农田系统中典型污染物的运移转化与生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是生态环境中污染物的主要载体,土壤污染直接关乎环境质量和人类健康。掌握污染物进入土壤后在各介质中的转化和运移规律,将有助于环境质量评价和污染防治政策的制订。目前研究主要关注污染物在单一介质或特定界面上的环境行为,缺乏关于污染物进入土壤后在各介质各界面环境行为的系统研究,尤其缺少长期的野外农田系统研究,研究成果难以为治理决策的制订提供科学的支持。本研究利用野外农田原状土柱(lysimeter)试验,在受控体系中对典型污染物(以BDE-209为代表的多溴联苯醚类污染物,以菲(phenanthrene)和萘(naphthalene)为代表的多环芳烃类污染物和以纳米氧化锌(nano-ZnO)和纳米二氧化钛(nano-TiO2)为代表的纳米颗粒类污染物)在农田系统中的运移转化和生态效应展开长期研究。在监测污染物随渗滤液的损耗及其在土壤纵向运移、污染物在植物体内的运移和转化的基础上获得土壤污染物在野外农田系统的环境归趋。并通过分析污染物长时间作用下对土壤酶活性和植物生长的影响以及污染物在生物体内的残留,评价了野外实际耕作条件下污染物的生态效应。主要研究结论如下:
     1.通过4年的野外实验,获得了稻麦轮作的农田系统中BDE-209的半衰期约为12年,表明其在实际农田中具有很强的持久性;BDE-209污染4年后,其在土壤中的残留仍会影响作物生长和土壤质量,水稻地上部生物量降低8.3%,穗重降低5.2%,土壤脲酶活性被诱导,蛋白酶活性被抑制,有可能对土壤的肥力供应产生一定的影响;在土壤和植物体内均检测到BDE-209及其脱溴产物,土壤中BDE-47、BDE-153和BDE-183含量较高,植物体内低溴化合物的富集系数比母体BDE-209高,一方面低溴产物因Kow值比BDE-209低,更容易被植物吸收利用,另一方面存在植物体内脱溴反应的可能,表明BDE-209有通过食物链传递的风险;发现在稻麦轮作农田系统中BDE-209及其脱溴产物存在明显的纵向迁移现象,本实验条件下的纵向运移平均速率为1.54mg·m-2·yr-1,土壤中的BDE-209长期存在,有可能对地下水造成严重威胁。
     2.比较了人工纳米颗粒nano-ZnO和nano-TiO2进入土壤环境后的短期、长期效应,发现nano-ZnO和nano-TiO2初期均会引起小麦生物量降低,对小麦产生一定的毒害作用,其机制可能是通过纳米颗粒形态引发损伤(nano-TiO2)或者通过溶解释放重金属离子产生毒害(nano-ZnO)作用;采用TEM观察到nano-TiO2颗粒可在小麦根尖细胞壁累积,并有少量进入周皮细胞;生长在nano-ZnO污染土壤中的小麦组织中Zn元素含量明显升高,但不确定是否存在纳米颗粒的形态;经过5个生长期的稻麦轮作,两种纳米颗粒污染在lysimeter中随渗滤液损失较少,Zn/Ti元素均未发现明显的纵向运移现象,表明其和土壤组分的结合作用较强,同时随着时间的延续,老化作用明显,纳米颗粒污染初期对土壤酶活性的显著影响2.5年后不再显著;经过2.5年后,nano-ZnO污染对作物生物量不再有明显影响,但nano-TiO2污染仍然促进作物生长,生物量增加。本发现对于全面评价纳米材料进入土壤环境后的生态风险具有重要的借鉴价值。
     3.通过4年8个生长期的连续稻麦轮作,发现外源多环芳烃及其转化产物在lysimeter中的残留约为初始量的9.6%(萘)和17.7%(菲),其中母体化合物均约占初始量的1.3%。经过四年的老化作用,残留的PAHs仍然对土壤中植物的生长产生胁迫作用,萘和菲污染的lysimeter中地上部总生物量分别降低2.9%和3.2%;残留的多环芳烃还可能对土壤微生物生态系统产生一定的影响,残留菲对土壤中脲酶和过氧化物酶的活性仍表现显著诱导,但萘污染的残留组土壤酶活性差异并不显著。该结果表明对于多环芳烃污染的防治在关注不同化合物生态效应的同时应协同考虑其累积效应。
     4.通过4年的野外lysimeter实验,研究获得了PAHs萘和菲在土壤中的纵向迁移规律和对地下水的影响。针对发现的PAHs胶体易化运移现象,开展了PAHs在不同粒径土壤颗粒上的吸附分离实验和室内土柱实验,结合14C示踪技术及多种微观观测手段,研究了不同粒径土壤胶体在不同pH和离子强度条件下的释放,基本结构特征及对菲的吸附能力、包气带胶体的释放及对菲的运移作用。结果表明:不同粒径胶体颗粒的元素组成差异明显,对菲的吸附能力差异也较明显,较小粒径(<0.45μm)土壤胶体颗粒对菲的吸附能力较强,但是较大颗粒(2-0.45μm)由于数量上的绝对优势对菲的吸附贡献最大;条件稳定不变时,碱性低离子强度条件有利于土壤胶体颗粒的释放,酸性高离子强度条件有利于菲在胶体上的吸附;离子强度、pH值和干湿交替等条件发生改变时土壤胶体的释放增加,但是对菲在土柱中的运移作用影响不一,离子强度降低和碱化(pH=7变为pH=9)有利于菲以溶解态形式释放运移,离子强度升高以及酸化(pH=7变为pH=5)有利于菲以胶体吸附形式释放运移。
     本研究获得的典型污染物在野外稻麦轮作农田系统的长期环境归趋和生态效应,为定量评估污染物对土壤环境、食品安全以及地下水威胁提供了科学依据;相关成果和研究经验为进一步开展气候变化条件下污染物在地球关键区的环境行为和生态效应研究打下了坚实的基础,具有重要的潜在应用价值。
Soil is a major sink for pollutants released to the environment. In soil, pollutants could transport and transform in components and interfaces, threatening the safety of soil, creature, atmosphere and groundwater. Reactions and processes of pollutants in soil, plants, and other individual components or interfaces, stretching from tops of plants to the saturated aquifer, have been characterized to some extent. But few studies have examined behaviors of pollutants in agricultural field as a whole system, especially studies carried outdoor for long period. Performed over years in outdoor lysimeters with rice-wheat rotation planting, our studies offered a systemic insight into the fate and ecologic effect of PBDEs (BDE-209), nanomaterials (nano-ZnO and nano-TiO2) and PAHs (phenanthrene and naphthalene) in agricultural soil. Gaseous losses, leaching losses, residue in soil, vertical transport, plant uptake were all quantified. Differences in soil enzymes between blank soil and spiked soil over years aging were also assessed to evaluate their actual effects on soil quality. The main findings arethe followings:
     1. BDE-209was demonstrated to be persistent with low degradation rate in field, and the half-life of BDE-209was calculated to be12years. By restraining plant biomass (by8.3%for overgroud part, by5.2%for spike), elevating the urease activity and inhibiting the protease activity, BDE-209still had influences on crop growth and soil quality after4years of spiking. BDE-209in the soil decreased mainly through leaching losses. Among the debrominated congeners (BDE-28,47,99,100,153,154,183), BDE-47, BDE-153and BDE-183contributed the highest percent in soil. BDE-209and seven lower brominated PBDEs were all detected in plants. There might be further debromination of BDE-209inside plants and low brominated congeners were more readily to be taken up by plants for lower Kow. Vertical trend of BDE-209over years showed its significant vertical migration in the soil column and its net average migration rate was calculated to be1.54mg·m-2·yr-1.
     2. Ecological effects of the two naopartciles (TiO2, ZnO) were evaluated for short-term and long-term (2.5yrs). In early period, both of the nanoparticles reduced the biomass of wheat. The mechanisms of toxication caused by the two NPs differed in this study:the toxicity of the TiO2NPs might result from the presence of the NPs in cells or accumulated on the cell walls, and the phytotoxicity of ZnO NPs to wheat was due to the dissolved Zn. The TiO2nanoparticles were retained in the soil for long periods and primarily adhered to cell walls of periderm cells. Some small-sized TiO2NPs penetrated through the cell wall, which were dark particles found in cortex cells. The ZnO nanoparticles dissolved in the soil, thereby enhancing the uptake of toxic Zn by wheat. The applied NPs clearly affected the soil environment in early period, as evidenced by the changes in soil enzyme activities, but after2.5years the changes were unsignificant. After2.5years, there was no difference of crop biomass between growth in control and soil spiked with nano-ZnO, but crop growth in soil spiked with nano-TiO2was increased.
     3. Four years after spiking,17.7%and9.6%of14C-chemical applied were detected in soil spiked with naphthalene and phenanthrene, respectively, and1.3%of C-chemical applied was found as parent compound. Residual concentration of PAHs in soil can not be ignored, restraining the crop growth and grain yeild. Residue of naphtalene in soil after4years has no significant effect on soil enzyme activities, but phenathrene residue still affected the soil quality by influencing enzyme activities.
     4. Colloid-facilitated transport of PAHs found in lysimeter experiment was further investigated. Soil column experiments and adsorption test were carried out to investigate release of colloid and its transport of phenanthrene in vadose zone. Colloid particles of different sizes were of different elemental composition and also had different adsorption abilities of phenanthrene. Colloid particles with smaller size (<0.45μm) had stronger adsorption ability, but2-0.45μm colloid particles contributed to the most adsorption capacity due to their absolute advantage in number. Under steady conditions, alkaline and low ionic strength conditions were more in favor of the release of colloid particles, but acidic and high ionic strength conditions were more in favor of the adsorption of phenanthrene on colloid particles. Under change conditions, changers of ionic strength, pH value and alternating of drying and wetting, all promoted the release of colloid. Decrease in ionic strength and changes of pH value from7to9were in favor of the release of dissolved phenanthrene. Increase in ionic strength and changes of pH value from7to5were in favor of the release of adsorptive phenanthrene on colloid. The experiment confirmed colloid-facilited transport of phenanthrene, which was effected by changing conditions.
     These results on long-term fate and ecological effects of typical contaminants in agricultutal field contributed to assessment influences of soil pollution on groundwater and food safety. Study on colloid release and its effects on contaminant transport in vadose zone provided basic data and method support for further large scale studies of colloid-facilitied transport of pollutants. Environment behaviors of typical pollutants especially emerging contaminants in earth's critical zone still need future work.
引文
1 Palm, A.; Cousins, I. T.; Mackay, D.; Tysklind, M.; Metcalfe, C.; Alaee, M. Assessing the environmental fate of chemicals of emerging concern:a case study of the polybrominated diphenyl ethers. Environ. Pollut., 2002,117,195-213.
    2 Wild, S. R.; Jones, K. C. Polynuclear aromatic hydrocarbons in the United Kingdom environment:a preliminary source in inventory and budget, Environ, Pollut.,1995,88, 91-108.
    3 Meijer, S. N; Ockenden, W. A.; Sweetman, A; Breivik, K; Grimalt, J. O.; Jones, K. C. Global distribution and budget of PCBs and HCB in background surface soils:Implications for sources and environmental processes. Environ. Sci. Technol.,2003,37,667-672.
    4朱荫湄,周启星,土壤污染与我国农业环境保护的现状、理论和展望.土壤通报,1999.30(3):132-135.
    5 Schroll, R.; Langenbach, T.; Cao, G. Fate of [14C] terbutylazine in Soil-plant Systems. Sci. Tota. Environ.,1992,123,124,377-389.
    6 Schroll, R.; Doerfler, U.; Scheunert, I. Violatilization and Mineralization of 14C-labelled Pesticides on Lysimeter Sur-faces. Chemosphere,1999,39,595-602.
    7 Doerfler, U.; Adler-Koehler, R.; Schneider, P.; Scheunert, I.; Korte, F. A Laboratory Model System for Determing the Volatility of Pesticides from Soil and Plant Surfaces. Chemosphere, 1991,23,485-496.
    8 Zhou, W.; Zhu, K.; Zhan, H. Y.; Jiang, M.; Chen, H. Sorption Behavious of Aromatic Anions on Loess Soil Modified with Cationic Surfactant. J. Hazard. Mater.,2003,209-218.
    9 Abbott, C. K.; Sorensen, D. L.; Sims, R. C. Use and efficiency of ethylene glycol monomethyl ether and monoethanolamine to trap volatized[7-14C] naphthalene and 14CO2. Environ. Toxicol. Chem.,1992,11,181-185.
    10 Stork, A.; Witte, R.; Fuehr, F.14CO2 Measurement in Air:Literature Review and a New Sensitive Method. Environ. Sci. Technol.,1997,31,949-955.
    11 Li, Y.; Qu, Z. Q.; Sun, T. H. Transportation and transformation of 14C phenanthrene in a controlled nutrient solution lava wheat system, Chin. J. Appl. Ecol.,1989,9,3,318-322.
    12 Jiang, X.; Qu, Z. Q.; Ying, P. F.; Ayfer, Y. A. K. Transportation and transformation of 14C-phenanthrene in closed chamber (nutrient solution-lava-plant-air) system, Chin. J. Appl. Ecol.,2001,12,3,451-454.
    13 Entry, J. A.; Rygiewicz PT, Watrud, L. S.; Donnelly, P. K. Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv. Environ. Res.,2002, 7,1,123-138.
    14 Fitz, W. J.; Wenzel, W.W. Arsenic transformations in the soil-rhizosphere- plant system: fundamentals and potential application to phytoremediation. J. Biotechnol.,2002,99,3, 259-278.
    15 Zhou, T. M.; Wang, S. Q.; Chen, H. M. Interaction of organic pollutant sand heavy metal in soil. Chin. Soil Environ. Sci.,2000,9,2,143-145.
    16 Rentz, J. A.; Alvarez, P. J.J.; Schnoor, J. L. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates:Implications for phytoremediation. Environ. Pollut.,2005, 136,477-484.
    17 Luo, L.; Zhang, S. Z.; Shan, X. Q.; Zhu, Y.G. Oxalate and root exudates enhance the desorption of p, p'-DDT from soils. Chemosphere,2006,63,1273-1279.
    18 Baudoin, E.; Benizri, E.; Guckert, A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem.,2003,35, 1183-1192.
    19 Fismes, J.; Perrin-Ganier, C.; Empereur-Bissonnet, P.; Morel, J. L. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown On industrial contaminated soils. J. Environ. Quality.,2002,31,1649-1656.
    20 Bakker, M. I. Atmospheric deposition of semivolatile organic compounds to plants, doctor thesis, Proefschrift Universiteit Utrecht,2000.
    21 Samsoe, P. L.; Larsen, E. H.; Larsen, P. B.; Bruun, P. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils, Environ. Sci. Technol.,2002,36,3057-3063.
    22 Wennrich, L.; Popp, P.; Zeibig, M. Polycyclic aromatic hydrocarbon burden in fruit and vegetable species cultivated in allotments in an industrial area, Int. J. Environ. Anal. Chem. 2002,82,677-690.
    23 Huang, H. L.; Zhang, S. Z.; Christie, P.; Wang, S.; Xie, M. Behavior of Decabromodiphenyl Ether (BDE-209) in the Soil-Plant System:Uptake, Translocation, and Metabolism in Plants and Dissipation in Soil. Environ. Sci. Technol.,2010,44,663-667.
    24 Zhu, H.; Han, J.; Xiao, Q. J.; Jin, Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit.,2008,10,6,713-717.
    25 Rondeau-Mouro, C.; Defer, D.; Leboeuf, E.; Lahaye, M. Assessment of cell wall porosity in Arabidopsis thaliana by NMR spectroscopy. Int. J. Biol. Macromol.,2008,42,2,83-92.
    26 Carpita, N.; Sabularse, D.; Montezinos, D.; Delmer, D. P. Determination of the pore size of cell walls of living plant cells. Science.1979,205,4411,1144-1147.
    27 Lin, S.; Reppert, J.; Hu, Q.; Hudson, J. S.; Reid, M. L.; Ratnikova, T. A.; Rao, A. M.; Luo, H.; Ke, P. C. Uptake, Translocation, and Transmission of Carbon Nanomaterials in Rice Plants. Small,2009,5,10,1128-1132.
    28 Corredor, E.; Testillano, P. S.; Coronado, M.; Gonzalez-Melendi, P.; Fernandez-Pacheco, R.; Marquina, C.; Ricardo Ibarra, M.; de la Fuente, J. M.; Rubiales, D.; Perez-de-Luque, A.; Risueno, M. Nanoparticle penetration and transport in living pumpkin plants:In situ subcellular identification. BMC Plant Biol.,2009,9,45.
    29 Sun, Z. Study on contamination transportation and transformation in soil. Zhejiang University, Master thesis,2004.
    30 Gschwend, P. M.; Reynolds, M. D. Monodisperse ferrous phosphate colloids in an anoxic groundwater plume. J. Contamin. Hydro.,1987,1,309-327.
    31 Backhus, D. A.; Ryan, J. N.; Groher, D.M.; MacFarlane, J. K.; Gschwend, P. M. Sampling colloids and colloid-associated contaminants in ground water. Ground Water,1993,31, 466-479.
    32 James, S. C.; Chrysikopoulos, C. V. Transport of polydisperse colloid suspensions in a single fracture. Water Resour. Res.,1999,35,3,707-718.
    33 Ghodrati, M.; Jury, W. A. A field study of the effect of soil structureand irrigation method on Preferential flow of pesticides in unsaturated soil. J. Contam. Hyrfol.,1992,11,101-125.
    34 Baek, I.; Pitt, W. W. Colliod-facilitated radionuelider tansport in fractured porous rock. Waste Management,1996,16,4,323-325.
    35 Barton, C. D.; Karathanasis, A. D. Influence of soil colloids on the migration of atrazine and Zinc throuhg large soil monoliths. Wat. Air and Soil Pollut.,2003,143,3-21.
    36 Citeau, L.; Lamy, I.; Oort, E.; Elsass, F. Colloidal facilitated transfer of metals in soil under dieffrent landuse. Colloids and Surface A:Physicochem. Emg. Aspects.,2003,217,11-19.
    37 Jin, Y.; Pratt, E.; Yates, V. M. Effect of mineral colloids on virus transport through saturated sand columns. J. Environ. Qual.,2000,29,532-539.
    38 Ryan, J. N.; Elimelech, M. Colloid mobilization and transport in groundwater. Colloids Surf., 1996,107,1-56.
    39 Roy, S. B.; Dzombak, D. A. Chemical factors influencing colloid facilitated transport of contaminants in porous media. Environ. Sci. Technol.,1997,31,656-664.
    40 Citeau, L.; Lamy, I.; Oort, E.; Elsass, F. Colloidal facilitated transfer of metals in soil under dieffrent landuse. Colloids and Surface A:Physicochem. Emg. Aspects.,2003,217,11-19.
    41 Klanova, J.; Matykiewiczova, N.; Macka, Z.; Prosek, P.; Laska, K.; Klan, P. Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environ. Pollut., 2008,152,416-423.
    42 Hites, R.A. Polybrominated diphenyl ethers in the environment and in people:A meta-analysis of concentrations. Environ. Sci. Technol.,2004,38,945-956.
    43 Menzie, C. A.; Potocki, B. B.; Santodonato, J. Exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol.,1992,26,1278-1284.
    44 Philips, D. H. Polycyclic aromatics hydrocarbons in the diet. Mutat. Res.,1999,443, 139-147.
    45 Mueller, K. E.; Mueller-Spitz, S. R.; Henry, H. F.; Vonderheide, A. P.; Soman, R. S.; Kinkle, B. K.; Shann, J. R. Fate of pentabrominated diphenyl ethers in soil:abiotic sorption,plant uptake,and the impact of interspecific plant interactions. Environ. Sci. Technol.,2006,40,21, 6662-6667.
    46 Szeto, S. Y.; Price, P. M. Persistence of pesticide residues in mineral and organic soils in the Fraser valley of British Columbia. J. Agri. Food Chem.,1991,39,1679-1684.
    47 Trapido, M. Polycyclic aromatic hydrocarbons in Estonian soil:Contamination and profiles. Environ. Pollut.,1999,105,67-74.
    48 Kim, J. H.; Smith, A. Distribution of organochlorine pesticides in soils from South Korea. Chemosphere,2001,43,137-140.
    49 Mielke, H. W.; Wang, G.; Gonzales, C. R.; Le, B.; Quach, V. N.; Mielke, P. W. PAH and metal mixtures in New Orleans soils and sediments. Sci. Total Environ.,2001,281,217-227.
    50 Saltiene, Z.; Brukstiene, D.; Ruzgyte, A. Contamination of soil by polycyclic aromatic hydrocarbons(PAH) in some urban areas. Poly. Arom. Comp.,2002,22:23-35.
    51 Directive 2003/11/EC of the European Parliament and of the Council. Official J. Eur. Union 2001, Directive 76/769/EEC,45-46.
    52 Tullo, A. Great Lakes to phase out flame retardants. Chem. Eng. News,2003,81,45,13-13.
    53 EU. Stockholm Convention on Persistent Organic Pollutants.2009. Adoption of Amendments to Annexes A, B, and C. Decisions SC-4/13,14,18. Available at chm.pops.int (accessed January 28,2011.
    54 Hites, R. A. Polybrominated diphenyl ethers in the environment and in people:A meta-analysis of concentrations. Environ. Sci. Technol.,2004,38,4,945-956.
    55 Stapleton, H. M.; Dodder, N. G.; Offenberg, J. H.; Schantz, M. M.; Wise, S. A. Polybrominated diphenyl ethers in house dust and clothes dryer lint. Environ. Sci. Technol., 2005,39,4,925-931.
    56 Wilford, B. S., M.; Harner, T.; Zhu, J.; Jones, K. C. Polybrominated diphenyl ethers in indoor dust in ottawa, canada:Implications for sources and exposure. Environ. Sci. Technol.,2005, 39,18,7027-7035.
    57 Hale, R. C.; La Guardia, M. J.; Harvey, E. P.; Gaylor, M. O.; Mainor, T. M.; Duff, W. H. Flame retardantssPersistent pollutants in land-applied sludges. Nature,2001,412,6843, 140-141.
    58 Jones-Otazo, H. A.; Clarke, J. P.; Diamond, M. L.; Archbold, J. A.; Ferguson, G.; Harner, T.; Richardson, G. M.; Ryan, J. J.; Wilford, B. Is house dust the missing exposure pathway for PBDEs? Ananalysis of the urban fate and human exposure to PBDEs. Environ. Sci. Technol., 2005,39,14,5121-5130.
    59 Hale, R. C., La Guardia, M. J., Harvey, E., Mainor, T. M. Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment. Chemosphere,2002,46,729-735.
    60 Gouin, T.; Harner, T. Modelling the fate of the polybrominated diphenyl ethers. Environ. Int., 2003,29,717-724.
    61 Zou, M. Y.; Ran, Y.; Gong, J.; Mai, B. X.; Zeng, E. Y. Polybrominated diphenyl ethers in watershed soils of the Pearl River Delta, China:occurrence, inventory, and fate. Environ. Sci. Technol.,2007,41,8262-8267.
    62 Palm, A.; Cousins, I. T.; Mackay, D.; Tysklind, M.; Metcalfe, C.;Alaee, M. Assessing the environmental fate of chemicals of emerging concern:a case study of the polybrominated diphenyl ethers. Environ. Pollut.,2002,117,195-213.
    63 Hassanin, A., Breivik, K., Meijer, S.N., Steinnes, E., Thomas, G. O., Jones, K. C. PBDEs in European background soils:levels and factors controlling theirdistribution. Environ. Sci. Technol.,2004,38,738-745.
    64 Harrad, S.; Hunter, S. Concentrations of Polybrominated Diphenyl Ethers in Air and soil on a rural-urban transect across a major UK conurbation. Environ. Sci. Technol,2006,40,15, 4548-4553.
    65 Yun, S. H.; Addink, R.; McCabe, J. M. Polybrominated diphenyl ethers and polybrominated biphenyls in sediment and floodplain soils of the Saginaw River Watershed, Michigan, USA. Arch. Environ. Contamin. Toxicol.,2008,55,1-10.
    66 Sellstrm, U.; de Wit, C. A.; Lundgren, N.; Tysklind, M. Effect of sewage-sludge application on concentrations of higher-brominated diphenyl ethers in soils and earthworms. Environ. Sci. Technol.,2005,39,23,9064-9070.
    67 Eljarrat, E.; Marsh, G; Labandeira, A.; Barcelo, D. Effect of sewage sludges contaminated with polybrominated diphenylethers on agricultural soils. Chemosphere; 2008,71, 1079-1086.
    68 Wong, M. H.; Leung, A. O. W.; Chan, J. K. Y.; Choi, M. P. K. A review on the usage of POP pesticides in China,with emphasis on DDT loadings in human milk. Chemosphere,2005,60, 740-752.
    69 Gouin, T.; Hamer, T. Modelling the fate of the polybrominated diphenyl ethers. Environ. Int., 2003,29,717-724.
    70 Muresan, B.; Lorgeoux, C.; Gasperi J.; Moilleron. R. Fate and spatial variations of polybrominated diphenyl ethers in the deposition within a heavily urbanized area:case of Paris (France). Water Sci. Technol. WST.,2010,62,4,822-828.
    71 Qin, P. H.; Ni, H. G.; Liu, Y. S.; Shi, Y. H.; Zeng. H. Occurrence, distribution, and source of polybrominated diphenyl ethers in soil and leaves from Shenzhen Special Economic Zone, China Environ. Monit. Assess.,2011,174,259-270.
    72 Sun, K.; Zhao, Y.; Gao, B.; Liu, X. T.; Zhang, Z. Y.; Xing. B. S. Organochlorine pesticides and polybrominated diphenyl ethers in irrigated soils of Beijing, China:Levels, inventory and fate. Chemosphere,2009,77,1199-1205.
    73 Wild, S. R.; Jones, K. C. Organic chemicals entering agricultural soils in sewage sludges: Screening for their potential to transfer to crop plants and livestock. Sci. Total Environ.,1992, 119,85-119.
    74 Alcock, R. E.; Bacon, J.; Bardgett, R. D.; Beck, A. J.; Haygarth, P. M.; Lee, R. G. M.; Parker, C. A.; Jones, K. C. Persistence and fate of polychlorinated biphenyls (PCBs) in sewage sludge-amended agricultural soils. Environ. Pollut.,1996,93,83-92.
    75 Cousins, I. T.; Gevao, B.; Jones, K. C. Measuring and modelling the vertical distribution of semi-volatile organic compounds in soils. I:PCB and PAH soil core data. Chemosphere, 1999,39,2507-2518.
    76 Grolimund, D.; Borkovec, M. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media:Mathematical modelingandlaboratorycolumnexperiments. Environ. Sci. Technol.,2005,39,6378-6386.
    77 Sprague, L. A.; Herman, J. S.; Hornberger, G. M.; Mills, A. L. Atrazine adsorption and colloid-facilitated transport through the unsaturated zone. J. Environ. Qual.,2000,29, 1632-1641.
    78 Chen, G.; Flury, M.; Harsh, J. B.; Lichtner, P. C. Colloid-facilitated transport of cesium in variably saturated Hanford sediments. Environ. Sci. Technol.,2005,39,3435-3442.
    79 Zhuang, J.; Flury, M.; Jin, Y. Colloid-facilitated Cs transport through water-saturated Hanford sediment and Ottawa sand. Environ. Sci. Technol.,2003,37,4905-4911.
    80 Ranville, J. F.; Chittleborough, D. J.; Beckett, R. Particle-size andelement distributions of soil colloids:Implications for colloid transport. Soil Sci. Soc. Am. J.,2005,69,1173-1184.
    81 Yang Z. Z., Li Y. F., Hou Y. X., Liang H. Y., Qin Z. F., Fu S. Vertical Distribution of Polybrominated Diphenyl Ethers (PBDEs) in Soil Cores Taken from a Typical Electronic Waste Polluted Area in South China. Bull Environ. Contain. Toxicol.,2010,84,260-263.
    82 Zhu, W.; Liu, L.; Zou, P.; Xiao, L.; Yang, L. Effect of decabromodiphenyl ether (BDE 209) on soil microbial activity and bacterial community composition, World J. Microbiol. Biotechnol.,2010,26,1891-1899.
    83 Ohta, S.; Nishimura, H.; Nakao, T.; Aozasa, O.; Miyata, H. Characterization of the photolysis of decabromodiphenyl ether and the levels of PBDEs as its photoproducts in atmospheric air of Japan, Organohalogen Compd.,2001,52,321-324.
    84 Christiansson, A.; Eriksson, J.; Teclechiel, D.; Bergman, A. Identification and quantification of products formed via photolysis of decabromodiphenyl ether, Environ. Sci. Pollut. Res., 2009,16,312-321.
    85 Soderstrom, G.; Sellstrom, U.; de Wit, C.; Tysklind, M. Photolytic debromination of decabromodiphenyl ether (BDE 209), Environ. Sci. Technol.,2004,38,127-132.
    86 Betts, K.. Does a key PBDE break down in the environment. Environ. Sci. Technol.,2008,42, 6781.
    87 Stapleton, H. M.; Brazil, B.; Holbrook, R. D.; Mitchelmore, C. L.; Benedict, R.; Konstantinov, A.; Potter, D. In vivo and in vitro debromination of decabromodiphenyl ether (BDE-209) by juvenile rainbow trout andcommoncarp. Environ. Sci. Technol.,2006,40, 4653-4658.
    88 La Guardia, M. J.; Hale, R. C.; Harvey, E. Evidence of debromination of decabromodiphenyl ether (BDE-209) in biota from a wastewater receiving stream. Environ. Sci. Technol.,2007, 41,6663-6670
    89 Betts, K. New data suggest PBDE byproducts are ubiquitous in U.S. waters. Environ. Sci. Technol,2009,43,5161-5163.
    90 Lu Liu, Wei Zhu, Lin Xiao, Liuyan Yang. Effect of decabromodiphenyl ether (BDE 209) and dibromodiphenyl ether (BDE 15) on soil microbial activity and bacterial community composition. J. Hazard. Mater.,2011,186,883-890.
    91 Huang, H. L.; Zhang, S. Z.; Christie, P.; Wang, S.; Xie, M. Behavior of Decabromodiphenyl Ether (BDE-209) in the Soil-Plant System:Uptake, Translocation, and Metabolism in Plants and Dissipation in Soil. Environ. Sci. Technol.,2010,44,663-667.
    92 Amagai, T.; Takahashi, Y.; Matsushita, H.; Morknoy, D.; Sukasem, P.; Tabucanon, M. A survey on polycyclic aromatic hydrocarbon concentrations in soil in ChiangMai, Thailand. Environ. Intern.,1999,25,563-572.
    93 Agarwal, T.; Khillare, P. S.; Shridhar, V.; Ray, S. Pattern,sources and toxic potential of PAHs in the agricultural soils of Delhi,India. J. Hazard. Mater.,2009,163,1033-1039.
    94 Nadal, M.; Schuhmacher, M.; Domingo, J. L. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ. Pollut.,2004,132,1-11.
    95 Mielke, H. W.; Wang, G. D.; Gonzales, C. R. Distributions of polycyclic aromatic hydrocarbons in surface PAHs and metals in the soils of inner-city and suburban New Orleans, Louisiana, USA. Environ. Toxicol. Pharm.,2004,18,243-247.
    96 Yang, Y.; Zhang, X. X.; Korenaga, T. Distribution of polynuclear aromatic hydrocarbons (PAHs) in the soil of Tokushima, Japan. Water, Air Soil Pollut.,2002,138,1-4,51-60.
    97 Wild, S. R.; Jones, K. C. Polynuclear aromatic hydrocarbons in the United Kingdom environment:a preliminary source inventory and budget. Environ. Pollut.,1995,88,91-108.
    98 Aichner, B.; Glaser, B.; Zech, W. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in urban soils from Kathmandu, Nepal. Organ. Geochem.,2007,38,700-715.
    99 Ayris, S.; Harrad, S. The fate and persistence of polychlorinated biphenyls in soil, Environ. Monit.,1999,1,395-401.
    100 Doick, K. J.; Klingelmann, E.; Burauel, P.; Jones, K.C.; Semple, K.T. Long-term fate of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in an agricultural soil, Environ. Sci. Technol.,2005,39,3663-3670.
    101 Johnson, D. L.; Jones, K. C.; Langdon, C. J.; Piearce, T. G.; Semple, K. T. Temporal changes in earthworm availability and extractability of polycyclic aromatic hydrocarbons in soil. Soil Biol. Biochem.,2002,34,1363-1370.
    102 Northcott, G. L.; Jones, K. C. Experimental approaches and analytical techniques for determining organic compound residues in soils and sediment, Environ. Pollut.,2000,108: 19-43.
    103 Samsoe, P. L.; Larsen, E. H.; Larsen, P. B.; Bruun, P. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils, Environ. Sci. Technol.,2002,36,3057-3063.
    104 Wennrich, L.; Popp, P.; Zeibig, M. Polycyclic aromatic hydrocarbon burden in fruit and vegetable species cultivated in allotments in an industrial area, Int. J. Environ. Anal. Chem., 2002,82,677-690.
    105 Kluska, M. Soil contamination with polycyclic aromatic hydrocarbons in the vicinity of the ring road in Siedlce City, Poli, J. Environ. Study,2003,3,309-313.
    106 Weigand, H.; Totsche, K. U.; Huwe, B.; Koel-Knabner, I. PAH mobility in contaminated industrial soils:a Markov chain approach to the spatial variability of soil properties and PAH levels, Geoderma,2001,102,371-389.
    107杜文超.农田系统多环芳烃环境归趋的野外lysimeter14C同位素示踪研究.硕士学位论文,南京:南京大学,2009.
    108曹璐.农田系统多环芳烃(PAHs)的迁移及其对地下水的影响研究.硕士学位论文,南京:南京大学,2010.
    109 Klaine, S. J.; Alvarez, P. J. J.; Batley, G. E. Fernandes, T. F.; Handy, R. D.; Lyon, D. Y.; Mahendra, S.; McLaughlin, M. J.; Lead, J. R. Nanomaterials in the environment:behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem.,2008,27,1825-1851.
    110 Sanhai, W. R.; Sakamoto, J. H.; Canady, R. Ferrari, M. Seven challenges for nanomedicine. Nat. Nanotechnol.,2008,3,5,242-244.
    111 Warheit, D. B.; Sayes, C. M.; Reed, K. L.; Swain, K. A. Health effects related to nano-particle exposures:environmental,health and safety considerations for assessing hazards and risks, Pharmacol. Ther,2008,120,35-42.
    112 Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology:An emerging discipline evolving from studies of ultrafine particles. Environ. Health. Perspect.,2005,113,7, 823-839.
    113 Ju-Nam, Y.; Lead, J. R. Manufactured nanoparticles:An overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ.,2008,400, 396-414.
    114 Schrand, A. M.; Rahman, M. F.; Hussain, S.M.; Schlager, J. J.; Smith, D. A.; Syed, A. F. Metal-based nanoparticles and their toxicity assessment. Wiley Interdisciplinary Reviews: Nano. Nanobiotechnol.,2010,2,544-568.
    115 Goncalves, D.; Karl, J.; Leite, M.; Rotta, L.; Salbego, C.; Rocha, E.; Wofchuk, S.; Goncalves, C. A. High glutamate decreases S100B secretion stimulated by serum deprivation in astrocytes. Neuroreport,2002,13,12,1533-1535.
    116 Tramontina, F.; Leite, M C.; Goncalves, D.; Tramontina, A. C.; Souza, D. F.; Frizzo, J. K.; Nardin, P.; Gottfried, C.; Wofchuk, S. T.; Goncalves, C. A. High glutamate decreases S100B secretion by a mechanism dependent on the glutamate transporter. Neurochem. Res.,2006,31, 6,815-820.
    117 Lin, D. H.; Xing, B. S. Phytotoxicity of nanoparticles:inhibition of seed germination and root growth. Environ. Pollut.,2007,150,243-250.
    118 Zheng, L.; Hong, F.; Lv S.; Liu, C. Effect of Nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res.,2004,101,1-9.
    119 Hong, F.; Zhou, J.; Liu, C.; Yang, F.; Wu, C.; Zheng, L.; Yang, P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res.,2005,104,1-11.
    120 Yang, F.; Liu, C.; Gao, F.; Su, M.; Wu, X.; Zheng, L.; Hong, F.; Yang, P. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol. Trace Elem. Res.,2007,119,77-88.
    121 Gao, F.; Liu, C.; Qu, C.; Zheng, L.; Yang, F.; Su, M.; Hong, F. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals,2008, 21,211-217.
    122 Kurepa, J.; Paunesku, T.; Vogt, S.; Arora, H.; Rabatic, B. M.; Lu, J. J.; Wanzer, M. B.; Woloschak, G. E.; Smalle, J. A. Nano Lett.,2010,10,2296-2302.
    123 Burauel, P.; Fiihr, F. Formation and long-term fate of nonextractable residues in outdoor lysimeter studies, Environ. Pollut.,2000,108,45-52.
    124 Fuhr, F.; Hance, R. J.; Plimmer, J. R.; Nelson J. O. (Eds.), The Lysimeter Concept: Environmental Behavior of Pesticides, American Chemical Society, Washington, DC,1998.
    125 Kubiak, R.; Fiihr, F.; Mittelstaedt, W. Comparative studies on the formation of bound residues in soil in outdoor and laboratory experiments, Int. J. Environ. Anal. Chem.,1990,39,47-57.
    126 Kubiak, R.; Fuhr, F.; Mittelstaedt, W.; Hansper, M.; Steffens, W. Transferability of lysimeter results to actual field situations, Weed Sci.,1988,36,514-518.
    127 Schroll, R.; Grundmann, S.; Dofler, U.; Ruth, B.; Munch, J. C. Lysimeter experiments to investigate the fate of chemicals in soils-comparison of five different lysimeter systems, Water Air Soil Pollut.,2008,8,209-216.
    128 Stork, A.; Witte, R.; Fiihr, F. A wind tunnel for measuring the gaseous losses of environmental chemicals from the soil/plant system under field-like conditions, Environ. Sci. Pollut. Res., 1994,1,234-245.
    129 Schroll, R.; Kuhn, S. Test system to establish mass balances for 14C-labled substances in soil-plant-atmosphere systems under field conditions, Environ. Sci. Technol.,2004,38, 1537-1544.
    130 Wennrich, L.; Popp, P.; Zeibig, M. Polycyclic aromatic hydrocarbon burden in fruit and vegetable species cultivated in allotments in an industrial area, Int. J. Environ. Anal Chem., 2002,82,677-690.
    1 Alaee, M.; Arias, P.; Sjodin, A.; Bergman, A. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Int. Environ.,2003,29,683-689.
    2 Directive 2003/11/EC of the European Parliament and of the Council. Official J. Eur. Union 2001, Directive 76/769/EEC,45-46.
    3 Tullo, A. Great Lakes to phase out flame retardants. Chem. Eng. News,2003,81,45),13-13.
    4 EU. Stockholm Convention on Persistent Organic Pollutants.2009. Adoption of Amendments to Annexes A, B, and C. Decisions SC-4/13,14,18. Available at chm.pops.int (accessed January 28,2011).
    5 Zou, M. Y.; Ran, Y.; Gong, J.; Maw, B. X.; Zeng, E. Y. Polybrominated diphenyl ethers in watershed soils of the Pearl River Delta, China:Occurrence, inventory, and fate. Environ. Sci. Technol., 2007,41,24,8262-8267.
    6 De Wit, C. A. An overview of brominated flame retardants in the environment. Chemosphere, 2002,46,583-674.
    7 EU-Commission, Commission Decision of 13 October 2005 Amending for the Purposes of Adapting to the Technical Progress the Annex to Directive 2002/95/EC; Official Journal of the European Union:Luxembourg,2005; L271/48-L271/50.
    8 Law, R. J.; Allchin, C. R.; de Boer, J.; Covaci, A.; Herzke, D.; Lepom, P.; Morris, S.; Tronczynski, J.; de Wit, C. A. Levels and trends of brominated flame retardants in the European environment. Chemosphere,2006,64,187-208.
    9 Hites, R. A. Polybrominated diphenyl ethers in the environment and in people:A meta-analysis of concentrations. Environ. Sci. Technol.,2004,38,4,945-956.
    10 Stapleton, H. M.; Dodder, N. G.; Offenberg, J. H.; Schantz, M. M.; Wise, S. A. Polybrominated diphenyl ethers in house dust and clothes dryer lint. Environ. Sci. Technol., 2005,39,4,925-931.
    11 Wilford, B. S., M.; Harner, T.; Zhu, J.; Jones, K. C. Polybrominated diphenyl ethers in indoor dust in ottawa, canada:Implications for sources and exposure. Environ. Sci. Technol.,2005, 39,18,7027-7035.
    12 Hale, R. C.; La Guardia, M. J.; Harvey, E. P.; Gaylor, M. O.; Mainor, T. M.; Duff, W. H. Flame retardantssPersistent pollutants in land-applied sludges. Nature,2001,412,6843, 140-141.
    13 Jones-Otazo, H. A.; Clarke, J. P.; Diamond, M. L.; Archbold, J. A.; Ferguson, G.; Harner, T.; Richardson, G. M.; Ryan, J. J.; Wilford, B. Is house dust the missing exposure pathway for PBDEs? Ananalysis of the urban fate and human exposure to PBDEs. Environ. Sci. Technol., 2005,39,14,5121-5130.
    14 Hale, R. C.; La Guardia, M. J.; Harvey, E.; Mainor, T. M. Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment. Chemosphere,2002,46,729-735.
    15 Hassanin, A.; Breivik, K.; Meijer, S.N.; Steinnes, E.; Thomas, G.O.; Jones, K.C. PBDEs in European background soils:levels and factors controlling theirdistribution. Environ. Sci. Technol.,2004,38,738-745.
    16 Zou, M.Y.; Ran, Y.; Gong, J.; Mai, B.X.; Zeng, E.Y. Polybrominated diphenyl ethers in watershed soils of the Pearl River Delta, China:occurrence, inventory, and fate. Environ. Sci. Technol.,2007,41,8262-8267.
    17 Palm, A.; Cousins, I. T.; Mackay, D.; Tysklind, M.; Metcalfe, C.;Alaee, M. Assessing the environmental fate of chemicals of emerging concern:a case study of the polybrominated diphenyl ethers. Environ. Pollut.,2002,117,195-213.
    18 Gouin, T.; Harner, T. Modelling the fate of the polybrominated diphenyl ethers. Environ. Int., 2003,29,717-724.
    19 Muresan, B.; Lorgeoux, C.; Gasperi J.; Moilleron. R. Fate and spatial variations of polybrominated diphenyl ethers in the deposition within a heavily urbanized area:case of Paris (France). Water Sci. Technol. WST.,2010,62,4,822-828.
    20 Qin, P. H.; Ni, H. G.; Liu, Y. S.; Shi, Y. H.; Zeng. H. Occurrence, distribution, and source of polybrominated diphenyl ethers in soil and leaves from Shenzhen Special Economic Zone, China Environ. Monit. Assess.,2011,174,259-270.
    21 Sun, K.; Zhao, Y.; Gao, B.; Liu, X. T.; Zhang, Z. Y.; Xing. B. S. Organochlorine pesticides and polybrominated diphenyl ethers in irrigated soils of Beijing, China:Levels, inventory and fate. Chemosphere,2009,77,1199-1205.
    22 Wild, S. R.; Jones, K. C. Organic chemicals entering agricultural soils in sewage sludges: Screening for their potential to transfer to crop plants and livestock. Sci. Total Environ.,1992, 119,85-119.
    23 Alcock, R. E.; Bacon, J.; Bardgett, R. D.; Beck, A. J.; Haygarth, P. M.; Lee, R. G. M.; Parker, C. A.; Jones, K. C. Persistence and fate of polychlorinated biphenyls (PCBs) in sewage sludge-amended agricultural soils. Environ. Pollut.,1996,93,83-92.
    24 Cousins, I. T.; Gevao, B.; Jones, K. C. Measuring and modelling the vertical distribution of semi-volatile organic compounds in soils. Ⅰ:PCB and PAH soil core data. Chemosphere, 1999,39,2507-2518.
    25 Grolimund, D.; Borkovec, M. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media:Mathematical modelingandlaboratorycolumnexperiments. Environ. Sci. Technol.,2005,39,6378-6386.
    26 Sprague, L. A.; Herman, J. S.; Hornberger, G. M.; Mills, A. L. Atrazine adsorption and colloid-facilitated transport through the unsaturated zone. J. Environ. Qual.,2000,29, 1632-1641.
    27 Chen, G.; Flury, M.; Harsh, J. B.; Lichtner, P. C. Colloid-facilitated transport of cesium in variably saturated Hanford sediments. Environ. Sci. Technol.,2005,39,3435-3442.
    28 Zhuang, J.; Flury, M.; Jin, Y. Colloid-facilitated Cs transport through water-saturated Hanford sediment and Ottawa sand. Environ. Sci. Technol.,2003,37,4905-4911.
    29 Ranville, J. F.; Chittleborough, D. J.; Beckett, R. Particle-size andelement distributions of soil colloids:Implications for colloid transport. Soil Sci. Soc. Am. J.,2005,69,1173-1184.
    30 Yang Z. Z., Li Y. F., Hou Y. X., Liang H. Y., Qin Z. F., Fu S. Vertical Distribution of Polybrominated Diphenyl Ethers (PBDEs) in Soil Cores Taken from a Typical Electronic Waste Polluted Area in South China. Bull Environ. Contam. Toxicol.,2010,84,260-263.
    31 Lu Liu, Wei Zhu, Lin Xiao, Liuyan Yang. Effect of decabromodiphenyl ether (BDE 209) and dibromodiphenyl ether (BDE 15) on soil microbial activity and bacterial community composition.J.Hazard Mater.,2011,186,883-890.
    32 Zhu, W.; Liu, L.; Zou, P.; Xiao, L.; Yang, L. Effect of decabromodiphenyl ether (BDE 209) on soil microbial activity and bacterial community composition, World J. Microbiol. Biotechnol.,2010,26,1891-1899.
    33 Ohta, S.; Nishimura, H.; Nakao, T.; Aozasa, O.; Miyata, H. Characterization of the photolysis of decabromodiphenyl ether and the levels of PBDEs as its photoproducts in atmospheric air of Japan, Organohalogen Compd.,2001,52,321-324.
    34 Christiansson, A.; Eriksson, J.; Teclechiel, D.; Bergman, A. Identification and quantification of products formed via photolysis of decabromodiphenyl ether. Environ. Sci. Pollut. Res.. 2009,16,312-321.
    35 Soderstrom, G.; Sellstrom. U.; de Wit, C.; Tysklind, M. Photolytic debromination of decabromodiphenyl ether (BDE 209), Environ. Sci. Technol.,2004,38,127-132.
    36 Betts, K.. Does a key PBDE break down in the environment. Environ. Sci. Technol.,2008,42, 6781.
    37 Stapleton, H. M.; Brazil, B.; Holbrook, R. D.; Mitchelmore, C. L.; Benedict, R.: Konstantinov, A.; Potter, D. In vivo and in vitro debromination of decabromodiphenyl ether (BDE-209) by juvenile rainbow trout andcommoncarp. Environ. Sci. Technol.,2006,40, 4653-4658.
    38 La Guardia, M. J.; Hale, R. C.; Harvey, E. Evidence of debromination of decabromodiphenyl ether (BDE-209) in biota from a wastewater receiving stream. Environ. Sci. Technol.,2007, 41,6663-6670
    39 Betts, K. New data suggest PBDE byproducts are ubiquitous in U.S. waters. Environ. Sci. Technol.,2009,43,5161-5163.
    40 Huang, H. L.; Zhang, S. Z.; Christie, P.; Wang, S.; Xie, M. Behavior of Decabromodiphenyl Ether (BDE-209) in the Soil-Plant System:Uptake, Translocation, and Metabolism in Plants and Dissipation in Soil. Environ. Sci. Technol.,2010,44,663-667.
    41 May, P. B.; Douglas, L.A. Assay for soil urease activity. Plant Soil,1976,45,301-305.
    42 Guan, S. Y. Soil Enzyme and Research Method, Agriculture Press, Beijing, China,1986, pp. 274-340.
    43 Roberge, M. R. Methodology of enzymes determination and extraction. In:Burns RG (ed) Soil enzymes. Academic Press, New York,1978, pp 341-373.
    44陈效民.土壤环境中硝态氮运移的特点、模型描述及其在太湖地区乌栅土上的应用研究.博士学位论文.南京:南京农业大学,2000.
    45 Doick, K. J.; Klingelmann, E.; Burauel, P.; Jones, K. C.; Semple, K. T. Long-term fate of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in an agricultural soil. Environ. Sci. Technol.,2005,39,3663-3670.
    46 Soderstrom, G.; Sellstrom, U.; De Wit, C. A.; Tysklind, M. Photolytic debromination of decabromodiphenyl ether (BDE 209). Environ. Sci. Technol.,2004,38,1,127-132.
    47 Eriksson, J.; Green, N.; Marsh, G.; Bergman, A. Photochemical decomposition of 15 polybrominated diphenyl ether congeners in methanol/water. Environ. Sci. Technol.,2004,38, 11,3119-3125.
    48 Gerecke, A. C.; Hartmann, P. C.; Heeb, N. V.; Kohler, H. P. E.; Giger, W.; Schmid, P.; Zennegg, M.; Kohler, M. Anaerobic degradation of decabromodiphenyl ether. Environ. Sci. Technol.,2005,39 (4),1078-1083.
    49 Andrade, N. A.; Mcconnell, L. L.; Torrents, A.; Ramirez, M. Persistence of Polybrominated Diphenyl Ethers in Agricultural Soils after Biosolids Applications. J. Agric. Food Chem., 2010,58,3077-3084.
    50 Soderstrom, G.; Sellstrom, U.; DeWit, C.; Tysklind, M. Photolytic debromination of decabromodiphenyl ether (BDE 209). Environ. Sci. Technol.,2004,38,127-132.
    51 Ahn, M.; Filley, T. R.; Jafvert, C. T.; Nies, L.; Hua, I.; Bezares-Cruz, B. Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment. Environ. Sci. Technol.,2006,40,215-220.
    52 Lagalante, A. F.; Shedden, C. S.; Greenbacker, P.W. Levels of polybrominated diphenyl ethers (PBDEs) in dust from personal automobiles in conjunction with studies on the photochemical degradation of decabromodiphenyl ether (BDE-209). Environ. Int.,2011,37, 899-906
    53 Mueller, K. E.; Mueller-Spitz, S. R.; Henry, H. F.; Vonderheide, A. P.; Soman, R. S.:Kinkle, B. K.; Shann, J. R. Fate of pentabrominated diphenyl ethers in soil:Abiotic sorption, plant uptake, and the impact of interspecific plant interactions. Environ. Sci. Technol.,2006,40, 6662-6667.
    54 Braekevelt, E.; Tittlemier, S. A.; Tomy, G. T. Direct measurement of octanole-water partition coefficients of some environmentally relevant brominated diphenylether congeners. Chemosphere,2003,51,563-567.
    55 Tittlemier,S. A.; Halldorson, T.; Stern, G. A.; Tomy, G. T. Vapor pressures, aqueous solybilities,and Henry's law constants of some brominated flame retardants. Environ. Toxicol. Chem.,2002,21,1804-1810.
    56 Robrock, K. R.; Korytar, P.; Alvarez-Cohen, L. Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers. Environ. Sci. Technol.,2008,42, 2845-2852.
    57 Vrkoslavova, J.; Demnerova, K.; Mackova, M.; Zemanova, T.; Macek, T.; Hajslova, J.; Pulkrabova, J.; Hradkova, P.; Stiborova, H. Absorption and translocation of polybrominated diphenyl ethers (PBDEs) by plants from contaminated sewage sludge. Chemosphere,2010, 81,381-386
    58 Bremner, J. M.; Mulvaney, R. L. Urease activity in soils. In R. G. Burns (Ed.), Soil enzymes. New York:Academic.1978, p:149-196.
    1 Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science, 2006,311,622-627.
    2 Thill, A.; Zeyons, O.; Spalla,O.; Chauvat, F.; Rose, J.; Auffan, M.; Flank, A. M. Cytotoxicity of CeO2 Nanoparticles for Escherichia coli. Physico-Chemical Insight of the Cytotoxicity Mechanism. Environ. Sci. Technol.,2006,40,19,6151-6156.
    3 Nowack, B.; Bucheli, T. D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut., 2007,150,5-22.
    4 Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect.,2005,113,823-839.
    5 Adams, L. K.; Lyon, D. Y.; Alvarez, P. J. J. Comparative eco-toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Res.,2006,40,3527-3532.
    6 Huang, Z.; Zheng, X.; Yan, D.; Yin, G.; Liao, X.; Kang, Y.; Yao, Y.; Huang, D.; Hao, B. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir,2008,24,4140-4144.
    7 Jiang, W.; Mashayekhi, H.; Xing, B. Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ. Pollut.,2009,157,1619-1625.
    8 Johansen, A.; Pedersen, L. A.; Jensen, A. K.; Karlson, U.; Hansen, M. B.; Scott-Fordsmand, J. J.; Winding, A. Effects of C 60 fullerene nanoparticles on soil bacteria and protozoans. Environ. Toxicol. Chem.,2008,27,1895-1903.
    9 Wang, J.; Zhang, X.; Chen, Y.; Sommerfeld, M.; Hu, Q. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere, 2008,73,1121-1128.
    10 Wang, H. H.; Wick, R. L.; Xing, B. S. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ. Pollut.,2009,157,1171-1177.
    11 Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H. C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere,2008,71,1308-1316.
    12 Lovern, S. B.; Strickler, J. R.; Klaper, R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C-60, and C(60)hxc(70)hx). Environ. Sci. Technol.,2007,4,12,4465-4470.
    13 Griffitt. J. R.; Luo, J.; Gao, J.; Bonzongo, J. C.; Barder,S. D. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem.,2008,27,1972-1978.
    14 Elgrabli, D.; Floriani, M.; Abella-Gallart, S.; Meunier, L.; Gamez, C.; Delalain, P. Rogerieux, F.; Boczkowski, J.; Lacroix, G. Biodistribution and clearance of instilled carbon nanotubes in rat lung. Part. Fibre Toxicol.,2008,5,20.
    15 Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science, 2006,311,622-627.
    16 Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J. I.; Wiesner, M. R.; Nel, A. E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett., 2006,6,1794-1807.
    17 Dick, W. A.; Tabatabai, M. A. Potential uses of soil enzymes, in:F. B. Meeting (Ed.), Soil Microbial Ecology:Applications in Agricultural and Environmental Management, Marcel Dekker, New York,1992, pp.95-127.
    18 Jimenez, M.; Horra, A. M.; Pruzzo, L.; Palma, R. M. Soil quality:a new index based on microbiological and biochemical parameters. Biol. Fertil. Soils,2002,35,302-306.
    19 Zhu, H.; Han, J.; Xiao, Q. J.; Jin, Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit.,2008,10(6),713-717.
    20 Rondeau-Mouro, C.; Defer, D.; Leboeuf, E.; Lahaye, M. Assessment of cell wall porosity in Arabidopsis thaliana by NMR spectroscopy. Int. J. Biol. Macromol.,2008,42(2),83-92.
    21 Carpita, N.; Sabularse, D.; Montezinos, D.; Delmer, D. P. Determination of the pore size of cell walls of living plant cells. Science.1979,205,4411,1144-1147.
    22 Lin, S.; Reppert, J.; Hu, Q.; Hudson, J. S.; Reid, M. L.; Ratnikova, T. A.; Rao, A. M.; Luo, H.; Ke, P. C. Uptake, Translocation, and Transmission of Carbon Nanomaterials in Rice Plants. Small,2009,5,10,1128-1132.
    23 Corredor, E.; Testillano, P. S.; Coronado, M.; Gonzalez-Melendi, P.; Fernandez-Pacheco, R.; Marquina, C.; Ricardo Ibarra, M.; de la Fuente, J. M.; Rubiales, D.; Perez-de-Luque, A.; Risueno, M. Nanoparticle penetration and transport in living pumpkin plants:In situ subcellular identification. BMC Plant Biol.,2009,9,45.
    24 Navarro, E.; Baun, A.; Behra, R.; Hartmann, N. B.; Filser, J.; Miao, A. J.; Quigg, A.; Santschi, P. H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology,2008,17,372-86.
    25 Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol., 2008,42,23,8959-8964.
    26 Serpone, N.; Dondi, D.; Albini, A. Inorganicand organic UV filters:their role and efficacy in sunscreens and sun- care products. Inorg. Chim. Acta.,2007,360,794-802.
    27 Cai, R.; Van, G.M.; Awand, P. K.; Itoh, K. Solar-driven self-cleaning coating for a painted surface. CR Chim.,2006,9,829-835.
    28 Goncalves, D.; Karl, J.; Leite, M.; Rotta, L.; Salbego, C.; Rocha, E.; Wofchuk, S.; Goncalves, C. A. High glutamate decreases S100B secretion stimulated by serum deprivation in astrocytes. Neuroreport,2002,13,12,1533-1535.
    29 Tramontina, F.; Leite, M C.; Goncalves, D.; Tramontina, A. C.; Souza, D. F.; Frizzo, J. K.; Nardin, P.; Gottfried, C.; Wofchuk, S. T.; Goncalves, C. A. High glutamate decreases S100B secretion by a mechanism dependent on the glutamate transporter. Neurochem. Res.,2006,31, 6,815-820.
    30 Ghule, K.; Ghule, A.; Chen, B. J.; L, Y. C. Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem.,2006,8,12, 1034-1041.
    31 Tam, K. H.; Djurisic, A. B.; Chan, C. M.N. Xi, Y. Y.; Tse, C. W.; Leung, Y. H.; Chan, W. K. Leung, F. C. C.; Au, D. W.T. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films,2008,516,18,6167-6174.
    32 Musarrat, J.; Saquib, Q.; Azam, A.; Naqvi, S. A. H. Zinc oxide nanoparticles-induced DNA damage in human lymphocytes. Inter. J. Nanopart.,2009,2,402-405.
    33 Yang, H.; Liu, C.; Yang, D. F.; Zhang, H. S.; Xi, Z. G. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials:the role of particle size, shape and composition. J. Appl. Toxicol.,2009,29,1,69-78.
    34 Yamamoto, O.; Komatsu, M.; Sawai, J.; Nakagawa, Z. Effect of lattice constant of zinc oxide on antibacterial characteristics. J. Mater. Sci.:Mater. Med,2004,15,8,847-851.
    35 Zhang, L. L.; Jiang, Y. H.; Ding, Y. L.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO Nanoparticles (ZnO nanofluids), J. Nanopart. Res.,2007,9,479-489.
    36 Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M. F.; Fievet, F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano. Lett.,2006,6,4,866-870.
    37 Heinlaan, M.; Ivask, A.; Blinova,I.; Dubourguier, H. C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO? to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere,2008,71,7,1308-1316.
    38 Gojova, A.; Guo, B.; Kota, R. S.; Rutledge, J. C.; Kennedy, I. M.; Barakat, A. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles:effect of particle composition. Environ. Health Perspect,2007,115,3,403-409.
    39 Brunner, T. J.; Wick, P.; Manser, P.; Spohn, P.; Grass, R. N.; Limbach, L. K.; Bruinink, A.; Stark, W. J. In vitro cytotoxicity of oxide nanoparticles:Comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol.,2006,40,4374-4381.
    40 Nair, S.; Sasidharan, A.; Divya Rani, V. V.; Menon, D.; Nair, S.; Manzoor, K.; Raina, S. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Maler. Sci. Mater. Med.,2009,20,235-241.
    41 Jiang, W.; Mashayekhi, H.; Xing, B. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut.,2009,157,5,1619-1625.
    42 Adams, L. K.; Lyon, D. Y.; McIntosh, A.; Alvarez, P. J. J. Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Sci. Technol.,2006,54,327-334.
    43 Zhu, X. S.; Zhu, L.; Chen, Y. S.; Tian, S. Y. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J. Nanopart. Res.,2009,11,1,67-75.
    44 Wiench, K.; Wohlleben, W.; Hisgen, V.; Radke, K.; Salinas, E.; Zok, S.; Landsiedel. R. Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere,2009,76,10, 1356-1365.
    45 Franklin, N. M.; Rogers, N. J.; Apte, S. C.; Batley, G. E.; Gadd, G. E.; Casey, P. S. Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata):The Importance of Particle Solubility. Environ. Sci. Technol.,2007,41,24,8484-8490.
    46 Aruoja, V.; Dubourguier, H. C.; Kasemets, K.; Kahru, A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.Sci. Total Environ.,2009,407, 4,1461-1468.
    47 Ma, H.; Bertsch, P. M.; Glenn, T. C.; Kabengi, N. J.; Williams, P. L. Toxicity of Manufactured Zinc Oxide Nanoparticles in the Nematode Caenorhabditis Elegans. Environ. Toxicol, Chem.,2009,28,6,1324-1330.
    48 Wang, H.; Wick, R. L.; Xing, B. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ. Pollut.,2009,157,4,1171-1177.
    49 Zhu, X. S.; Zhu, L; Duan, Z. H.; Qi, R. Q.; Li, Y.; Lang, Y. P. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J. Environ. Sci. Health., A,2008,43,3,278-284.
    50 Lin, D. H.; Xing, B. S. Phytotoxicity of nanoparticles:inhibition of seed germination and root growth. Environ. Pollut.,2007,150,243-250.
    51 Zheng, L.; Hong, F.; Lv S.; Liu, C. Effect of Nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res.,2004,101,1-9.
    52 Hong, F.; Zhou, J.; Liu, C.; Yang, F.; Wu, C.; Zheng, L.; Yang, P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res.,2005,104,1-11.
    53 Yang, F.; Liu, C.; Gao, F.; Su, M.; Wu, X.; Zheng, L.; Hong, F.; Yang, P. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol. Trace Elem. Res.,2007,119,77-88.
    54 Gao, F.; Liu, C.; Qu, C.; Zheng, L.; Yang, F.; Su, M.; Hong, F. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals,2008, 21,211-217.
    55 Kurepa, J.; Paunesku, T.; Vogt, S.; Arora, H.; Rabatic, B. M.; Lu, J. J.; Wanzer, M. B.; Woloschak, G. E.; Smalle, J. A. Nano Lett.,2010,10,2296-2302.
    56 Karlsson, H. L.; Gustafsson, J.; Cronholm, P.; Moller, L. Size-dependent toxicity of metal oxide particles--a comparison between nano-and micrometer size. Toxicol. Lett.,2009,188, 112-118.
    57 Ma, X. M.; Geiser-Lee, J.; Deng, Y.; Kolmakov, A. Interactions between engineered nanoparticles (ENPs) and plants:Phytotoxicity, uptake and accumulation. Sci. Total Environ., 2010,48,3053-3061.
    58 Miller, R. J.; Lenihan, H. S.; Muller, E. B. Impacts of metal oxide nanoparticles on marine phytoplankton. Environ. Sci. Technol.,2010,44,19,7329-7334.
    59 Fang, Jing.; Zhou, Y. P.; Wen, B. Effect of TiO2 nanoparticles on transport of Cu in various soils. Acta Pedolog. Sinica,2011,5,3,549-556.
    60 Franklin, N. M.; Rogers, N. J.; Apte, S. C.; Batley, G. E.; Gadd, G. E.; Casey, P. S. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata):The importance of particle solubility. Environ. Sci. Technol.,2007,41,8484-8490.
    61 Lin D. H.; Xing, B. S. Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environ. Sci. Technol.,2008,42,5580-5585.
    62杜娟,许自成,李志刚,苏永士,陈彦春,汪孝国.植物钛素营养研究进展.江西农业学报,2010,22,1,42-44.
    63鲍碧娟.植物生长的有益元素钛(Ti).磷肥与氮肥,2001,16,5,83.
    64 Pais, I. The Biological importance of Titanium. J. Plant Nutri.,1983,6,1,3-131.
    65杨奕味.对植物有益的元素钛.磷肥与复肥,1994,2,83-84.
    66 Eivazi, F.; abatabai, M. A. Factors affecting glucosidase and galactosidase activities in soils. Soil Biol. Biochem.,1990,22,891-897.
    67 Kizilkaya, R.; Bayrakli, B. Effects of N-enriched sewage sludge on soilenzyme activities. Appl. Soil Ecol.,2005,30,192-202.
    68 Madojon, E.; Burgos, P.; Lopez, R.; Cabrera, F. Soil enzymatic response to addition of heavy metals with organic residues. Biol. Fertil. Soils,2001,34,144-150.
    69 Karaca, A.; Naseby, D. C.; Lynch, J. M. Effect of cadmium contamination with sewage sludge and phosphate fertilizer amendments on enzyme activities, microbial structure and available cadmium. Biol. Fertil. Soils,2002,35,428-434.
    70 Moreno, J. L.; Garcia, C.; Hernandez, T. Toxic effect of cadmium and nickel on soil enzyme and the influence of adding sewage sludge. Eur. J. Soil Sci.,2003,54,377-386.
    71 Baatth, E. Effects of heavy metals in soilon microbial processes and populations (a review). Water, Air, Soil Pollut.,1989,47,335-379.
    72 IPCC, IPCC Fourth Assessment Report (AR4).2007, Cambridge:Cambridge University Press.
    73 Herrick, J.D. and R.B. Thomas, No photosynthetic down-regulation in sweetgum trees (Liquidambar styraciflua L.) after three years of CO2 enrichment at the Duke Forest FACE experiment. Plant Cell and Environ.,2001,24,1,53-64.
    74 Bunce. J.A., Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia,2004,140,1,1-10.
    1 Wild, S. R.; Jones, K. C. Polynuclear aromatic hydrocarbons in the United Kingdom environment:a preliminary source in inventory and budget, Environ. Pollut.,1995,88, 91-108.
    2 Jones, K. C.; Stratford, J. A.; Tidridge, P.; Waterhouse, K. S.; Johnston, A. E. Polynuclear aromatic hydrocarbons in an agricultural soil:long-term changes in profile distribution, Environ. Pollut.,1989,56,337-351.
    3 Jones, K. C.; Stratford, J, A.; Waterhouse, K. S. Organic contaminants in welsh soils: polynuclear aromatic hydrocarbons, Environ. Sci. Technol.,1989,23,540-550.
    4 Jones, K. C.; Voogt, P. D. Persistent organic pollutant (POPs):state of the science, Environ. Pollut.,1999,100:209-211.
    5 Nadal, M.; Schuhmacher, M.; Domingo, J. L. Levels of PAHs in soil and vegetation samples from Tarragona County, Environ. Pollut.,2004,132,1-11.
    6 Ayris, S.; Harrad, S. The fate and persistence of polychlorinated biphenyls in soil, Environ. Monit.,1999,1,395-401.
    7 Doick, K. J.; Klingelmann, E.; Burauel, P.; Jones, K.C.; Semple, K.T. Long-term fate of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in an agricultural soil, Environ. Sci. Technol.,2005,39,3663-3670.
    8 Johnson, D. L.; Jones, K. C.; Langdon, C. J.; Piearce, T. G.; Semple, K. T. Temporal changes in earthworm availability and extractability of polycyclic aromatic hydrocarbons in soil, Soil Biol. Biochem.,2002,34,1363-1370.
    9 Northcott, G. L.; Jones, K. C. Experimental approaches and analytical techniques for determining organic compound residues in soils and sediment, Environ. Pollut.,2000,108: 19-43.
    10 Samsoe, P. L.; Larsen, E. H.; Larsen, P. B.; Bruun, P. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils, Environ. Sci. Technol.,2002,36,3057-3063.
    11 Wennrich, L.; Popp, P.; Zeibig, M. Polycyclic aromatic hydrocarbon burden in fruit and vegetable species cultivated in allotments in an industrial area, Int. J. Environ. Anal. Chem., 2002,82,677-690.
    12 Kluska, M. Soil contamination with polycyclic aromatic hydrocarbons in the vicinity of the ring road in Siedlce City, Poli, J. Environ. Study,2003,3,309-313.
    13 Weigand, H.; Totsche, K. U.; Huwe, B.; Koel-Knabner, I. PAH mobility in contaminated industrial soils:a Markov chain approach to the spatial variability of soil properties and PAH levels, Geoderma,2001,102,371-389.
    14 Ten Hulscher, T. E. M.; Vrind, B. A.; Van der Heuvel, H.; Van der Velde, L. E.; Van Noort, P. C. M.; Beurskens, J. E. M.; Govers, H. A. J. Triphasic desorption of highly resistant chlorobenzenes, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in field contaminated sediments, Environ. Sci. Technol.,1999,33,126-132.
    15 Burauel, P.; Fuhr, F. Formation and long-term fate of nonextractable residues in outdoor lysimeter studies, Environ. Pollut.,2000,108,45-52.
    16 Fuhr, F.; Hance, R. J.; Plimmer, J. R.; Nelson J.O. (Eds.), The Lysimeter Concept: Environmental Behavior of Pesticides, American Chemical Society, Washington, DC,1998.
    17 Kubiak, R.; Fuhr, F; Mittelstaedt, W. Comparative studies on the formation of bound residues in soil in outdoor and laboratory experiments, Int. J. Environ. Anal. Chem.,1990,39, 47-57.
    18 Kubiak, R.; Fuhr, F.; Mittelstaedt, W.; Hansper, M.; Steffens, W. Transferability of lysimeter results to actual field situations, Weed Sci.,1988,36,514-518.
    19 Schroll, R.; Grundmann, S.; Dofler, U.; Ruth, B.; Munch, J. C. Lysimeter experiments to investigate the fate of chemicals in soils-comparison of five different lysimeter systems, Water Air Soil Pollut.,2008,8,209-216.
    20 Stork, A.; Witte, R.; Fuhr, F. A wind tunnel for measuring the gaseous losses of environmental chemicals from the soil/plant system under field-like conditions, Environ. Sci. Pollut. Res.,1994,1,234-245.
    21 Abbott, C. K.; Sorensen, D. L.; Sims, R. C. Use and efficiency of ethylene glycol monomethyl ether and monoethanolamine to trap volatilized [7-14C] naphthalene and 14CO2, Environ. Toxicol. Chem.,1992,11,181-185.
    22 Schroll, R.; Kuhn, S. Test system to establish mass balances for 14C-labled substances in soil-plant-atmosphere systems under field conditions, Environ. Sci. Technol.,2004,38, 1537-1544.
    23杜文超.农田系统多环芳烃环境归趋的野外lysimeter14C同位素示踪研究.硕士学位论文,南京:南京大学,2009.
    24曹璐.农田系统多环芳烃(PAHs)的迁移及其对地下水的影响研究.硕士学位论文,南京:南京大学,2010.
    25 Doick, K. J.; Klingelmann, E.; Burauel, P.; Jones, K. C.; Semple, K. T. Long-term fate of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in an agricultural soil. Environ. Sci. Technol.,2005,39,3663-3670.
    26 Jones, K.; Stratford, J.; Tidridge, P.; Waterhouse, K.; Johnston, A. Polynuclear aromatic hydrocarbons in an agricultural soil:long-term changes in profile distribution. Environ. Pollut.,1989,56,337-351.
    27 Moldrup, P.; de Jonge, L.; de Jonge, H.; Jacobsen, O. Particle-facilitated transport of prochloraz in undisturbed sandy loam soil columns. J. Environ. Qual.,1998,27,1495-1503.
    28 Richnow, H.; Eschenbach, A.; Mahro, B.; Seifert, R.; Wehrung, P.; Albrecht, P.; Michaelis, W. The use of 13C-labelled polycyclic aromatic hydrocarbons for the analysis of their transformation in soil. Chemosphere,1998,36,2211-2224.
    29 El-Farhan, Y. H.; Denovio, N. M.; Herman, J. S.; Homberger, G. M. Mobilization and transport of soil particles during infiltration experiments in an agriculture field, Shenandoah Valley, Virginia. Environ. Sci. Technol.,2000,34,3555-3559.
    30 de Jonge, L. W.; Kjaergaard, C.; Moldrup, P. Colloids and colloid-facilitated transport of contaminants in soils:an introduction. Vadose Zone J.,2004,3,321-325.
    31 Kjaergaard, C.; de Jonge, L.W.; Moldrup, P.; Schjonning, P. Water-Dispersible Colloids: Effects of Measurement Method, Clay Content, Initial Soil Matric Potential, and Wetting Rate. Vadose Zone J.,2004,3,403-412.
    32 Rousseau, M.; Di Pietro, L.; Angulo-Jaramillo, R.; Tessier, D.; Cabibel B. Preferential Transport of Soil Colloidal Particles:Physicochemical Effects on Particle Mobilization. Vadose Zone J.,2004,3,247-261.
    33 Bradford, S.A.; Torkzaban, S. Colloid transport and retention in unsaturated porous media:a review of interface-, collector-, and pore-scale processes and models. Vadose Zone J.,2008,7, 667-681.
    34 Sharma, P.; Abdou, H. M.; Flury, M. Effect of the Lower Boundary Condition and Flotation on Colloid Mobilization in Unsaturated Sandy Sediments. Vadose Zone J.,2008,7,930-940.
    35 Grolimund, D.; Borkovec, M.; Barmettler, K.; Sticher, H. Colloid facilitated transport of strongly sorbing contaminants in natural porous media:A laboratory column study. Environ. Sci. Technol.,1996,30,10,3118-3123.
    36 Saiers, J. E.; Hornberger, G. M. The role of colloidal kaolinite in the transport of cesium through laboratory sand columns. Water Resour. Res.,1996,32,33-41.
    37 Roy, S. B.; Dzombak, D. A. Chemical factors influencing colloid facilitated transport of contaminants in porous media. Environ. Sci. Technol.,1997,31,656-664.
    38 Kaplan, D. I.; Bertsch, P. M.; Adriano, P. C. Facilitated transport of contaminant metals through an acidified aquifer. Ground water,1995,33,708-717.
    39 Gamerdinger, A. P.; Kaplan, D. I. Colloid transport and deposition in water-saturated Yucca Mountain tuff as determined by ionic strength. Envirot. Sci. Technol.,2001a,35,16, 3326-3331.
    40 Gamerdinger, A. P.; Kaplan, D. I. Physical and chemical determinants of colloid transport and deposition in water-saturated Yucca Mountain tuff material. Envirot. Sci. Technol.,2001b,35, 12,2497-2504.
    41陈静,王学军,胡俊栋,陶澍,刘文新.多环芳烃(PAHs)在砂质土壤中的吸附行为.农业环境科学学报2005,24,69-73.
    42李秀华,倪进治,骆永明.土壤不同粒径组分对菲的吸附解吸行为的研究.土壤2006,38,584-590.
    43高媛,孙红文.菲在不同地质吸附剂上吸附/解吸的研究.环境化学2008,27,158-163.
    44倪进治,骆永明,张长波.长江三角洲地区土壤环境质量与修复研究Ⅲ.农业土壤不同粒径组分中菲和苯并[a]芘的分配特征.土壤学报2006,43,717-722.
    45孙大志,李绪谦,商书波,林景玉.多环芳烃菲(PHEs)在含水层砂土中的吸附行为研究.环境科学与技术2008,31,15-18.
    46张雷,焦立新,秦延文,曹伟.菲在渤海湾潮滩不同粒径沉积物上的吸附行为.环境科学与技术2011,34,24-29.
    47罗雪梅,何孟常,刘昌明.黄河三角洲地区湿地土壤对多环芳烃的吸附特征.环境化学2007,26,125-129.
    48 Fan, Z. S.; Casey, F. X.M.; Larsen, G. L.; Hakk, H. Fate and transport of 1278-TCDD, 1378-TCDD, and 1478-TCDD in soil-water systems.Sci. Total Environ.,2006,371, 323-333.
    49 Maliszewska-Kordybach B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland:preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem.,1996,11,121-127.
    50 Ren, L.; Zeiler, L. F.; Dixon, D. G. Photoinduced effects of polycyclic aromatic hydrocarbons on Brassica napus(Canola)during germination and early seedling development. Ecotoxicol. Environ. Safety,1996,33:73-80.
    52 Maliszewska, K. B.; Smreczak, B. Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons(PAHs):Effect on plants. Environ. Technol.,2000,21,1099-1110.
    53 Alkio, M.; Tabuchil, T. M.; Wang, X. C., Colon-Carmona A. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J. Experi Botany,2005,56,2983-2994.
    54 Doick, K. J.; Klingelmann, E.; Burauel, P.; Jones, K. C.; Semple, K. T. Long-term fate of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in an agricultural soil. Environ. Sci. Technol.,2005,39,3663-3670.
    55 Jones, K.; Stratford, J.; Tidridge, P.; Waterhouse, K.; Johnston, A. Polynuclear aromatic hydrocarbons in an agricultural soil:long-term changes in profile distribution. Environ. Pollut.,1989,56,337-351.
    56 Baran, S.; Bielinska, J. E.; Oleszczuk, P. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons, Geoderma,2004,118,221-232.
    57陈继红,韩志勇,王瑛,李秀芳.不同水化学作用对颗粒释放影响的理论研究.水处理技术,2008,43-46.
    58 Ryan, J. N.; Gschwend, P. M. Effects of ionic strength and flow rate on colloid release: Relating kinetics to intersurface potential energy. J. colloid Inter. sci.,1994,164,21-21.
    59 Means, J. Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons. Marine Chem.,1995,51,3-16.
    60 Sauve, S.; Hendershot, W.; Allen, H. E. Solid-solution partitioning of metals in contaminated soils:dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol.,2000, 34,1125-1131.
    61 Turner, A. Salting out of chemicals in estuaries:implications for contaminant partitioning and modelling. Sci. Total Environ.,2003,314,599-612.
    62孙大志,李绪谦,商书波,林景玉.多环芳烃菲(PHEs)在含水层砂土中的吸附行为研究.环境科学与技术,2008,31,15-18.
    63 Raber, B.; Kogel-Knabner, I.; Stein, C.; Klem, D. Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere.,1998,36, 79-97.
    64陈继红,韩志勇,王瑛,李秀芳.不同水化学作用对颗粒释放影响的理论研究.水处理技术2008,43-46.
    65 Shen, C.; Li, B.; Huang, Y.; Jin, Y. Kinetics of coupled primary-and secondary-minimum deposition of colloids under unfavorable chemical conditions. Environ. Sci. Technol.,2007, 41,6976-6982.
    66 Means, J. Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons. Marine Chem.,1995,51,3-16.
    67 Hirner, A.; Pestke, F.; Busche, U.; Eckelhoff, A. Testing contaminant mobility in soils and waste materials. J. Geochem. Explor.,1998,64,127-132.
    68 Mulder, E.; Brouwer, J.; Blaakmeer, J.; Frenay, J. Immobilisation of PAH in waste materials. Waste Manage.,2001,21,247-253.
    69 Raber, B.; Kogel-Knabner, I.; Stein, C.; Klem, D. Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere,1998,36,79-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700