农田养分信息化管理模式研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田养分的信息化管理是农业信息化的重要组成部分,但我国土壤养分的信息化管理水平和施肥技术与发达国家比存在很大差距,研究适合我国国情的精准养分管理模式和施肥技术是摆在农业科学工作者面前的重大技术问题,而快速发展的信息技术为土壤养分的信息化管理提供了机遇。本文应用现代先进的信息技术和农学研究相结合的方法,在山西省选择了代表两种主要种植制度和两个主要土壤类型的临汾市南麻村(南部试点)和忻州市二十里铺村(北部试点)作为研究区域,对施肥状况、土壤养分状况、养分空间变异及空间分布格局进行了分析,对主要种植作物的需肥参数进行了研究,并对GIS和施肥模型有机集成的农田养分信息管理系统进行了研发和应用,取得了以下主要结果与新的进展:
     1 南北两试点的农户调查结果显示:1) 南部试点地块管理单元相对较大,地块面积平均为0.244±0.212公顷,但种植结构复杂,粮、菜、油、果树均有种植;北部试点种植结构单一,主要为玉米,但地块管理单元相对较小,地块面积平均为0.107±0.050公顷;2) 氮磷肥施用比例失调,钾肥和微肥的施用量很少,施肥存在很大程度的盲目性。两试点氮肥施用水平相差不大,北部试点(199.8kg N/hm~2)略大于南部试点(182.0kg N/hm~2),南部试点施氮量的变异(49.6%)稍大于北部试点(43.1%);磷肥施用量南部试点(143.7kg P_2O_5/hm~2)大于北部试点(120.6kg P_2O_5/hm~2),但南部试点施磷量变异(43.2%)远低于北部试点(69.7%);氮磷肥配合施用比例表现为南部(0.87)高于北部试点(0.81)。两试点种植制度、种植结构、施肥量和施肥结构及农民的施肥决策素质等存在的差异将对土壤养分状况及空间变异产生影响。
     2 两试点调查的土壤性质均存在一定的变幅,其分布并不都呈正态分布,一些性质则呈对数正态分布。南部试点土壤性质呈对数正态分布的包括OM、K、Cu、Zn,北部试点土壤性质呈对数正态分布的有OM、P、Cu、Mn、Zn。通过对两试点土壤养分状况的分析,结果显示:南部试点的土壤有机质(OM)和土壤有效N、P、K、Mg、Cu、Mn、Zn等养分含量的平均值明显高于北部试点;而北部试点的土壤有效Ca、S、B、Fe养分,高于南部试点。这与不同种植制度、不同土壤类型和质地及施肥管理措施有关。应用土壤养分系统研究法进行养分状况评价和高产限制因素分析,确定了南北两试点的养分管理的因子。南部试点以氮、磷、钾、锌作为养分管理因子,北部试点确定氮、磷、钾、锌、锰作为养分管理因子。
     3 两试点土壤性质均存在空间变异,土壤性质变异和半方差结构既有共性,又表现出具有特殊性。研究结果显示:1) 受农业施肥投入等影响相对较大N、P、S和OM有较大的变异,尤其以N的变异较大;而Ca、Mg、K、Cu、Fe、Mn等养分,因农业施肥投入较少,土壤变异则表现相对较小;2) 两试点土壤养分性质拟合的半方差模型包括球型、线型和指数型,但同一养分拟合半方差模型显示不一,有的表现一致,有的则表现不一致。就拟合模型而言,两试点表现一致的,如Mg、P、S、Cu,均属于线性无基台模型;同属于指数模型的有K、Fe。但即使模型一致,最大相关距离也不一定一样,而且空间变异性强弱程度也不尽相同。两试点Ca、N、Mn均显示有较强的空间相关性,K、P、S显示具有中等的空间变异性,其它土壤性质呈现出半方差结构的不一致性。这可能是两试点气候条件、种植制度、土壤类型及质地和施肥管理制度等因素的差异造成的。
     4 本研究应用GIS平台的Kriging插值技术绘制了两试点的土壤养分等值线图,可以直观反映出
Soil nutrient management with information technology is an important part of information agriculture. Compared with developed countries, China is far behind in terms of information technology use in soil nutrient management. Development of different approaches to meet the needs of site-specific nutrient management for the small scale operation under family responsibility system in China, is a great challenge in China. Rapid development of information technology provides an opportunity to improve soil nutrient management by using the advanced information technology. In this study, two villages (Ershilipu of Xinzhou city (northern experimental site) and Nanma of Linfen city (southern experimental site)) were selected as two experimental sites to represent the two major cropping systems and two major soil types in Shanxi province. The research objective are 1) to establish a spatial database to document and analyze soil nutrient status and its distribution; 2) to develop a management system for site-specific soil nutrient management in the selected sites under the family responsibility system; 3)to validate the applicability and effectiveness of the developed soil nutrient management system. Main results and new progress were summarized as following:1, Basic information and result of farmers fertilizer use surveyThere are significant differences between the two experimental sites in cropping system, cropping pattern, the rate of fertilizer applied as well as farmer's decision-making. Nitrogen and phosphate fertilizers were commonly applied in two experimental sites, potassium and micro-nutrient fertilizer was not commonly used, and the ratio of nitrogen and phosphate fertilizers applied was irrational. There is no scientific basis for farmer's fertilizer decision-making. As far as average rate of applied fertilizer was concerned, the difference of nitrogen fertilizer applied was not obvious between the two experimental sites. Average N application rate at the northern site (199.8kg N/ha) was slightly higher than that at southern site (182.0kg N/ha), but the variation of N application rates at southern site (49.6% ) was slightly greater than that at the northern site (43.1%); The rate of phosphate fertilizer applied at southern site (143.7kg P_2O_5/ha) was higher than that at the northern site (120.6kg P_2O_5/ha), but the variation in P_2O_5 application rates at the southern site (43.2%) was less than that at the northern site (69.7%). The ratio of N and P_2O_5 applied at the southern site slightly higher than that at the northern site.The average farmer's cultivated area and plot numbers managed were different in two experimental villages. The statistic results of farmer's land showed that average plot area of southern site was relative bigger than that at the northern site. The average plot area of southern site was 0.244±0.212 ha, and 0.107±0.050 ha at the northern site. But crop structure was relative complex at the southern site, some crops such as grain, vegetable, oil and cash crops were planted. Crop structure was relatively
    simple for northern site, maize was main crop, but management unit was relative small. The results showed that there exist great difficulties in soil nutrient management at these villages with small scale operation. It would be helpful to understand profoundly farmer's fertilization status and soil nutrient status through mapping farmer's plot managed with information technology.2. Evaluation of soil nutrient statusAvailable nutrient contents of surface soil samples from two experimental villages were determined using the systematic approaches for soil nutrient evaluation. The results showed that soil properties of two experimental villages varied greatly and did not always belong to normal distribution, and some soil properties belonged to log-normal distribution. Soil organic matter, soil available K, Cu and Zn belonged to log-normal distribution at the southern experimental site, and OM, P, Cu, Mn, Zn at the northern experimental village. The results also indicated that the average content of soil organic matter and soil available N (NH4+-N), P, K, Mg, Cu, Mn, and Zn in the southern experimental village were higher than those in northern experimental village. But available Ca, S, B and Fe, were higher in the northern experimental village than those in the southern experimental village. These results were related to cropping system, soil type, soil texture, as well as fertilization practice. Based on soil nutrient status evaluation and higher yield limited factor analysis, nutrient factors managed were determined in two experimental villages. Soil available N, P, K and Zn were main nutrient management factors for southern site, and N, P, K, Zn and Mn for northern experimental village.3. Soil nutrient spatial variabilityThere existed spatial variability of soil properties in the two experimental villages. Nitrogen, P and OM had a greater variability, which were mainly affected by agricultural fertilization measures. On the contrary, Ca, Mg, K, Cu, Fe and Mn had a smaller spatial variability due to little input as fertilizer. Soil properties all had semi-variance structure, and model best fit included spherical, linear and exponential. Semi-variance model was not always consistent for one nutrient. Some soil properties had same semi-variance model at the two experimental sites, for example, Mg, P, S, and Cu belonged to linear model; K, Fe belonged to exponential model. Though some nutrients had same model, there still existed a difference in the limit distance of spatial correlation as well as the extent of soil spatial variability. In two experimental villages, there existed stronger spatial correlation for Ca, N and Mn, medium spatial correlation for K, P, and S. The semi-variance structure of other properties was not consistent. These indicated that there existed some difference in cropping system, soil type, soil texture and fertilization.4. Soil nutrient spatial distribution
    Soil nutrient contour map was made using Kriging interpolation technique for soil properties in the two experimental villages. The contour map of soil properties may directly reflect the spatial distribution characteristic of diversified soil nutrient element; also help to understand the nutrient status to provide the foundation to rational fertilization. The integrated map was conducted with overlaying the nutrient contour map and farmer's plot map to understand soil nutrient status of each farmer's plot. With that site-specific nutrient management based on farmer's plot or fanners' plot specific nutrient management, can be realized with advanced information technology.5 Study on fertilization parameters of main cropsRational parameters for fertilizer recommendation were important for site-specific nutrient management. A series of fertilizer experiments were conducted to fulfill this purpose based on understanding soil nutrient status, soil nutrient spatial variability and soil nutrient spatial distribution of two experimental villages. The rational and economic rates of fertilizer applied were obtained for main crops of the two experimental villages, including winter wheat, summer maize, soybean, sunflower, spring maize and so on. At same time, the fertilizer contribution to grain yield of crops and fertilizer use efficiency was studied. Main results were summarized as following: 1) Applying only of N and P fertilizer on winter wheat would lead to the depletion of soil potassium, and soil potassium was depleted by 99.7kg K/ha annually. Applying K fertilizer (150kg K2O/ha) and straw return to soil would help to increase wheat yield by 19.8%. At the same time, soil potassium fertility was maintained. 2) Applying all kinds of fertilizer required, especially potassium on diversified crops helped increasing yield by 17.1%~25.7%, and increasing net return by 3974-9904 yuan/ha in southern experimental site. At same time, the uptake for N, P and K were increased to help to improve nutrient use efficiency due to balanced fertilization. 3) The relation between spring maize yield or net return and different rates of N, P, and K fertilizer applied were best fit quadratic equation in northern experimental village. For maximum yield, the rates of N, P and K fertilizer applied was 206~225kg N/ha, 150kg P2O5/ha and 200kg K2O/ha, respectively. 4) The contribution of N, P and K fertilizer applied to crop yield affected by soil fertility level. The contribution ratio of N, P and K fertilizer were relative higher under middle and low yield condition than that under high yield level. 5) The contribution of soil N, P and K nutrient to crop yield decreased year after year, and N, P, K fertilizer use efficiency had an increasing tendency under the condition of continuously treatment of no N, P and K application.These results above provided reliable parameters for fertilization model based on GIS, provided technical guarantee to fulfill site-specific nutrient management, and further provided important foundation for balanced fertilization, which based on management unit of farmer's field.6 Establishing soil nutrient management system based on integrating fertilization model and GISSoil nutrient management information system was established and exploited based on GIS with the first
引文
1.《全国推荐(配方)施肥学术讨论会》纪要,土壤,1990,22 (2):57-59。
    2.白大鹏,陈明昌,王宏庭等,山西主要土壤状况的系统研究。见:中国农业科学院土壤肥料研究所,加拿大钾磷研究所北京办事处编,土壤养分状况系统研究法学术讨论会论文集,北京:中国农业出版社,1995:155-165。
    3.白由路,金继运,杨俐苹,不同尺度的土壤养分变异特征与管理,见:金继运,白由路主编,精准农业与土壤管理,北京:中国大地出版社,2001,P51~59。
    4.白由路,金继运,杨俐苹,何萍,农田土壤养分变异与施肥推荐,见:金继运,白由路主编,精准农业与土壤管理,北京:中国大地出版社,2001,P69~75。
    5.白由路,金继运,杨俐苹,梁鸣早,基于GIS的土壤养分分区管理模型研究,中国农业科学,2001,34 (1):46~50。
    6.曹志洪,科学施肥与我国粮食安全保障,土壤,1998,(2):57~63。
    7.陈新平,李志宏,王兴仁和张福锁,1999.土壤、植株快速测试推荐施肥技术体系的建立与应用,土壤肥料,(2):6~10
    8.符建荣,詹长庚,姜丽娜,1992:土壤作物养分障碍因子的系统诊断研究。浙江农业学报,4 (1):31-37。
    9.郭旭东,傅伯杰,陈利顶,河北省遵化平原土壤养分的时空变异特征——变异函数与Kriging插值分析,地理学报,2000,55(5):555~566。
    10.郭裕怀,刘贯文主编,山西农书,太原:山西经济出版社,1992。
    11.贺红土,侯彦林,1991,区域微机土壤信息系统的建立与应用,土壤学报,第28卷第4期345-354。
    12.赫晓慧,常庆瑞,高亚军,贾科利,基于3S技术的土地资源动态监测系统设计与建立,水土保持通报,2002,22 (6):52-55。
    13.侯彦林,陈守伦,施肥模型研究综述,土壤通报,2004,35 (4):493-499。
    14.胡克林,李保国,林启美,李贵铜和陈德立,农田土壤养分的空间变异性特征,农业工程学报,1999.15 (3):33~38
    15.黄德明,土壤测试推荐施肥技术中几个问题的探讨.土壤肥料,1990.(2):11~13。
    16.黄绍文,金继运,杨俐苹,程明芳,县级区域粮田土壤养分空间变异与区管理技术研究,土壤学报 2003,40 (1):79-88。
    17.黄绍文,金继运,杨俐苹等,乡镇级土壤养分空间变异与分区管理技术研究,见:金继运,白由路主编,精准农业与土壤管理,北京:中国大地出版社,,2001,P248~259。
    18.姜城,不同经营体制下土壤养分空间变异规律及管理技术研究,中国农业科学院研究生院博士学位论文,北京,2000。
    19.姜城,杨俐苹,金继运,土壤速效养分空间变异特征及评价,见:金继运,白由路主编,精准农业与土壤管理,中国大地出版社,北京,2001,P93~99。
    20.解红娥、赵海祯、李燕娥等,棉花钾肥肥效研究初报,山西农业大学学报,1995,增刊:18-20。
    21.金继运,土壤养分状况系统研究法及其应用初报.土壤学报,1995,32 (1):84~90。
    22.金继运,土壤养分状况系统研究法及其在我国的初步应用,见:加拿大钾磷研究所北京办事处主编,土壤养分状况系统研究法,北京:中国农业科技出版社,1992.
    23.金继运,张宁,粱鸣早,吴荣贵和Sam Portch,土壤养分状况系统研究法在土壤肥力研究及测土施肥中的应用.植物营养与肥料学报,1996,2 (1):8~15
    24.金继运,“精确农业”及其在我国的应用前景.植物营养与肥料学报,1998,4(1):1~7
    25.金耀青,1989.配方施肥的方法及其功能----对我国配方施肥工作的述评.土壤通报,(1):46~48
    26.景海春,周艺敏,王正祥等,天津主要土壤养分状况的系统研究。见:中国农业科学院土壤肥料研究所,加拿大钾磷研究所北京办事处编,土壤养分状况系统研究法学术讨论会论文集,北京:中国农业出版社,1995:74-81。
    27.雷咏雯,危常州,李俊华,侯振安,冶军,鲍柏杨,不同尺度下土壤养分年空间变异特征的研究,土壤,2004,36 (4):376-381。
    28.雷志栋和杨诗秀,1985.土壤特性空间变异性初步研究.水利学报,(9):10~21
    29.李比希,化学在农业及生理学上的应用(1840年)。刘更另译。1983年第一版,农业出版社
    30.李家康,林葆,梁国庆,沈桂芹,对我国化肥使用前景的剖析,迈向21世纪的土壤科学(中国土壤学会第九次全国会员代表大会),中国农业出版社,北京,2002,P1-15。
    31.李菊梅和李生秀,几种营养元素在土壤中的空间变异.干旱地区农业研究,1998,16 (2):58~64
    32.李世清;高亚军;李生秀,土壤养分的空间变异性及确定样本容量的研究,土壤与环境,2000,9(1),56~59.
    33.李天宏,孙炎鑫,薛安,土壤施肥模型与GIS集成的应用研究,土壤学报,2003,40 (6):960-962。
    34.梁春祥和姚贤良,华中丘陵红壤物理性质空间变异性的研究.土壤学报,1993.30 (1):69~78
    35.梁红霞,马友华,王强,刘晓莉,安徽土壤肥料信息系统中施肥决策的研究,土壤通报,2005,36 (1) 54-57。
    36.刘荣乐,我国七省(区)农作物施肥结构及施肥效果研究,中国农业大学博士学位论文,北京,2001。
    37.卢纹岱、朱一力、沙捷、朱红兵编著,SPSS for Windows从入门到精通,北京:电子工业出版社,1997。
    38.鲁如坤,刘鸿翔,闻大中,钦绳武,郑剑英和王周琼,我国典型地区农业生态系统养分循环和平衡研究 Ⅲ.全国和典型地区养分循环和平衡现状.土壤通报,1996.27 (5):193~196
    39.鲁如坤,推荐施肥法和复合肥配方,土壤,1992,24 (4):176~180。
    40.吕殿青,1999.平衡施肥科学体系的研究进展与今后展望,见李生秀主编,土壤-植物营养研究文集.陕西科学技术出版社,pp44~56
    41.吕殿青,西北地区推荐施肥技术体系的研究和应用,土壤,1990,22 (4):201-204。
    42.毛达如和张承东,推荐施肥技术中施肥模型与实验设计研究.土壤通报,1991,22 (5):216~218
    43.聂艳,周勇,田有国,任意,汪善勤,基于3S的土壤肥料专家系统研究,土壤,2003,35(4):339-343。
    44.农牧渔业部农业局,配方施肥技术工作要点.土壤肥料,1987.(1):6~12。
    45.潘剑君,靳婷婷,孙维侠,江西省余江县土壤信息系统建造研究,土壤学报,1999,第36卷第4期;522-527。
    46.山西省测绘局编,山西省地图册,1994。
    47.山西省统计局编,山西统计年鉴,北京:中国统计出版社,2003。
    48.山西省土壤普查办公室、山西省土壤工作站,山西土壤,刘耀宗、张经元主编,北京:科学出版社,1992。
    49.沈汉,土壤养分图的编制方法,土壤肥料,1982,(5):21-22。
    50.沈善敏,中国土壤肥力.中国农业出版社,1998,pp89~105;pp474~479
    51.盛建东,蒋平安,文启凯,武红旗,杨玉玲,李荣,基于GIS的区域土壤养分管理与作物推荐施肥信息系统研究,土壤,2002,第2期:77-81。
    52.施建平,鲁如坤,王德建,基于WEB的施肥决策支持数据库的设计与建立,土壤,1999,31 (6):299-303。
    53.王爱平,解金瑞,张藕珠,山西肥料施用现状及发展前景,见:陈震等主编,土壤资源环境研究,北京:中国农业出版社,1997。
    54.王宏庭,白大鹏,1997:栗褐土养分状况的系统研究。见:陈震等主编,土壤资源环境研究,北京:中国农业科技出版社,131-134。
    55.王宏庭,胡全才,金继运,刘荣乐,土壤供钾能力及植物有效性研究,见:中国土壤学会青年工作委员会和中国植物营养与肥料学会青年工作委员会编,青年学者论土壤与植物营养科学,中国农业科技出版社,北京,2001。
    56.王宏庭,金继运,刘荣乐,山西省几种典型土壤供钾能力评价,植物营养与肥料学报,2002,8 (2):144-151。
    57.王宏庭,金继运,王斌等,土壤速效养分空间变异研究,植物营养与肥料学报,2004,10 (4):349-354。
    58.王宏庭,山西几种典型土壤供钾能力及植物有效性研究,中国农科院研究生院硕士论文,北京,2000。
    59.王宏庭、胡全才、王斌等,忻州地区玉米施钾效果初报,山西农业科学,2003,31 (1):22-25。
    60.王宏庭、王斌、卢朝东等,应用地理信息系统研究土壤养分变异,山西农业科学,2003,31(4):40-43。
    61.王坷、许红卫、史舟,土壤钾素空间变异性和空间插值方法的比较研究,植物营养与肥料学报,2000,6(3),318~322,344。
    62.王人潮主编,农业资源信息系统,北京:中国农业出版社,2000。
    63.王兴仁、陈新平、张福锁、毛达如,施肥模型在我国推荐施肥中的应用,植物营养与肥料学报,1998,4 (1):67~74。
    64.王学锋和章衡,1995.土壤有机质的空间变异性.土壤,27 (2):85~89
    65.王艳,米国华,张福锁,玉米根系形态对光照、氮水平反应的基因型差异,见:中国土壤学会青年工作委员会和中国植物营养与肥料学会青年工作委员会编,青年学者论土壤与植物营 养科学,北京,中国农业科技出版社,2001。
    66.王政权编著,地质统计学及在生态学中的应用.北京:科学出版社,1999.
    67.危常州,侯振安,雷咏雯,朱和明,张福锁,鲍柏杨,郭琛,王桂花,不同地理尺度下综合施肥模型的建模与验证,植物营养与肥料学报,2005,11 (1):13-20。
    68.吴俊兰、王艳,科学施肥是农业持续发展的重要保证,迈向21世纪的土壤科学(中国土壤学会第九次全国会员代表大会),中国农业出版社,北京,2002,P50-52。
    69.徐吉炎和 R.Webster,土壤调查数据地域统计的最佳估值研究----彰武县表层土 全氮量的半方差图和块状Krihing估值.土壤学报,1983.20 (4):419~430
    70.杨俐苹,姜城,金继运和张峰民,棉田土壤养分精准管理初探.中国农业科学,2000,33(6):67~72
    71.杨俐苹,金继运,梁鸣早,ASI法测定土壤有效P、K、Zn、Cu、Mn与我国常规化学方法的相关性研究,土壤通报,2000,31(6),277~279。
    72.杨俐苹,评价区域性土壤肥力的取样技术的回顾与展望,土壤肥料,2000,1:3-8。
    73.杨联安,史舟,王人潮,陈铭臻,红壤资源信息系统的研制及其初步应用,土壤学报,1999,第36卷第1期:25-29。
    74.杨卓亚、毛达如、曹一平,综合推荐施肥系统(IFRS)的构建,土壤,1994,26 (5):264-268。
    75.于东升和史学正,GIS中土壤信息系统的研究进展.土壤学进展,1993,21 (6):26~31。
    76.原立峰,谢永生,黄土高原土地信息系统数据库的建设,土壤,2004,36 (3):333~336。
    77.张炳宁,施定,高远林,计算机管理的土壤肥料信息系统的建立与应用,土壤肥料,1990,第5期:45-47。
    78.张福锁,马文奇,肥料投入水平与养分资源高效利用的关系,土壤与环境,2000,9 (2):154-157。
    79.张宽,王秀芳,吴巍等,土壤养分状况系统研究法在吉林春玉米科学施肥中的应用。见:中国农业科学院土壤肥料研究所,加拿大钾磷研究所北京办事处编,土壤养分状况系统研究法学术讨论会论文集,北京:中国农业出版社,1995:114-120。
    80.张明普,张洪源,厉志华和蒋仁成,土壤肥力对农业高产稳产的影响,土壤,1994,26 (3):122-123
    81.张维理,梁鸣早,卢昌艾等,中国土壤肥料信息系统及其在养分资源管理上的应用,见:金继运,自由路主编,精准农业与土壤管理,北京:中国大地出版社,2001。
    82.张维理,梁鸣早,农业信息技术在我国的发展前景和机遇,土壤肥料,1998,(3):3-6。
    83.张有山,林启美,秦耀东和李保国,大比例尺区域土壤养分空间变异定量分析.华北农学报,1998.,13 (1):122~128
    84.赵其国,现代土壤学与农业持续发展,土壤学报,1996,33 (1):1-12。
    85.赵其国,叶方,信息化与农业现代化,土壤学报,2004,41) 3):449~455。
    86.郑学坚,遥感技术在工业工程中的应用。北京:清华大学出版社,1997。
    87.中国科学院土壤研究所,土壤理化分析,上海:上海科学技术出版社,1978。
    88.中国农业科学院土壤肥料研究所主编,中国肥料,上海:上海科学技术出版社,1994。
    89.周慧珍,龚子同和Lamp J,土壤空间变异性研究.土壤学报,1996,33 (3):232~241。
    90.周鸣铮(译),Cope JT and Rouse RD(原著),《土壤测定与植物分析》北京科学出版社,1982.
    91.朱安宁,张佳宝,张玉铭,信秀丽,潮褐土土壤养分的空间分布特征,土壤通报,2004,35(2):97-101。
    92.朱留华,实施配方施肥技术中值得注意的几个问题.土壤肥料,1990,(5):1~3
    93.朱兆良,合理使用化肥、充分利用有机肥料,发展环境友好的施肥体系,中国科学院刊,2003,18 (2):89~91。
    94. Atherton, B. C., M. T. Morgan, S. A. Shearere, T. S. Stombawgh, and A. D. Ward.. Site-specific farming: A perspective on information needs, benefits, and limitations. J. Soil Water Conserv. 1999, 54(2):455—461.
    95. Bacon, S. C., L. E. Lanyon, and R. M. Schlander, Jr. Plant nutrient flow in the managed pathways of an intensive dairy farm. Agron. J. 1990., 82:755-761.
    96. Ball DF and Williams WM, Variability of soil chemical properties in two uncultivated brown earth. J. Soil Sci. 1968. 19:379~391
    97. Beckett PHT and Webster R, Soil variability: A review. Soils and Fertilizers, 1971. 34:1~15
    98. Beckie, H. J., A. P. Moulin, and D. J. Pennock. Strategies for variable rate nitrogen fertilization in hummocky terrain. Can. J. Soil Sci. 1997. 77:589-595
    99. Berndtsson Ronny and Akissa Bahri, Field variability of element concentrations in wheat and soil, Soil science, 1995, 159(5): 311-320.
    100. Bhatti AU, Mulla DJ and Frasier BE, Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images. Remote Sens. Environ. 1991. 37: 181~191
    101. Blackmore B S, Wheeler P N, Morris R M, et al. The Role of Precision Farming in Sustainable Agriculture; A European Perspective. Presented at the 2nd International Conference on Site-Specific Management for Agriculture Systems, Minneapolis USA. March, 1994.
    102. Blackmore BS, An Information System for Precision Farming. Presented at the Brighton Conference Pests and Diseases, British Crop Protection Council, November, 1996:18~21.
    103. Blackmore BS, Precision farming: An introduction. Outlook on Agriculture, CABI, 1994, 23(4): 275~280.
    104. Borges R and Mallarino AP, Field-scale variability of phosphorus and potassium uptake by no-till corn and soybean. Soil Sci. Soc. Am. J. 1997, 61:846~853
    105. Bouma J and Finke PA, Origin and nature of soil resource variability. Robert PC, Rust RH and Larson WE, (Eds), Soil Specific Crop Management, Madison, Wisconsin, ASA, CSSA, SSSA, 1993. pp3~14
    106. Bouma J., J. Stoorvogel, B. J. van Alphen and H. W. G. Booltink, Pedology, Precision Agriculture, and the Changing Paradigm of Agricultural Research, Soil Science Society of America Journal 1999, 63:1763-1768
    107. Boyer DG, Wright RJ, Feldhake CM and Bligh DP, Soil spatial variability in steeply sloping acid soil environment. Soil Sci. 1996. 161:278~287
    108. Braum, S. M., P. Hinds, G. L. Maltzer, J. Bell, D. Mulla, and P. C. Robert. Terrain attributes and soil nitrogen: Spatial effects on corn grain yield responses to nitrogen fertilization for a northern, glaciated landscape. In P. C. Robert et al. (ed.) Proc. Int. Precision Ag. Conf., 4th, Minneapolis, MN. 19-22 June 1998. ASA, CSSA, and SSSA, Madison, WI. 1998.
    109. Brejda JJ, Thomas B. Moorman, Jeffrey L. Smith, Douglas L. Karlen, Deborah L. Allan and Thanh H. Dao, Distribution and Variability of Surface Soil Properties at a Regional Scale, Soil Science Society of America Journal 2000, 64:974-982
    110. Bruce, R. R., A. W. White, A. W. Thomas, W. M. Snyder, and G. W. Langdale. Soil variables and interactions affecting prediction of crop yield pattern. Soil Sci. Am. J. 1990, 54(2):494-501.
    111. Bullock, D. G, D. S. Bullock, E. D. Nafzinger, T. A. Doerge, S. R. Paskiewicz, P. R. Carter, and T. A. Peterson. Does variable rate seeding of corn pay? Agron. J. 1998, 90:830-836.
    112. Bullock, D. S., and D. G. Bullock. Economic optimality of input application rates in precision fanning. Precis. Agric. 2000, 2:71-101
    113. Burgess TM and Webster R, Optimal interpolation and isarithmic mapping of soil properties. Ⅰ. The semivariogram and punctual kriging. Journal of Soil Science. 1980a. 31:315~331
    114. Burgess TM and Webster R, Optimal interpolation and isarithmic mapping of soil properties. Ⅱ. Block kriging. Journal of Soil Science. 1980b. 31:333~341
    115. Burgess TM and Webster R, Optimal sampling strategies for mapping soiltypies. Ⅰ. Distribution of boundary spacings. J. Soil Sci. 1984. 35:641~654
    116. Burgess TM, Webster R and McBratuey AB, Optimal interpolation and isarithmic mapping of soil properties. Ⅳ. Sampling Strategy. Journal of Soil Science. 1981. 32:643~659
    117. Burrough PA, Multiscale sources of spatial variation in soil Ⅰ. The application of fractal concepts to nested levels of soil variation. J. Soil Sci. 1983a. 34:577~597
    118. Burrough PA, Multiscale sources of spatial variation in soil Ⅱ. A non-Brownian fractal model and its application in soil survey. J. Soil Sci. 1983b. 34:599~560
    119. Burrough, P. A. Environmental modeling with geographical information systems. In A. Stein, et al. (ed.) Models in action. Proc. Seminar Ser., Quantitative Approaches in Systems Analysis. DLO Res. Inst. for Agrobiology and Soil Fertility and C. T. de Wit Graduate School for Production Ecology, Wageningen, Netherlands. 6. June 1996. p. 59-69.
    120. Cahn MD, Hummel JW and Brouer BH, Spatial analysis of soil fertility for site-specific crop management. Soil Sci. Soc. Am. J. 1994. 58: 1240~1248。
    121. Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF and Konopka AE, Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994. 58: 1501~1511
    122. Campbell JB, Spatial variation of sand content and pH within single contiguous delineation of two soil mapping units. Soil Sci. Am. J. 1978. 42:460~464
    123. Campbell W. G, Church M. R., Bishop G. D., Mortenson D. C., Pierson S. M. The role for a geographical information system in a large environmental project. Int. J. Geogr. Inf. Syst. 1989; 3(4):349-362.
    124. Campbell W. G, Church M. R., Bishop G. D., Mortenson D. C., Pierson S. M. The role for a geographical information system in a large environmental project. Int. J. Geogr. Inf. Syst. 1989; 3(4):349-362.
    125. Carr, P. M., G. R. Carlson, J. S. Jacobsen, G. A. Nielsen, and E. O. Skogley. Farming soil, not fields: A strategy for increasing fertilizer profitability. J. Prod. Agric. 1991. 4:57-61.
    126. Cattle SR, Koppi AJ and McBratney AB, The effect of cultivation on the properties of a rhodoxeralf from the wheat/sheep belt of New South Wales. Geoderma, 1994. 63:215~225。
    127. Corwin D. L., S. M. Lesch, P. J. Shouse, R. Soppe and J. E. Ayars, Identifying Soil Properties that Influence Cotton Yield Using Soil Sampling Directed by Apparent Soil Electrical Conductivity, Agronomy Journal, 2003, 95:352-364
    128. Cox M. S., Gerard P. D., Wardlaw M. C. and Abshire M. J., Variability of Selected Soil Properties and Their Relationships with Soybean Yield, Soil Science Society of America Journal 2003, 67:1296-1302
    129. Dahiya IS, Anluf R, Kersebaum KC and Richter J, Spatial variability of some nutrient constituents of an Alfisol from loess. Ⅱ. Geostatistical analysis. Z. Pflanzenermaehr. Bodenkd. 1985. 148: 268~277.
    130. Di HJ, Trangrnar BB and Kemp RA, Use of geostatistics in designing sampling strategies for soil survey. Soil Sci. Soc. Am. J. 1989. 53:1163~1167
    131. Dobermann A, Sta-Cruz PC and Cassman KG, Fertilizer inputs, nutrient balance and soil nutrient supplying power in intensive, irrigated rice systems. Ⅰ. Potassium uptake and K balance. Nutrient Cycling in Agroecosystems (Netherlands). 1996. 46(1): 1~10
    132. Dowedle S and Portch S, 1988: A systematic approach for deterring soil nutrient constrains and establishing balanced fertilizer recommendations for sustained high yields. Proceeding of the International symposium on Balanced Fertilization. November 8-12, Beijing, China, 243-251.
    133. Drees LR and Wilding LP, Elemental variability within a sampling unit. Soil Sci. Soc. Am. Proc. 1973. 37:82~87
    134. Earl R, Wheeler PN, Blackmore BS and Godwin RJ, Precision farming: the management of variability. Landwards, 1996. 51(4): 18~23
    135. Edmonds W. J., Lentner M. Soil series differentiae selected by discriminant analysis based on ranks. Soil Sci. Soc. Am. J. 1987; 51:716-721.
    136. Edmonds W. J., Rector D. D., Wilson N. O., Arnold T. L. Evaluation of relationships between oak site indices and properties of selected Dystrochrepts. Soil Sci. Soc. Am. J. 1988; 52:204-209.
    137. Eghball B, Schepers, J S. Negahban M and Schlemmer M R. Spatial and Temporal Variability of Soil Nitrate and Corn Yield Multifractal Analysis Agronomy Journal 2003, 95:339-346
    138. Eghball, B., and G. E. Varvel. Fractal analysis of temporal yield variability of crop sequences: Implications for site-specific management. Agron. J. 1997. 89:851-855.
    139. Fisher RA, Statistical Method for Research Workers, Oliver and Boyd, Edinburg, London, 1925.
    140. Fisher RA, Statistical Method for Scientific Inference, Oliver and Boyd, Edinburg, London, 1956.
    141. Goddard, Tom. What is Precision Farming?, Proceedings Precision Farming Conference, Taber Alberta Canada. January 20-21, 1997
    142. Godwin D. C. and Jones C. A., Nitrogen dynamics in soil-plant systems. In Modeling Plant and Soil Systems. Eds. Hanks J. and Rithine J. T. ASA. CSSA and SSSA Publishers Madison, Wisconsin. USA. 1991,
    143. Greenwood D. J., Modeling of crop response to nitrogen fertilizer. Phil. Trans. Roy. Soc. Lond, B296, 1982, 351-362.
    144. Greenwood D. J., Neeteson J. J., and Draycott A., Response of potatoes to N fertilizer, Quantitative relations for components of growth. Plant Soil, 1985, 85:163-183.
    145. Greenwood D. J., Verstraeten L. M. J., Draycott A. and Sutherland R. A., Response of winter wheat to N-fertilizer, Dynamic Model. Fertilizer Res. 1987, 12:139-156.
    146. Gupta RK, Motaghimi S, McClellan PW, Alley MM and Brann DE, Spatial variability and sampling strategies for NO_3~--N, P, K determinations for site-specific farming. Trans. ASAE. 1997. 40:337~343
    147. Harradine FF, The variability of soil properties in relation to stage of profile development. Soil Sci. Soc. Am. Proc. 1949. 14:302~311
    148. Hartkamp A. D, Jeffrey W. White and Gerrit Hoogenboom, Interfacing Geographic Information Systems with Agronomic Modeling---A Review, Agronomy Journal 1999. 91:761-772
    149. Heckman J. R., J. T. Sims, D. B. Beegle, F. J. Coale, S. J. Herbert, T. W. Bruulsema and W. J. Bamka, Nutrient Removal by Corn Grain Harvest, Agronomy Journal, 2003, 95:587-591
    150. Huggins, D. R., and R. D. Alderfer. Yield variability within a long-term corn management study: Implications for precision fanning. In P. C. Robert, R. H. Rust, and W. E. Larson (ed.) Proc. Int. Conf. on Precision Agric., 3rd, Minneapolis, MN. 23-26 June 1996. ASA, CSSA, and SSSA, Madison, WI. 1995. p. 397-416.
    151. Hunter AH, Laboratory and greenhouse techniques for Nutrient survey to determine the soil amendments required for optimum plant growth. Agro Service International Inc, Florida, USA, 1980.
    152. ISSS, Soil productivity and nutrient cycling in relation to LISA. Ibid. Mexico. 1994.
    153. Jaynes, D. B., and T. S. Colvin. Spatiotemporal variability of corn and soybean yield. Agron. J. 1997. 89:30-37.
    154. Johannsen C. J., Precision Farming: An Overview. Department of Agronomy, Purdue University, April, 1995. (Paper received through INTENET).
    155. Johnson R M., Robert G. Downer, Judith M. Bradow, Philip J. Bauer and E. John Sadler, Variability in Cotton Fiber Yield, Fiber Quality, and Soil Properties in a Southeastern Coastal Plain, Agronomy Journal 2002, 94:1305-1316
    156. Johnson R. M., J. M. Bradow, P. J. Bauer, and E. J. Sadler. Influence of soil spatial variability on cotton fiber quality. In Proc. Beltwide Cotton Conf., Orlando, FL. 3-7 Jan. 1999. Natl. Cotton Counc., and the Cotton Foundation, Memphis, TN. 1999. p. 1319-1320.
    157. Johnson, Ron C., Target Farming, A Brief Introduction to Precision Agriculture, Proceedings -1998 Direct Seeding Conference, Saskatchewan Soil Conservation Association, Regina 1998, 15-18.
    158. Kitchen, N. R., D. F. Hughes, K. A. Sudduth, and S. J. Birrell. Comparison of variable rate to single rate nitrogen fertilization application: Corn production and residual soil NO_3-N. p. In P. C. Robert et al. (ed.) Site-specific management for agricultural systems: Proceedings of the 2nd international conference, ASA, Madison, WI. 1995. 427—442.
    159. Lam, D. C. L., D. A. Swayne, C. I. Mayfield, and D. D. Cowan. Integration of GIS with other software systems: Integration versus interconnection. In Proc. Int. Conf. /Workshop on Integrating GIS and Environmental Modeling, 3rd, Santa Fe, NM. 21-25 Jan. 1996. Natl. Ctr. for Geographic Information and Analysis, Santa Barbara, CA. 1996.
    160. Lanyon, L. E., and D. B. Beegle. The role of on-farm nutrient balance assessments in an integrated approach to nutrient management. J. Soil Water Conserv. 1989, 49:164-168.
    161. Lark, R. M., and J. V. Stafford. Consistency and change in spatial variability of crop yield over successive seasons: Methods of data analysis. In P. C. Robert et al. (ed.) Precision agriculture. Proc. Int. Conf., 3rd, Minneapolis, MN. 23-26 June 1996. ASA, CSSA, and SSSA, Madison, WI. 1996. p. 117-128.
    162. Lechner W. Navstar GPS and GLONASS. In Press: Computer and Electronics in Agriculture, Special Issue; GPS in Agriculture. Elsevier Science Publishers. 1994
    163. Lombin G, The effects of continuous fertilization on nutrient balance and crop yield in the northern Nigerian savannah: a preliminary assessment [using maize]. Canadian Journal of Soil Science (Canada). 1981. 61(1): 55~65
    164. Machado, S., E. D. Bynum, Jr., T. L. Archer, R. J. Lascano, L. T. Wilson, J. Bordovsky, E. Segarra, K. Bronson, D. M. Nesmith, and W. Xu. Spatial and temporal variability of corn grain yield: Site-specific relationships of biotic and abiotic factors. Precision Agric. 2000. 2:343-360.
    165. Matheron G, Les variables regionalisees et leur estimation Paris. Masson 140. 1965.
    166. Matheron G, The theory of regionalized variables and its applications, Les Cahiers du Centre de Morphologie Mathematique de Fontainablean No. 5, 1971.
    167. Miller PM, Singer MJ and Nielsen DR, Spatial variability of wheat yield and soil properties on complex hills. Soil Sci. Soc. Am. J. 1988. 52:1133~1141
    168. Mohanty BP and Kanwar RS, Spatial variability of residual nitrate-nitrogen under two tillage systems in central Iowa: A composite three-dimensional resistant and exploratory approach. Water Resour. Res. 1994. 30:237~251
    169. Mulla DJ, Soil spatial variability and methods of analysis. In Renard CM et al(ed.). Soil, crop, and water management systems for rainfed agriculture in the Sudano-Sahelian zone: Proc. Int. Workshop. Niamey, Niger. 7~11Jan. 1987. ICRISAT, Patancheru, Andhra Pradesh, India. 1989. pp241~252
    170. Mulla DJ, Using geostatistics and GIS to manage spatial patterns in soil fertility. In Automated agriculture for the 21st century. Proc. Symposium. Chicago, IL. 16~17 Dec. 1991. ASAE, St Joseph, MI. 1991. pp336~345
    171. Mulla DJ, Mapping and managing spatial patterns in soil fertility and crop yield. In: Robert PC, Rust RH and Larson WE, eds. Soil specific crop management. ASA, CSSA, SSSA, Madison, WI. 1993. pp15~26.
    172. Mulla, D. J., A. U. Bhatti, M. W. Hammond, and J. A. Benson. A comparison of winter wheat yield and quality under uniform versus spatially variable fertilizer management. Agric. Ecosyst. Environ. 1992. 38:301-311.
    173. Mulla, D. J., and A. U. Bhatti. An evaluation of indicator properties affecting spatial patterns in N and P requirements for winter wheat yield. In J. V. Stafford (ed.) Precision agriculture 97, Proceedings of the first European conference on precision agriculture, Warwick University Conference Centre, UK, 7-10 Sept. 1997. Bios Scientific Publ., Ltd, Oxford, UK. 1997. p. 145-153.
    174. Mulla, D. J., and J. S. Schepers. Key processes for site-specific soil and crop management. In F. J. Pierce and E. J. Sadler (ed.) The state of site-specific management for agriculture. ASA, CSSA, and SSSA, Madison, WI. 1997. p. 1-18.
    175. Mylar K, Haraldsen TK and Oskarsen H, The Kvithamar field lysimeter Ⅲ. Barley yield and nutrient balance. Norwegian Journal of Agricultural Sciences (Norway). 1996. 10(4): 469~480
    176. Nolin MC, Guertin SP and Wang C, Within-field spatial variability of soil nutrientsand corn yield in a Montreal lowlands clay soil. In Robert PC (ed.) Proc. of the third international conference on precision agriculture. Minneapolis, MN. 23~26 June 1996. ASA, CSSA, and SSSA, Madison, WI. 1996. pp257~270
    177. Odeh IOA, McBratney AB and Chittleborough DJ, Fuzzy-c-means and Kriging for mapping soil as a continuous system. Soil Soc. Am. J. 1992. 56:1848~1854
    178. Or, D., and R. J. Hanks. Soil water and crop yield spatial variability induced by irrigation nonuniformity. Soil Sci. Soc. Am. J. 1992. 56: 226-233.
    179. Ostergaard, H. S. Agronomic consequences of variable N fertilization, p. 315-320. In J. V. Stafford (ed.) Precision agriculture 97, Proceedings of the first European conference on precision agriculture, Warwick University Conference Centre, UK, 7-10 Sept., 1997. Bios Scientific Publ., Ltd, Oxford, UK. 1997.
    180. Pan, W. L., D. R. Huggins, G. L. Malzer, C. L. Douglas, Jr., and J. L. Smith. Field heterogeneity in soil-plant nitrogen relationships: Implications for site-specific management.. In F. J. Pierce and E. J. Sadler (ed.) The state of site-specific management for agriculture. ASA, CSSA, and SSSA, Madison, WI. 1997. p. 81-99
    181. Parkin T. B. Spatial variability of microbial processes in soil—A review. J. Environ. Qual. 1993, 22:409-417.
    182. Parkin T. B., Meisinger J. J., Chester S. T., Starr J. L., Robinson J. A. Evaluation of statistical methods for lognormally distributed variables. Soil Sci. Soc. Am. J. 1988; 52: 323-329.
    183. Parkin T.B., Robinson J.A. Analysis of lognormal data. Adv. Soil Sci. 1992; 20: 193-235.
    184. Parkin T.B., Robinson J.A. Statistical treatment of microbial data. In: Weaver R.W., et al., ed. Methods of soil analysis. Part 2. SSSA Book Ser. 5. Madison, WI: SSSA, 1994: 15-39.
    185. Peterburgskii AV and Nikiforova IP, Nutrient balance and soil productivity in the Severo-Osetian A SSR [USSR]. Soviet Agricultural Sciences (USA). 1981. 6: 32~34
    186. Petersen RG and Calvin LD, Sampling. In Klute A (ed.). Methods of soil, 1986.
    187. Pierce, F.J., and P. Nowak. Aspects of precision agriculture. Adv. Agron. 1999, 67: 1-85.
    188. Portch S Greenhouse/Screenhouse soil nutrient survey procedures. Mimeograph. Potash and Phosphate Institute, HongKong. 1988:
    189. Reetz HF, Site-specific nutrient management systems for the 1990s. Better crops with plant food. 1994. 78(4): 14~19
    190. Reetz HF, Maintenance+buildup nutrient management for site-specific systems. Better crops with plant food. 1996. 80(3): 9~11.
    191. Robertson G. P. GS~+: Geostatistics for the Environmental Sciences[M]. Gamma Design Software, Plainwell, Michigan USA. 1998.
    192. Rossi RE, Mulla DJ, Journel AG and Franz AG, Geostatistics tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr. 1992. 62 (2): 277~314
    193. Russell, E.J. Soil conditions and plant growth. John Wiley & Sons, New York., 1988.
    194. Sadler, E.J., and G. Russell. Modeling crop yield for site-specific management. In Pierce F.J. and E.J. Sadler (ed.) The state of site-specific management for agriculture. ASA, CSSA, and SSSA, Madison, WI. 1997. p. 69-79.
    195. Sadler, E.J., P.J. Bauer, and W.J. Busscher. Site-specific analysis of a droughted corn crop: Ⅰ. Growth and grain yield. Agron. J. 2000. 92: 395-402.
    196. Schepers, J.S. and D.D. Francis. Precision agriculture—what's in our future. Commun. Soil Sci. Plant Anal. 1998, 29: 1463-1469.
    197. Scott HD et al, Temporal variability of selected properties of Loessial soil as affected by cropping. Soil Sci. Soc. Am. J. 1994. 58: 1531~1538
    198. Seyfried M.S., Wilcox B.P. Scale and the nature of spatial variability: Field examples having implications for hydrologic models. Water Resour. Res. 1995; 31: 173-184.
    199. Sharma S. Applied multivariate techniques. New York: John Wiley & Sons, 1996.
    200. Solie JB, Raun WR and Stone ML, Submeter spatial variability of selected soil and Bermudagrass production variables. Soil Sci. Soc. Am. J. 1999. 63: 1724~1733
    201. Stanford G and Hunter AS, Nitrogen requirements of winter wheat (Triticum aestivum L.). Agronomy J., 1973, 65: 442~447
    202. Stanford G, Rational for optimum N fertilization in crop production. J. Environmental Quality. 1973, 2: 159~165
    203. Starr J.L., Parkin T.B., Meisinger J.J. Influence of sample size on chemical and physical soil measurements. Soil Sci. Soc. Am. J. 1995; 59: 713-719.
    204. Starr J.L., Parkin T.B., Meisinger J.J. Sample size considerations in the determination of soil nitrate. Soil Sci. Soc. Am. J. 1992; 56: 1824-1830.
    205. Stein A, Brouwer J and Bouma J, Methods for comparing spatial variability patterns of millet yield and soil data. Soil Sci. Soc. Am. J. 1997. 61: 861~870
    206. Stolt MH, Baker JC and Simpson TW, Soil-landscape relationships in Virginia: Ⅰ. Soil variability and parent material uniformity. Soil Sci. Soc. Am. J. 1993. 57: 414~421
    207. Suan-Pheng, K., Applying GIS technology to natural resource management in developing countries: The realities behind the promises. In The practice of GIS applications: Problems and challenges, Part 1. Proc. Seminar on GIS and Developing Countries, 2nd. June 1993. GISDECO, Utrecht, Netherlands. 1993. p. 1-20.
    208. Tening AS and Omueti JI, Potassium status of some selected soils under different land-use systems in the subhumid Zone of Nigeria. Commun. Soil Sci. Plant Anal. 1995. 26(5&6): 657~672
    209. Tim U.S. Coupling Vadose zone models with GIS: Emerging trends and potential bottlenecks. J. Environ. Qual. 1996; 25: 535-544.
    210. Timlin D.J., Pachepsky Ya, Snyder V.A., and Bryyant R.B., Spatial and temporal variability of corn grain yield on a hillslope, Soil Sci. Soc. Am.J. 1998, 62: 764-773.
    211.Tisdale S. L., Nelson W. L., Beaton J. D., 土壤肥力与肥料,金继运,刘荣乐等译,北京:中国农业出版社,1998。
    212. Trangmar BB, Yost RS and Uehara G, 1985. Application of geostatistics to spatial studies of soil properties. Advance in Agronomy, Academic Press, 38: 45~94
    213. Truog E, Fifty Years of Soil Testing. 7th International Congress of Soil Science Ⅳ. 7: 1960. 46~53
    214. Turner MG, Landscape heterogeneity and disturbance. Springer-Verlag, New York, USA. 1987.
    215. Uhlen G and Tveitnes S, Effects of long-term crop rotations, fertilizers, farm manure and straw on crop productivity. Norw. J. Agric. Sci. 1995. 9: 143~161
    216. Upchurch D.R., Edmonds W.J. Statistical procedures for specific objectives. In: Mausbach M.J., Wilding L.P., eds. Spatial variability of soils and landforms. SSSA Spec. Publ. 28. Madison, WI: SSSA, 1991: 49-71.
    217. Van Alphen B.J. and J.J. Stoorvogel, A Functional Approach to Soil Characterization in Support of Precision Agriculture, Soil Science Society of America Journal, 2000, 64: 1706-1713
    218. Van Meirvenne M and Hofman G, Spatial variability of soil nitrate nitrogen after potatoes and its change during winter. Plant and Soil. 1989. 120: 103~110
    219. van Schilfgaarde, J. Is precision agriculture sustainable? Am. J. Altern. Agric. 1999, 14(1): 43-46.
    220. Van Wambeke A and Dudal R, Macrovariability of soils of the tropics. In Diversity of soils in the tropics. ASA Spec. Publ. 34. ASA and SSSA, Madison, WI. 1978, pp13~28
    221. Van-Horn HH, Newton GL and Kunkle WE, Ruminant nutrition from an environmental perspective: factors affecting whole-farm nutrient balance. Journal of Animal Science (USA). 1996. 74(12): 3082~3102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700