network With Higher Order Statistics for Signal Enhancement.IEEE Transactions on Signal Processing,54(12):4821-4826
    [135]Sattar F,Salomonsson G.On detection using filter banks and higher order statistics.IEEE Transactions on Aerospace and Electronic Systems,2000,36(4):1179-1189
    [136] Francos J M and Friedlander B J. Bounds for estimation of multicomponent signals with random amplitude and deterministic phase. IEEE Transactions on Signal Processing, 1995,43(5): 1161-1172
    [137] Barbarossa S. Parameter estimation of multicomponent polynomial-phase signals by intersection of signal subspaces. In Proc. 8th IEEE-SP Workshop Stat. Signal Array Processing, Corfu, Greece, 1996, 452-455
    [138] Friedlander B and Francos J M. Estimation of amplitudes and phase parameters of multicomponent signals. IEEE Transactions on Signal Processing, 1995, 43(4):917-926
    [139] Wood J C and Barry D T. Radon transformation of time-frequency distribution for analysis of multi-component signals. IEEE Transactions on Signal Processing, 1994,42(11): 3166-3177
    [140] Wood J C and Barry D T. Tomographic time-frequency analysis and its application toward time-varying filtering and adaptive kernel design for multi-component Linear-FM signals. IEEE Transactions on Signal Processing, 1994, 42(8): 2094-2104
    [141] Xia X G. A quantitative analysis of SNR in the short-time Fourier transform domain for multicomponent signals. IEEE Transactions on Signal Processing, 1998, 46(1):200-203
    [142] Barkat B, Boashash B. A high-resolution quadratic time-frequency distribution for multicomponent signals analysis. IEEE Transactions on Signal Processing, 2001,49(10): 2232-2238.
    [143] Barbarossa S. Analysis of multicomponent LFM signals by a combined wigner-hough transform. IEEE Transactions on Signal Processing, 1995, 43(6): 1511-1515
    [144] Barbarossa S and Schiappa G. Analysis of multicomponent signals by multilinear time-frequency representations. In Proc. Int. Conf. Acoust., Speech, Signal Processing,ICASSP'94, Adelaide, Australia, 1994, 19-22
    [145] Muhammad Z. Ikram and G. Tong Zhou. Estimation of multicomponent polynomial phase signals of mixed orders. Signal Processing, 2001, 81(11): 2293-2308
    [146] Friedlander B and Francos. J M. Estimation of amplitude and phase parameters of multicomponent signals. IEEE Transactions on Signal Processing, 1995, 43(4):917-926
    [147] Barbarossa S. Detection and estimation of the instantaneous frequency of polynomial-phase signals by multilinear time-frequency representation. IEEE-SP Workshop Higher Order Statistics in Proc, Lake Tahoe, CA, 1993, 168-172
    [148] Barbarossa S and Mascolo R. Autofocusing techniques for imaging moving targets by SAR based on a multilinear time-frequency representation. In Proc. Int. Conf. Radar,Paris, 1994,284-289
    [149] Boashash B. Estimating and interpreting the instantaneous frequency of a signal. in Proc. IEEE, 1992, 80(4): 520-568
    [150] Boashash B, O'Shea P. Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra. IEEE Transactions on Signal Processing, 1994,42(1): 216-220
    [151] Dandawat'e A V and Giannakis G Nonparametric poly spectral estimators for kth-order (almost) cyclostationary processes. IEEE Transactions on Information Theory, 1994,40(1): 67-84
    [152] Kay S M and Boudreaux-Bartels G F. On the optimality of the Wigner distribution. In Proc. Int. Conf. Acoust., Speech Signal Processing, ICASSP'85, 1985, 27(2): 1-4.
    [153] O'Shea P. Fast parameter estimation algorithms for linear FM signals. In Proc. IEEE Int. Conf. Acoust., Speech Signal Processing, ICASSP'94, Adeaide, Australia, 1994,Ⅳ-17-20
    [154] Peleg S and Porat B. The Cram'er-Rao lower bound for signals with constant amplitude and polynomial phase. IEEE Transactions on Signal Processing, 1991, 39(3):749-752
    [155] Peleg S and Porat B. Linear FM signal parameter estimation from discrete-time observations. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(4):607-615
    [156] Risti'c B and Boashash B. Kernel design for time-frequency signal analysis using the radon transform. IEEE Transactions on Signal Processing, 1993, 41(5): 1996-2007
    [157] Shamsunder S, Giannakis G B, and Friedlander B. Estimating random amplitude polynomial phase signals: A cyclostationary approach. IEEE Transactions on Signal Processing, 1995,43(2): 492-505
    [158] Zhou G, Giannakis G B, and Swami A. On polynomial-phase signals with time-varying amplitudes. IEEE Transactions on Signal Processing, 1996, 44(4): 848-861
    [159] Barbarossa S, Mameli R, and Scaglione A. Adaptive detection of polynomial-phase signals embedded in noise using high order ambiguity functions. In Proc. 31st Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, 1997, vol. 2: 1228-1232
    [160] Barbarossa S, Porchia A, and Scaglione A. Multiplicative multilag higher-order ambiguity function, in Proc. Int. Conf. Acoust., Speech, Signal Processing, Atlanta,GA, 1996, vol. 5:3022-3026.
    [161] Barbarossa S and Scaglione A. Polynomial minimum shift keying modulation: Simplified decoding of CPM signals. In Proc. First IEEE Int. Workshop Signal Processing Advances Wireless Commun., Paris, France, 1997, 15-18
    [162] Hasan T. Nonlinear time series regression for a class of amplitude modulated cosinusoids. J. Time Series Anal., 1994, 3(2): 109-122
    [163] Porat B and Friedlander B. Estimation of frequency in the presence of nonrandom interference. IEEE Transactions on Signal Processing, 1996, 44(3): 640-651
    [164] Porchia A, Barbarossa S, Scaglione A, et al. Autofocusing techniques for SAR imaging based on the multilag high order ambiguity function, in Proc. IEEE Int. Conf. Acoust.,Speech, Signal Processing, 1996, Atlanta, GA, Vol. 4: 2086-2090.
    [165] Soumekh M. Reconnaissance with ultra wideband UHF synthetic aperture radar. IEEE Signal Processing Magazine, 1995, 12(4): 21-40
    [166] Wahl D E, Eichel P H, Ghiglia D C, et al. Phase gradient autofocus: A robust tool for high resolution SAR phase correction. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827-835
    [167] Wilbur J E and McDonald R J. Nonlinear analysis of cyclically correlated spectral spreading in modulated signals. J. Acoust. Soc. Amer., 1992, 92(1): 219-230
    [168] Zhou G and Swami A. Performance analysis for a class of amplitude modulated polynomial phase signals. Proc. Int. Conf. Acoust., Speech, Signal Processing,ICASSP, Detroit, MI, 1995, 1593-1596.
    [169] (?)ngeby J. Aliasing of polynomial-phase signal parameters. IEEE Transactions on Signal Processing, 2000, 48(5): 1488-1491
    [170] (?)ngeby J. Estimating signal parameters using the nonlinear instantaneous least squares approach. IEEE Transactions on Signal Processing, 2000, 48(10): 2721-2732
    [171] Legg J A and Gray D A. Performance bounds for polynomial phase parameter estimation with nonuniform and random sampling schemes. IEEE Transactions on Signal Processing, 2000, 48(2): 331-337
    [172] Morelande M R and Zoubir A M. Model selection of random amplitude polynomial phase signals. IEEE Transactions on Signal Processing, 2002, 50(3): 578-589
    [173] Morelande M R and Zoubir A M. On the performance of cyclic moments-based parameter estimators of amplitude modulated polynomial phase signals. IEEE Transactions on Signal Processing, 2002, 50(3): 590-606
    [174] O'Shea P. A fast algorithm for estimating the parameters of a quadratic FM signal.IEEE Transactions on Signal Processing, 2004, 52(2): 385-393
    [175] Scaglione A and Barbarossa S. On the spectral properties of polynomial- phase signals.IEEE Signal Processing Lett., 1998, 5(9): 237-240
    [176] Scaglione A and Barbarossa S. Statistical analysis of the product of high-order ambiguity function. IEEE Transactions on Information Theory, 1999, 45(1): 343-356
    [177] Wu C F. Asymptotic theory of nonlinear least squares estimation. Ann. Statist., 1981,9(3): 501-513
    [178] Zoubir A M and Iskander D R. Bootstrap modeling of a class of nonstationary signals.IEEE Transactions on Signal Processing, 2000, 48(2): 399-408
    [179] Umapathy K, Krishnan S. Time-Width Versus Frequency Band Mapping of Energy Distributions. IEEE Transactions on Signal Processing, 2007, 55(3): 978-989
    [180] Gillespie B W and Atlas L E. Optimizing time-frequency kernels for classification.IEEE Transactions on Signal Processing, 2001, 49(3): 485-496
    [181] Mallat S and Zhang Z. Adaptive time-frequency transform. In Proc. Int. Conf.Acoustics, Speech, Signal Processing (ICASSP), 1993, 241-244
    [182] Shui P L, Shang H Y, Zhao Y B. Instantaneous frequency estimation based on directionally smoothed pseudo-Wigner-Ville distribution bank. Radar, Sonar & Navigation, IET, 2007,1(4): 317-325
    [183] Ghofrani S, McLernnon D C, Ayatollahi A. Estimation of Instantaneous Frequency and Instantaneous Bandwidth via Adaptive Signal Decomposition. IEEE International Conference on Acoustics, Speech and Signal Processing, 2006, Vol. 3: 14-19
    [184] Li Ying, Antonia P S, Darryl M. Instantaneous Frequency Estimation Using Sequential Bayesian Techniques. Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, 569-573
    [185] Yin Q, Qian S, and Feng A. A fast refinement for adaptive Gaussian chirplet decomposition. IEEE Transactions on Signal Processing, 2002, 50(6): 1298-1306
    [186] O'Shea P. A new technique for estimating instantaneous frequency rate. IEEE Signal Processing Letters, 2002, 9(8): 251-252
    [187] Greenberg J M, Zhisong Wang, Jian Li. New Approaches for Chirplet pproximation.IEEE Transactions on Signal Processing, 2007, 55(2): 734-741
    [188] Ikram M Z, Abed-Meraim K, and Hua Y. Fast quadratic phase transform for estimating the parameters of multicomponent chirp signals. Digital Signal Processing, 1997, 7(2):127-135
    [189] Kumaresan R and Verma S. On estimating the parameters of chirp signals using rank reduction techniques. In Proc. 21st Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, 1987, 555-558
    [190] Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractional Fourier transform, IEEE Transactions on Signal Processing, 1996, 44(9): 2141-2149.
    [191] Huang D F, Chen B S. The filter bank approach for the fractional Fourier transform.Proc. IEEE ICASSP, 1999, Vol. 3: 1709-1712
    [192] Ran Tao, Bing Deng, Wei-Qiang Zhang et al. Sampling and Sampling Rate Conversion of Band Limited Signals in the Fractional Fourier Transform Domain. IEEE Transactions on Signal Processing, 2008, 56(1): 158-171
    [193] Ozaktas H M, Sumbul U. Interpolating Between Periodicity and Discreteness Through the Fractional Fourier Transform. IEEE Transactions on Signal Processing, 2006,54(11): 4233-4243
    [194] 陈光化, 马世伟, 曹家麟. 基于分数阶傅立叶变换的自适应时频表示. 系统工程与电子技术, 2001, 23 (4): 69-71
    [195]冉鑫,马世伟,曹家麟.基于Radon-Wigner变换的多分量LFM信号的检测.上海大学学报(自然科学版),2001,7(2):119-122
    [196]Wood J C,Barry D T.Radon transformation of time-frequency distributions for analysis of multicomponent signals.IEEE Transactions on Signal Processing,1994,42(11):3166-3177
    [197]刘建成,王雪松,刘忠.基于Wigner-Hough变换的LFM信号检测性能分析.电子学报,2007,35(6):1212-1216
    [198]孙晓昶,皇甫堪.基于Wigner-Hough变换的多分量LFM信号检测及离散计算方法.电子学报,2003,31(2):241-244
    [199]Minsheng Wang,Chan A K,Chui C K.Linear frequency-modulated signal detection using Radon-ambiguity transform.IEEE Transactions on Signal Processing,1998,46(3):571-586
    [200]Pu Wang,Jianyu Yang.Multicomponent chirp signals analysis using product cubic phase function.Digital Signal Processing,2006,Vol.16:654-669
    [201]Xiang-Gen Xia.Discrete chirp-Fourier transform and its application to chirp rate estimation.IEEE Transactions on Signal Processing,2000,48(11):3122-3133
    [202]Weiping Li.Wigner distribution method equivalent to dechirp method for detecting a chirp signal.IEEE Transactions on Signal Processing,1987,35(8):1210-1211
    [203]Feng Zhang,Guoan Bi,Yan Qiu Chen.Tomography time-frequency transform.IEEE Transactions on Signal Processing,2002,50(6):1289-1297
    [204]Barkat B,Boashash B.Design of higher order polynomial Wigner-Ville distributions.IEEE Transactions on Signal Processing.1999,Vol.47,No.9:2608-2611
    [205]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998,29-30
    [206]Cohen L.Generalized phase-space distribution functions.Jour.Math.Phys.,1966,7(5):781-786
    [207]Choi H-I,Williams W J.Improved time-frequency representation of multicomponent signals using exponential kernels.IEEE Transactions on Acoustics,Speech,and Signal Processing,1989,37(6):862-871
    [208]Aviyente S,Williams W J.Minimum Entropy Time-Frequency Distributions.IEEE Signal Processing Letters,2005,12(1):37-40
    [209] Cohen L. A general approach for obtaining joint representations in signal analysis-part Ⅰ: Characteristic function operator method. IEEE Transactions on Signal Processing,1996,44(5): 1080-1090
    [210] Cohen L. A general approach for obtaining joint representations in signal analysis-part Ⅱ: General class, mean and local values, and bandwidth. IEEE Transactions on Signal Processing, 1996, 44(5): 1091-1098
    [211] Cohen L. Positive time-frequency distribution functions. ⅠIEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(1): 31-38
    [212] Cohen L. Properties of the positive time-frequency distribution functions. Acoustics,Speech, and Signal Processing, IEEE International Conference on ICASSP '85, 1985,Vol. 10:548-551
    [213] Oh S, Marks Ⅱ R J, Atlas L E, et al. Kernel synthesis for generalized time-frequency distributions using the method of projection onto convex sets. Proc. SPIE, Vol. 1348:197-207
    [214] Baraniuk R and Jones D. Signal-dependent time-frequency analysis using a radially Gaussian kernel. Signal Processing, 1993, 2(3): 263-284
    [215] Jones D and Baraniuk R. An adaptive optimal-kernel time-frequency representation.IEEE Transactions on Signal Processing, 1995, 43(10): 2361-2371
    [216] Wisur-Olsen L F and Baraniuk R G. Optimal phase kernels for time-frequency analysis.Proc. ICASSP'96, Atlanta, 1996. 1419-1422.
    [217] Gosme J, Richard C, Gon(?)alv(?)s P. Adaptive diffusion as a versatile tool for time-frequency and time-scale representations processing a review. IEEE Transactions on Signal Processing, 2005, 53(11): 4136-4146
    [218] Qazi S, Georgakis A, Stergioulas L K, et al. Interference Suppression in the Wigner Distribution Using Fractional Fourier Transformation and Signal Synthesis. IEEE Transactions on Signal Processing, 2007, 55(6): 3150-3154
    [219] Bastiaans M J, Alieva T, and Stankovic L J. On rotated time-frequency kernels. IEEE Signal Processing Letters, 2002, 9(11): 378-381
    [220] Richard C. Linear redundancy of information carried by the discrete Wigner distribution. IEEE Transactions on Signal Processing, 2001, 49(11): 2536-2544
    [221] Wahlberg P, Hansson M. Kernels and Multiple Windows for Estimation of the Wigner-Ville Spectrum of Gaussian Locally Stationary Processes. IEEE Transactions on Signal Processing, 2007, 55(1): 73-84
    [222] Djurovic I, Stankovic L. Robust Wigner distribution with application to the instantaneous frequency estimation. IEEE Transactions on Signal Processing, 2001,49(12): 2985-2993
    [223] Richard C. Time-frequency-based detection using discrete-time discrete-frequency Wigner distributions. IEEE Transactions on Signal Processing, 2002, 50(9): 2170-2176
    [224] Chassande-Mottin E, Pai A. Discrete time and frequency Wigner-Ville distribution:Moyal's formula and aliasing. IEEE Signal Processing Letters, 2005, 12(7): 508-511
    [225] Javier R F, Chrysostomos L N. Wigner Higher Order Moment Spectra Definition,Properties.Computation and Application to Transient Signal Analysis. IEEE Transactions on Signal Processing, 1993, 41(1): 245-266
    [226] LJubi(?)a Stankovi(?). A Multitime Definition of the Wigner Higher Order Distribution:L-Wigner Distribution. IEEE Signal Processing Letters, 1994, 1(7): 106-109
    [227] LJubiSa Stankovic", Vladimir Katkovnik. Instantaneous Frequency Estimation Using Higher Order -Wigner Distributions with Data-Driven Order and Window Length.IEEE Transactions on Information Theory, 2000,46(1): 302-311
    [228] Ristic B, Boashash B. Instantaneous frequency estimation of quadratic and cubic FM signals using the cross polynomial Wigner-Ville distribution. IEEE Transactions on Signal Processing, 1996,44(6): 1549-1553
    [229] Mallat S and Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12): 3397-3415
    [230] Auger F, Flandrin P. Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Transactions on Signal Processing,1995, 43(5): 1068-1089
    [231] Marwan U. Bikdash and Kai-Bor Yu. Analysis and Filtering Using the Optimally Smoothed Wigner Distribution. IEEE Transactions on Signal Processing, 1993, 41(4):1603-1617
    [232] Yong Wang and Yi-cheng Jiang. Generalized time-frequency distributions for multicomponent polynomial phase signals. Signal Processing, 2008,88(4): 984-1001
    [233]Jubisa Stankovic L,Thayaparan T,Dakovic M.Signal decomposition by using the S-method with application to the analysis of HF radar signals in sea-clutter.IEEE Transactions on Signal Processing,2006,54(11):4332-4342
    [234]蔡权伟.多分量信号的信号分量分离技术研究:[博士学位论文].成都:电子科技大学,2006
    [235]汪学刚,袁湘辉,向敬成,等.调频线性度与零差拍线性调频连续波雷达的距离分辨力.系统工程与电子技术,1997,(10):19-23
    [236]陆必应,梁甸农.调频线性度对线性调频信号性能影响分析.系统工程与电子技术,2005,27(8):1384-1386
    [237]万永伦,姒强,汪学刚.超宽带线性调频信号线性度的测量方法.电子测量与仪器学报,2007,21(4):55-58
    [238]Ristic B,Boashash B.Relationship Between the Polynomial and the Higher Order Wigner-Ville Distribution.IEEE Signal Processing letters.1995,2(12):227-229
    [239]Stankovic L,Katkovnik V.Algorithm for the instantaneous frequency estimation using time-frequency distribution with adaptive window width.IEEE Signal Processing Letters,1998,5(9):224-227
    [240]Kathovnik V,Stankovic L.Instantaneous frequency estimation using the Wigner distribution with varying and data-driven window length.IEEE Transactions on Signal Processing,1998,46(9):2315-2325.
    [241]Stankovic L,Katkovnik V.The Wigner distribution of noisy signals with adaptive time-frequency varying window.IEEE Transactions on Signal Processing,1999,47(4):1099-1108
    [242]Barkat B,Boashash B,Stankovic L J.Adaptive window in the PWVD for the IF estimation of FM signals in additive Gaussian noise.Proc.IEEE ICASSP,1999,Vol.3:1317-1320
    [243]Hussian Z M,Boashash B.Adaptive instantaneous frequency estimation of multi-component FM signals.Proc.IEEE ICASSP,2000,Vol.2:657-660
    [244]徐春光,谢维信.一种基于互局部化Wigner-Ville分布的瞬时频率估计.电子科学学刊,2000,22(5):753-758
    [245]马长征,张守宏,焦李成.短时傅里叶变换和拟Wigner分布最佳窗函数.电子科学学刊,2000,21(4):467-472
    [246] Zhang H F, Zhao J P, J G Huang. Instantaneous parameter estimation based on continuous wavelet transform and some improvements. Proc. IEEE ICASSP, 1998, Vol.4:2169-2172
    [247] Gerr N L. Introducing a third-order Wigner distribution. Proceedings of the IEEE,1988, 76(3): 290-292
    [248] Barkat B, Boashash B. Instantaneous Frequency Estimation of Polynomial FM Signals Using the Peak of the PWVD: Statistical Performance in the Presence of Additive Gaussian Noise. IEEE Transactions on Signal Processing, 1.999, 47(9): 2480-2490
    [249] Boashash B, Ristich B. Polynomial Wigner-Ville distributions and time-varying higher-order spectra. Time-Frequency and Time-Scale Analysis, Proceedings of the IEEE-SP International Symposium, 1992, 31-34
    [250] Gilboa G, Sochen N, and Zeevi Y. Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Transactions on Image Processing,2002, 11(7): 689-703
    [251] JIA Diye, HUANG Fenggang, and WEN Xiaofang. Fourth-order anisotropic diffusion equations for noise removal. IEEE proceedings.ICSP'04, 2004. Vol. 2: 994-997
    [252] Perona P and Malik J. Scale space and edge detection using anisotropic Diffusion. In Proc. IEEE Comput. Soc. Workshop Comput. Vision, 1987, 16-27.
    [253] Perona P and Malik J. Scale space and edge detection using anisotropic diffusion.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629-639
    [254] Baraniuk R, Flandrin P, Jansen M, et al. Measuring timefrequency information content using the R(?)nyi entropies. IEEE Transactions on Information Theory, 2001, 47(4):1391-1409
    [255] Mallat S. A Wavelet Tour of Signal Processing. Peking: China Machine Press, 2003.112-113
    [256] Arce G R, Hasan S R, Elimination of interference terms of the discrete Wigner distribution Using nonlinear filtering. IEEE Transactions on Signal Processing, 2000,48(8): 2321-2331
    [257]Gershman A B,Pesavento M,Amin M G.Estimating parameters of multiple wideband polynomial-phase sources in sensor arrays.IEEE Transactions on Signal Processing,2001,49(12):2924-2934
    [258]Adjrad M,Belouchrani A.Estimation of Multicomponent Polynomial-Phase Signals Impinging on a Multisensor Array Using State-Space Modeling.IEEE Transactions on Signal Processing,2007,55(1):32-45
    [259]Wang H,Kaveh M.Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources.IEEE Transactions on Acoustics,Speech,and Signal Processing,1985,33(4):823-831.
    [260]Sellone F.Robust auto-focusing wideband DOA estimation.Signal Processing.2006,86(1):17-37.
    [261]Yoon Y S,Kaplan L M,McClellan J H.TOPS:new DOA estimator for wideband signals,IEEE Transactions on Signal Processing,2006,54(6):1977-1989.
    [262]刘庆云,李志舜,李海英等.多分量多项式相位信号的参量估计.电子学报,2004,32(12):2031-2034
    [263]Li J and Stoica P.Efficient mixed-spectrum estimation with applications to target feature extraction.IEEE Transactions on Signal Processing,1996,44(2):281-295
    [264]Li J,Zheng D,and Stoica P.Angle and waveform estimation via RELAX.IEEE Transactions on Aerospace and Electronic Systems,1997,33(3):1077-1087
    [265]Greenberg J M,Zhisong Wang,and Jian Li.New approaches for chirplet approximation.IEEE Transactions on Signal Processing,2007,55(2):734-741
    [266]Zhou G T,Wang Y.Exploring lag diversity in the high-order ambiguity function for polynomial phase signals.IEEE Signal Processing Letters,1997,4(8):240-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700