钱塘江海塘风险分析和安全评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海塘,亦称海堤,是浙江省对修筑于沿海或用以抵御洪潮水的堤防的特定称谓。风险分析和安全评估是海塘工程中一个有难度而富有挑战性的重要研究领域。本文以钱塘江下沙海塘及其保护区为主要研究对象,在系统分析和总结国内外研究现状及发展趋势的基础上,对钱塘江海塘出现的历史险情、海塘破堤原因、破口宽度和溢流堰顶高程,钱塘江水位持续抬升的原因、变异点发生的时间、闸口、仓前站的设计水位,海塘洪(潮)水越顶安全性、海塘整体稳定安全性、海塘渗透稳定安全性、海塘安全评估,海塘破堤后洪泛区灾情、海塘失效经济风险,以及以洪前冲淤、抛石固脚为主要内容的海塘加固技术等方面进行了比较深入的研究和探讨,做到了理论研究与工程实践紧密结合,既评估了下沙海塘的安全性又分析了下沙海塘失效风险,为海塘风险分析和安全评估提供了方法体系。本文的主要研究成果有:
     (1)提出了钱塘江海塘的主要失效模式。钱塘江海塘以越项、整体失稳和渗透失稳三种破堤形式为主;标准海塘修筑前的1974年13号台风破堤调查资料分析表明,海塘破堤破口宽度服从对数正态分布,破口宽度超越200m的概率为1.22%。标准海塘的修筑较大程度上改善了海塘抵御洪(潮)水的能力,海塘一旦发生破堤,破口宽度可控制在200m以内。
     (2)分析了钱塘江高水位持续抬高的原因、水位系列发生变异的年份,建立了海塘越顶安全性分析模型。自20世纪60年代以来,钱塘江河口开展的大规模治江围涂、上游建库是钱塘江河口高水位持续抬升的内因,水情条件是钱塘江发生高水位的外因;运用信息熵理论,通过构造水位变异的比较序列的差异信息相对测度诊断表明,1974年、1997年为水位序列的变异点;仓前站原1%设计水位9.81m,仅相当于现状的2%标准,客观上降低了下沙海塘越顶安全性,采用JC法分析下沙海塘发生越顶的概率为1.80×10~(-3),敏感性分析表明,钱塘江河口水情、工情条件改变而引起的外江水位特征改变,是钱塘江河口海塘发生越顶的最主要因素。
     (3)结合钱塘江河床冲淤变幅大的特点,首次引入塘前滩地高程作为随机变量,建立了海塘整体稳定安全性分析模型。当塘前滩地高程均值为2.0m、标准差为4.38m时,下沙海塘整体稳定可靠指标β为4.91,失效概率为0.46×10~(-6);敏感性分析表明,对海塘整体稳定性影响最主要的是塘前滩地高程均值、方差和
Seawall (also called dyke) is the specific name of the dyke built in shore or other place to resist flood and tide in Zhejiang Province. The more rapid development of coastal economy and worse environment has given an impetus to study efforts on engineering of seawall. The risk analysis and safety evaluation of seawall are the most important research areas on seawall engineering with difficulties and challenges. In this paper, some special studies are carried on the Xiasha seawall and its protected region along Qiantang River, which are introduced in the current trends of development and research. The research works include: statistic of historical situation of damaged seawall, the cause of seawall breakage, width of crevasse, the overfall level of weir peak after broken, the reasons of continuously increasing of high water level, occurrence years of its aberrance, and current design water levels of Zhakou and Cangqian in Qiantang River, the safeties on overtopping, overall and seepage instability, and the corresponding safety evaluation by the theory of fault tree, the inundation situation of flood area and correlative economic risk, and practical technique such as erosion before main peak flood and dumped riprap to reinforce the seawall, and the system method provided for risk analysis and safety evaluation of seawall. The major contents are summarized as follows:(1) On the base of historical data, the three major failure states of seawall are given, which are overtopping, overall and seepage instabilities respectively. The width of crevasse, which yields the logarithm normal probabilistic distribution and the probability of the width over 200 meters 1.22% is obtained from the statistic data during typhoon No.13 of the year of 1974. Thereafter, it can also be drawn that the broken width can be controlled within 200 meters after the construction of standard seawall.(2) After analyzing the reasons of continuously increasing of high water level in Qiantang River, and occurrence years of its aberrance in Zhakou and Cangqian, the mathematical model for calculation the probability of seawall overtopping is constructed. Large-scale reclamation in estuary and the carryover storage reservoir of Xinanjiang built in upstream since 1960s are the inherence causes, however the water
    situation is the outer cause of continuously increasing high water level occurrence in estuary of Qiantang River. The analysis of differential information comparative measure, which based on the theory of information entropy and the conformation of differential comparative series of high water level, shows that the aberrance of high water level happened in the years of 1974 and 1997. The former design high water level 9.81 meters of 1% in Cangqian, equals to the current value of 2% approximately, that will decrease the safety of Xiasha seawall overtopping accordingly. The probability of the Xiasha seawall overtopping by JC method is 1.80xl0~3, and the further sensitive analysis demonstrates that the characteristics of water level is the major reason of the occurrence of overtopping.(3) The riverbed is changing greatly and rapidly by the action of flood and tide, so the flat level in front of seawall is firstly considered as a random variable in the model for calculating the safety of overall stability of seawall. It is gained that the reliability index p equals to 4.91, corresponding failure probability 0.46x10'6, when the mean and standard variance of the flat level equal to 2.0 meters and 4.38 meters respectively. Sensitive analyses show that the major factors affecting the overall stable reliability of the seawall are the mean and variance of the flat level in front of seawall and the mean soil friction angle, therefore the flat level in front of seawall should be considered as one of the random variables of great importance in reliability analysis of the overall stability of seawall in a macro-tidal estuary.(4) The model of seepage stability of homogeneous soil dam built on impervious foundation is constructed by Monte-Carlo method. The result shows that the seepage-resistance reliability of Xiasha seawall is a lower value of 0.985, and the sensitive analyses show that major factors affecting the reliability are the ratio of resistance seepage slope of soils and the mean high water level of the river.(5) The fault tree of seawall is the system in series. The conditional probability P(B/A)can be calculated by 1 - 3>( . P y ) when the functional functions both eventsA and B are linearity functions. It can be found that the failure probability of Xiasha seawall varies within a small range because of the probability in charge of seepage instability, and the probability equals to 1.5% approximately.(6) Calculations of one dimension unsteady flow of river network with the soft package of MIKE series indicate that the areas of disaster, quantified by the water depth over 0.5 meter and the time over 24 hours inundation, can be limited within
    61.6km in the whole area of 108 km , and pertinent failure economic risk can be calculated as 5474,700 RMB based on the correlativity analysis among historical loss of economy, the area of disaster and GDP per unit area.Finally, the analyses on quantity ratio of water to silt are carried out for the river reach with different lengths by the models constructed of GM(1,1) and one dimension moveable bed. It is brought forward that the erosion chance should be selected during small tide by big discharges and short times before main peak flood, for getting more effect of erosion with the quantity ratio from 50 to 56 of the water to silt. The model for dumped riprap is formed by the theory of kinematics of movement of particles in water and Monte-Carlo method. The model is a power utility to dumped riprap since the configuration of rocks under water can be simulated particularity.This research work is partly sponsored by Zhejiang Provincial Department of Science and Technology (ZPDST). It is a part of the key project of institute of ZPDST, titled as "System study on risk analysis and safety evaluation of dyke" (Grant No. 2004712015).
引文
[1-1] 钱塘江志[M].北京:方志出版社.1998.
    [1-2] 朱元甡.基于风险分析的防洪研究[J].河海大学学报,2001 (4):1-8.
    [1-3] 浙江省水旱灾情汇编(1949~2000年)[M],浙江省人民政府防汛防旱指挥部办公室,2002.7.
    [1-4] 李青云、张建民.长江堤防工程风险分析和安全评价研究初论[J].中国软科学,2001 (11):112-115.
    [1-5] 李青云,张建民等.关于开展长江堤防工程安全评价研究的探讨[J].岩石力学与工程学报,2001 (20(增1)):893-897.
    [1-6] 陈进,黄薇等.防洪工程系统风险分析方法探讨[J].长江科学院院报,2001(5):37-40.
    [1-7] 跨流域长距离输水工程的风险评估.浙江大学结构工程研究所,2005.
    [1-8] 陈新民,夏佳,罗国煜.黄河下游悬河决口灾害的风险分析与评价[J].水利学报,2000 (10):66-70.
    [1-9] 董胜,王腾.防洪工程项目的风险评估[J].水利学报,2003(9):19-24.
    [1-10] 朱元甡,韩国宏等.南水北调中线工程交叉建筑物水毁风险分析[J].水文,1995 (3):1-8.
    [1-11] 冯平,闫大鹏等.南水北调中线总干渠防洪风险评估方法的研究[J].水利学报,2003(4):40-45.
    [1-12] 姜树海.基于随机微分方程的河道行洪风险分析[J].水利水运科学研究,1995,(2):127-137.
    [1-13] 赵永军,冯平,曲兴辉.河道防洪堤坝水流风险的估算[J].河海大学学报,1998,26 (3):71-75.
    [1-14] 李义天,张为等.河道泥沙淤积对洪灾风险评估的影响[J].安全与环境学报,2002(2):54-58.
    [1-15] 王卓甫,章志强,杨高升.防洪堤结构风险计算模型探讨[J].水利学报,1998 (7):64-67.
    [1-16] 黄崇福,刘新立,周国贤等.以历史灾情资料为依据的农业自然灾害风险评估方法[J].自然灾害学报,1998,7(2):1-8.
    [1-17] 周国红.金融系统风险研究与控制的混沌理论探索[J].浙江大学学报(人文社会科学版),2001 (3):84-88.
    [1-18] 郭章林,胡云昌,余建星.输油管道系统泵站可靠性分析[J].天津大学学报,2000 (5):619-623.
    [1-19] 戴树和.风险分析技术(一)—风险分析的原理和方法[J].压力容器,2002(7):1-9.
    [1-20] 顾晓辉,王晓鸣等.新型弹药系统风险估计[J].南京理工大学学报,2002 (3):259-262.
    [1-21] 赵其华,彭社琴等.和平沟滑坡风险性评价[J].山地学报,2002(5):611-615.
    [1-22] 朱良峰,殷坤龙等.地质灾害风险分析与GIS技术应用研究[J].地理学与国土研究,2002 (4):10-12.
    [1-23] 游滨,刘敢新等.三峡库区移民风险研究[J].重庆大学学报(社会科学版),2001 (3):33-40.
    [1-24] 郭红芳,曾向阳.风险分析方法研究[J].计算机工程,2001 (3):131-132,186.
    [1-25] 宋如顺.信息系统安全风险综合分析方法[J].计算机工程,2000 (12):33-34,127.
    [1-26] Yen B C, Ang A H S. Risk analysis in design of hydraulic projects[A]. In: Chiu C L, eds. Proc 1st Inter Sympo on Stocha Hydrau[C]. Pittsburg: University of Pittsburg, 1971. 694-709.
    [1-27] Tang W H, Yen B C. Hydrologic and hydraulic design under uncertainties. In: Proc Inter Symp Uncertainties in Hydrologic and Water Resour Systems. Tucson, Aris., 1972, 2:866-882.
    [1-28] 王栋,朱元甡风险分析在水系统中的应用研究进展及其展望[J].河海大学学报,2002 (2):71-74.
    [1-29] 王栋,朱元甡.防洪系统风险分析的研究评述[J].水文,2003 (2):15-20.
    [1-30] 王建群,叶秉如.水资源规划的风险型决策方法及实例[J].水利学报,1996(4):73-78.
    [1-31] 刘道祥.水资源系统风险管理研究综述[J].西北水电,2003 (1):5-8.
    [1-32] 王建群.一种新的水资源系统风险型决策方法[J].河海大学学报,1997(2):65-70.
    [1-33] 于义彬,王本德.水资源系统风险管理的分析与研究[J].人民黄河,2002(7):18-20.
    [1-34] 徐玉英,王本德.水库洪水预报子系统的风险分析[J].水文,2001 (2):1-4.
    [1-35] 李本强,潘华.施工导流系统风险控制[J].五邑大学学报,2002 (4):25-28.
    [1-36] 李纪人,章四龙.河道洪水预报的可靠性研究[J].水科学进展,1995,6(4):325-330.
    [1-37] Amdahl等.挪威风险评估的新准则[J].水利水电快报,2001 (21):15-18.
    [1-38] Kiefer.大坝安全和风险分析[J].水利水电快报,1999(1):10-13.
    [1-39] 梅亚东,谈广鸣.大坝防洪安全评价的风险标准[J].水电能源科学,2002 (4):8-10.
    [1-40] 李典庆,张圣坤.海洋结构物风险评估方法的研究进展[J].中国海洋平台,2003(3):6-12.
    [1-41] 吴泽宁,王敬等.水资源系统灰色风险计算模型[J].郑州大学学报(工学版),2002 (3):22-24,40.
    [1-42] 王才君、郭生练等.三峡工程三期明渠提前截流水文风险分析[J].人民长江,2002 (7):6-7.
    [1-43] 杨玉荣,徐高洪.三峡洪水系统风险研究[J].长江水利,1996 (2):43-46.
    [1-44] Nathan等.可能最大洪水和可能最大降水设计洪水的风险[J].水利水电快报,2003(1):16-18.
    [1-45] 胡志根,刘全等.基于Monte-Carlo方法的土石围堰挡水导流风险分析[J].水科学进展,2002 (5):636-638.
    [1-46] 杜德进,张为民等.风险评估在丰满水电站大坝的应用研究[J],大坝与安全,2002.6.
    [1-47] 朱元甡.上海防洪(潮)安全风险分析和管理[J].水利学报,2002(8):21-28.
    [1-48] Eric Wood. An analysis of flood levee reliability[J]. Water Resources Research, 1977(3):665-670.
    [1-49] Yeou-Koung Tung. Risk model for flood levee design[J]. Water Resources Research, 1981(4):833-841.
    [1-50] Alfredo H-S. Ang, Wilson H. Tang. Probability concepts in engineering planning and design[M]. Volume Ⅱ-decision, risk and reliability.
    [1-51] Krystian W. Pilarczyk, edt. Dike and Revetment-Design, Maintenance and Safety Assessment[M]. A. A. Balkema, 1998. (Hydraulic Engineering Division, Deft, 1998.).
    [1-52] 金菊良,刘永芳等.城市防洪工程经济风险分析的蒙特卡罗法[J].长江科学院院报,2003 (1):40-43.
    [1-53] 梁在朝,李泰来.江河堤防防洪能力的风险分析[J].长江科学院院报,2001(18):7-10.
    [1-54] 何广讷,杨斌.海堤地震稳定性的概率分析[J].海洋工程,1995,13 (1),62-69。
    [1-55] 范可旭,朱勇华.长江中游典型防洪干堤滑动失稳风险分析[J].水利水电快报,2002 (21):15-17.
    [1-56] 李国芳,黄振平,章志强等.长江防洪堤南京段设计洪水位风险分析[J].河海大学学报,1999,27 (2):22-27.
    [1-57] 朱元甡.长江南京段设计洪水位的风险分析[J].水文,1989,9 (5):8-15.
    [1-58] 吴兴征,丁留谦等.防洪堤的可靠性设计方法探讨[J].水利学报,2003(4):94-100.
    [1-59] Yeou-Koung Tung, Risk-based design of flood defense systems, Flood Defence 2002, Wu et al (eds)(?) 2002 Science Press, New York Ltd., ISBN 1-880132-54-0. pp.71-81.
    [1-60] 吴世伟.结构可靠度分析[M].北京:人民交通出版社。
    [1-61] 赵国藩,金伟良,贡金鑫著.工程结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [1-62] 丁明,李生虎.可靠性计算中加快蒙特卡罗仿真收敛速度的方法[J].电力系统自动化,2000 (12):16-19,35.
    [1-63] Engeland, S., Rachwitz, R., A Benchmark Study on Importance Sampling Techniques in Structural Reliability [J], Structural Safety, 1993, 12(4), pp. 255-276.
    [1-64] 冯利华.基于信息扩散理论的洪水风险分析[J].信息与控制,2002 (2):164-165.
    [1-65] 颜兆林,龚时雨等.概率风险评价系统[J].计算机应用研究,2001(2):40-42.
    [1-66] 顾娟,茆诗松.系统风险Beta系数的非参数估计[J].应用概率统计,2000 (2):191-198.
    [1-67] 黄崇福.内集-外集模型的矩阵算法[J].北京师范大学学报(自然科学版),2002 (6):820-828.
    [1-68] 高进东,冯长根等.危险辨识方法的研究[J].中国安全科学学报,2001 (4):57-60.
    [1-69] 邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1987.
    [1-70] 侯纲领,欧进萍.结构可靠指标矢量及其计算与应用[J].计算力学学报,2002 (2):143-147.
    [1-71] 赵国藩著.工程结构可靠性理论与应用[M].大连:大连理工大学出版 社.1996.
    [1-72] 贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(1)[J].建筑结构学报,2002,Vol.23 (4):2—9.
    [1-73] 董冲著.现代结构系统可靠性理论及其应用[M].北京:科学出版社.2001.
    [1-74] 金伟良.结构可靠度数值模拟的新方法[J].建筑结构学报,1996,Vol.17(3):63-72.
    [1-75] 董哲人主编.堤防抢险实用技术[M].北京:中国水利水电出版社,1999.
    [1-76] R. N. Yong, E. Alonso, and M. M. Tabba. Application of Risk Analysis to the Prediction of Slope Instability Canadian Geotechnique [J]. 1977,14.
    [1-77] 王丽萍,傅湘.洪灾风险及经济分析[M].武汉:武汉水利电力大学出版社,1999年8月.
    [1-78] [美]L.德克斯坦,[德]E.J.勃兰特.水资源工程可靠性与风险[M].吴媚玲,王俊德译.北京:水利电力出版社,1993.
    [1-79] TAW, 1984, TECHNICAL ADVISORY COMMITTEE ON WATER RETAINING STRUCTURES, Some considerations on acceptable risk in the Netherlands, Dienst Weg-en Waterbouwkunde, Delft.
    [1-80] VROM, 1988, MINISTRY OF HOUSING; LAND USE PLANNING AND ENVIRONMENT, National Environment Plan, The Hague.
    [1-81] R. M. Bennett and A. H-S. Ang, "Investigation of methods for structural system reliability", University of Illinois at Urbana-Champaign, September 1983.
    [1-82] Hak-Fong Ma and A. H-S. Ang, "Reliability analysis of redundant ductile structural systems", University of Illinois at Urbana-Champaign, August 1981.
    [1-83] Siddal J., Probabilistic engineering design, principal and applications[M]. 1983, Marcel Dekker, INC, New York and Basel.
    [1-84] Zhang Wohua, Chen Yunmin and Jin Yi. The Method of probability analysis for breakwater stability[A]. Proc. of Coastal Geotechnical Engineering in Practice[C], Edited by Nakase and Tsuchida, Int. Sym. IS-YOKOHAMA 2000, Japan, A. A. BALKEMAN, Rotterdam, Bookfield, Vol. 1, 399-405. 2000.
    [1-85] Rackwitz, R., "Practical Prosbalistic Approch on Design," Bulletin 112, Comite European du Beton, Paris, France, 1976.
    [1-86] Rubinstein, R. Y., Simulation and the Monte Carlo Method, J. Wiley and Sons, New York, 1981.
    [1-87] Tang, W. H., Yucemen, M. S., and Ang, A. H-S., "Probability-Based Short Term Design of Soil Slopes," Canadian Geotechnical J., Vol.13, 1976, pp.201-215.
    [1-88] Marsaglia, G., "Random Viriables and Computers," Proc. Third Prague Conference in Probability Theory, 1962.
    [1-89] Pugsley, A. G., "Concepts of Safety in Structural Engineering," J. Institute of Civil Engineers, Vol.36, No.5, London, March 1951.
    [1-90] Fiessler, B., Neumann, H-J., and Rackwitz, R., "Quadratic Limit States in Structural Reliability" J. of the Engineering Mechanics Division, ASCE, Vol. 105, No. EM4, August, 1979. pp.661-676.
    [1-91] Barlow, R. E., and Lambert, H. E., "Introduction to Fault Tree Analysis," in Reliability and Fault Tree Analysis, R. E. Barlow et al. (eds.), SIAM, 1975, pp.7-35.
    [1-92] Huang Chongfu. Two models to assess fussy risk of natural disaster in China, Journal of Fuzzy Logic and Intelligent Systems, Vol.7, No. 1, pp. 16-26, 1997.
    [1-93] G. H. Edujee. Trends in Risk Asseessment and Risk Management [J]. The Science of Total Environment, 2000, (2), pp. 13-23.
    [1-94] Salmon, G. M., Hartford, D. N. D., Risk Analysis for Dam Safety [J]. International Water Power and Dam Construction, 1995(3), pp.42-47; 1995(4), pp.38-39.
    [1-95] Moan, T., Current trends in the Safety of offshore structures [A], Proceeding of seventh International Offshore and Polar Engineering Conference [C], USA, 1998. pp. 420-427.
    [1-96] Chowdhury, R. N., Probability risk analysis in geomechanics and water engineering [R]. Department of Civil and Mining Engineering, University of Wollongong, NSW, Australia, 1996.
    [1-97] Weibiao Wang, Zengcui Han&Guoqian Liang. Safety Analysis of Overall Stability of Qiantang Estuaty Seawall, ICEC-2003, 471-475.
    [1-98] Wang, WB; Jin, WL; Han, ZC; Yu, TT. Stochastic analysis and simulation for seawall engineering on Qiantang Estuary, PROBABILISTIC SAFETY ASSESSMENT AND MANAGEMENT, VOL 1~6, 1687-1693, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700