SARS冠状病毒亚基因组RNA的分析和鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SARS冠状病毒亚基因组RNA的分析和鉴定
     冠状病毒的一个重要特点是其独特的转录策略(strategy)——即通过不连续的转录合成一组嵌套(nested)的亚基因组RNA(sgRNA)使基因组3’端基因得到表达。转录过程中,每个亚基因组的合成都涉及到一个不连续的步骤,即一段由基因组5’端编码的前导RNA(leader RNA)与主体序列(body sequence)在不同的转录调节序列(transcription regulatory sequence TRS)相连。前导序列在转录时可以自由交换,因此前导序列和mRNA序列可以来源于两个不同的RNA分子,这一过程发生于亚基因组RNA负链RNA模板合成时。TRS在不连续转录时主体序列与前导序列的融合及不连续转录过程中起关键作用,含有一段高度保守的同一序列(consensus sequence CS)。在严重呼吸综合症(SARS)病毒(Sars-Cov)的感染细胞中,我们使用RT-PCR或Northern blot的方法检测到有12种亚基因组RNA,其可能参与表达3’端12个ORF,其中通过进一步的RT-PCR分析鉴定出2个未报道的亚基因组RNA,命名为2-1,3-1,这些亚基因组RNA集中在Sars-Cov基因组后1/3部分。亚基因组RNA存在于S基因内部,在S基因本身CS(ACGAAC)下游384个碱基处,它的前导序列与主体序列结合位点ACGAGC存在着与CS(ACGAAC)一个位点的错配,。 翻译亚基因组RNA 2-1可以得到一个截短的S蛋白(s’),其N端缺少了143个氨基酸。亚基因组RNA 3—1在3b区,预计可能从mRNA3开始表达,它的存在可能预示着ORF3b是从另外一个mRNA而不是从mRNA3开始表达的。亚基因组RNA 3—1的前导序列与主体序列的结合区AaGAAC在ORF3b起始序列AUG上游10个碱基处,与Sars-Cov冠状病毒CS序列同样存在一个碱基的错配。亚基因组RNA 2-1和3-1都与前导序列TRS有一个碱基的错配,但是与主体序列的TRS都是一致的。对不同亚基因组RNA主体序列和前导序列的结合区测序可以看到连接序列和相关的TRS序列都各有不同,而且在病毒的传代中保持相对的稳定性。亚基因组RNA正链和负链模板的共存和亚基因组RNA保守序列与主体序列保守区一致都可以支持不连续转录发生在从全长基因组RNA模板合成负链RNA时的假说模型。根据这一模型,RNA多聚酶在TRS暂停,然后跳跃
The expression of genomic information of severe acute respiratory syndrome coronavirus (SARS-CoV) involves synthesis of a nested set of subgenomic RNAs (sgRNAs) by discontinuous transcription. In SARS-CoV-infected cells, 10 subgenomic RNAs were identified by Northern blot and RT-PCR, which were predicted to be functional in the expression of 12 open reading frames located in the 3'-one third of the genome. Two novel subgenomic RNAs (sgRNAs) were identified by RT-PCR and named 2-1 and 3-1, respectively. The leader-body fusion site (ACGAgC) of subgenomic RNA 2-1 has one nucleotide mismatch (lower case) with the core sequence (CS) ACGAAC in the leader TRS (TRS-L) of SARS-CoV, and is located inside the S gene, 384 nucleotides downstream to authentic CS (ACGAAC) for mRNA 2/S. Translation of subgenomic mRNA 2-1 could result in the synthesis of a truncated S protein (named S') missing the N-terminal 143 amino acids. The second novel subgenomic RNA (3-1) corresponded to the 3b ORF that was predicted to be expressed from mRNA 3. The existence of subgenomic RNA 3-1 may indicate that the ORF 3b could be expressed from a separate mRNA other than mRNA 3. The leader-body fusion site (AaGAAC) for subgenomic mRNA 3-1 is 10 nucleotides upstream of AUG start codon of ORF 3b and has one nucleotid mismatch (lower case) with the CS of SARS-CoV TRS-L. Both mRNA 2-1 and 3-1, used a variant of TRS that has one nucleotide mismatch with the core sequence (ACGAAC) in TRS-L, but are identical to the body TRS. Sequence analysis of the leader-body fusion sites of each subgenomic RNAs showed that the junction sequences and the corresponding transcription regulatory sequence (TRS) are unique for each species of subgenomic RNA and consistent after virus passages. Co-existence of both positive and negative-strands of SARS-CoV subgenomic RNAs and evidence for
    derivation of subgenomic mRNA core sequence from body core sequence favors the model of discontinuous transcription during negative-strand synthesis. In this study, a subpopulation of mRNA 3-1 was identified, which contains additional four nucleotides (UCC A) at the leader-body junction site. Although transcription of this subgenomic RNA could represent a rare event for SARS-CoV, it did render more evidence for the use of non-canonical transcriptional signals in synthesis of subgenomic RNAs. Three models were proposed to explain the synthesis of this rare RNA:1. The AAA is used as transcription regulating signal and the complementarity between CS-L and CS-B takes place in the AAA region during template switch step.2. The interaction and complementarity between CS-L and CS-B is the same as that of mRNA 3-1 but the RNA polymerase can slide-back 4 nucleotides on the leader template to start transcription from downstream sequence.3. The interaction and complementarity between CS-L and CS-B is the same as that of mRNA 3-1 but extended complementarity in upstream sequence results in the formation of a loop-like structure, which is removed, by some sort of proof-reading mechanism in normal 3-1 subgenomic RNA, However a subpopulation of subgenomic RNAs has escaped unedited.10 subgenomic RNAs (including two minor subgenomic RNAs) have been identified in coronavirus infected cells but only five (2a/S, 3a, 4/E, 5/M, 9/N) are known to be expressed. We fused the 5'-ends of the subgenomic RNAs with GFP, expression of subgenomic RNAs was indirectly measured by florescent microscopy and Western blot. Significant differences in level of expression of different subgenomic RNAs were observed. Relatively high level of reporter gene expression was observed from the 2-1, 3, 4/E, 5/M, 6 and 9/N mRNA-GFP fusion constructs, whereas low level of reporter gene expression was observed from subgenomic RNAs 2/S, 3-1, 7 and 8 fusion constructs. No significant relationship was found between Kozak context of AUG initiator codon, length, G+C contents, secondary structure of 5'-untranslated region and level of expression. The SARS-CoV may control relative abundance of structural and nonstructural proteins indirectly at the level of transcription or alternatively, relative abundance of proteins is controlled by cis or trans acting elements.Taken together, these results gain more insight into the molecular mechanisms of genome expression and subgenomic transcription of SARS-CoV.
引文
(2003) A multicentre collaboration to investigate the cause of severe acute respiratory syndrome. Lancet 361(9370), 1730-3.
    Adkins, S., Stawicki, S.S., Faurote, G., Siegel, R.W. and Kao, C.C. (1998) Mechanistic analysis of RNA synthesis by RNA-dependent RNA polymerase from two promoters reveals similarities to DNA-dependent RNA polymerase. Rna 4(4), 455-70.
    Alonso, S., Izeta, A., Sola, I. and Enjuanes, L. (2002) Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus. J Virol 76(3), 1293-308.
    An, S., Chen, C.J., Yu, X., Leibowitz, J.L. and Makino, S. (1999) Induction of apoptosis in murine coronavirus-infected cultured cells and demonstration of E protein as an apoptosis inducer. J Virol 73(9), 7853-9.
    An, S., Maeda, A. and Makino, S. (1998) Coronavirus transcription early in infection. J Virol 72(11), 8517-24.
    Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R. and Hilgenfeld, R. (2003) Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300(5626), 1763-7.
    Arbely, E., Khattari, Z., Brotons, G., Akkawi, M., Salditt, T. and Arkin, I.T. (2004) A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J Mol Biol 341(3), 769-79.
    Armstrong, J., Niemann, H., Smeekens, S., Rottier, P. and Warren, G. (1984) Sequence and topology of a model intracellular membrane protein, El glycoprotein, from a coronavirus. Nature 308(5961), 751-2.
    Asanaka, M. and Lai, M.M. (1993) Cell fusion studies identified multiple cellular factors involved in mouse hepatitis virus entry. Virology 197(2), 732-41.
    Azzi, A. and Lin, S.X. (2004) Human SARS-coronavirus RNA-dependent RNA polymerase: activity determinants and nucleoside analogue inhibitors. Proteins 57(1), 12-4.
    Babcock, G.J., Esshaki, D.J., Thomas, W.D., Jr. and Ambrosino, D.M. (2004) Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J Virol 78(9), 4552-60.
    Baker, S.C. and Lai, M.M. (1990) An in vitro system for the leader-primed transcription of coronavirus mRNAs. Embo J 9(12), 4173-9.
    Baric, R.S., Stohlman, S.A. and Lai, M.M. (1983) Characterization of replicative intermediate RNA of mouse hepatitis virus: presence of leader RNA sequences on nascent chains. J Virol 48(3), 633-40.
    Baric, R.S., Stohlman, S.A., Razavi, M.K. and Lai, M.M. (1985) Characterization of leader-related small RNAs in coronavirus-infected cells: further evidence for leader-primed mechanism of transcription. Virus Res 3(1), 19-33.
    Baron, M.D. and Forsell, K. (1991) Oligomerization of the structural proteins of rubella virus. Virology 185(2), 811-9.
    Baudoux, P., Carrat, C, Besnardeau, L., Charley, B. and Laude, H. (1998) Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J Virol 72(11), 8636-43.
    Belyavskyi, M., Levy, G.A. and Leibowitz, J.L. (1998) The pattern of induction of apoptosis during infection with MHV-3 correlates with strain variation in resistance and susceptibility to lethal hepatitis. Adv Exp Med Biol 440, 619-25.
    Benbacer, L., Kut, E., Besnardeau, L., Laude, H. and Delmas, B. (1997) Interspecies aminopeptidase-N chimeras reveal species-specific receptor recognition by canine coronavirus, feline infectious peritonitis virus, and transmissible gastroenteritis virus.J Virol 71(1), 734-7.
    Bhardwaj, K., Guarino, L. and Kao, C.C. (2004) The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J Virol 78(22), 12218-24.
    Bhaskar, G., Lodha, R. and Kabra, S.K. (2003) Severe acute respiratory syndrome (SARS). Indian J Pediatr 70(5), 401-5.
    Bi, W., Pinon, J.D., Hughes, S., Bonilla, P.J., Holmes, K.V., Weiss, S.R. and Leibowitz, J.L. (1998) Localization of mouse hepatitis virus open reading frame 1A derived proteins. J Neurovirol 4(6), 594-605.
    Bonavia, A., Zelus, B.D., Wentworth, D.E., Talbot, P.J. and Holmes, K.V. (2003) Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J Virol 77(4), 2530-8.
    Booth, C.M., Matukas, L.M., Tomlinson, G.A., Rachlis, A.R., Rose, D.B., Dwosh, H.A., Walmsley, S.L., Mazzulli, T., Avendano, M., Derkach, P., Ephtimios, I.E., Kitai, I., Mederski, B.D., Shadowitz, S.B., Gold, W.L., Hawryluck, L.A., Rea, E., Chenkin, J.S., Cescon, D.W., Poutanen, S.M. and Detsky, A.S. (2003) Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. Jama 289(21), 2801-9.
    Bos, E.C., Luytjes, W., van der Meulen, H.V., Koerten, H.K. and Spaan, W.J. (1996) The production of recombinant infectious Dl-particles of a murine coronavims in the absence of helper vims. Virology 218(1), 52-60.
    Bosch, B.J., Martina, B.E., Van Der Zee, R., Lepault, J., Haijema, B.J., Versluis, C, Heck, A.J., De Groot, R., Osterhaus, A.D. and Rottier, P.J. (2004) Severe acute respiratory syndrome coronavims (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc Natl Acad Sci U S A 101(22), 8455-60.
    Bost, A.G., Prentice, E. and Denison, M.R. (2001) Mouse hepatitis vims replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection. Virology 285(1), 21-9.
    Boyle, J.F., Weismiller, D.G. and Holmes, K.V. (1987) Genetic resistance to mouse hepatitis vims correlates with absence of vims-binding activity on target tissues. J Virol 61(1), 185-9.
    Brierley, I., Boursnell, M.E., Binns, M.M., Bilimoria, B., Blok, V.C., Brown, T.D. and Inglis, S.C. (1987) An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavims IBV. Embo J 6(12), 3779-85.
    Brierley, I., Digard, P. and Inglis, S.C. (1989) Characterization of an efficient coronavims ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57(4), 537-47.
    Brierley, I., Jenner, A.J. and Inglis, S.C. (1992) Mutational analysis of the "slippery-sequence" component of a coronavims ribosomal frameshifting signal. J Mol Biol 227(2), 463-79.
    Brierley, I., Rolley, N.J., Jenner, A.J. and Inglis, S.C. (1991) Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. J Mol Biol 220(4), 889-902.
    Brockway, S.M., Clay, C.T., Lu, X.T. and Denison, M.R. (2003) Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase. J Virol 77(19), 10515-27.
    Caffarelli, E., Maggi, L., Fatica, A., Jiricny, J. and Bozzoni, I. (1997) A novel Mn++- dependent ribonuclease that functions in U16 SnoRNA processing in X. laevis. Biochem Biophys Res Commun 233(2), 514-7.
    Callebaut, P., Correa, I., Pensaert, M., Jimenez, G. and Enjuanes, L. (1988) Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus. J Gen Virol 69 (Pt 7), 1725-30.
    Cao, J. and Geballe, A.P. (1995) Translational inhibition by a human cytomegalovirus upstream open reading frame despite inefficient utilization of its AUG codon. J Virol 69(2), 1030-6.
    Chen, H.C., Young, Y.H., Luo, J.P., Tsai, H.J., Ho, S.J., Yeh, C.H. and Huang, L.C. (2003) Initial otolaryngological manifestations of severe acute respiratory syndrome in Taiwan. Arch Otolaryngol Head Neck Surg 129(11), 1157-60.
    Chen, S., Chen, L., Tan, J., Chen, J., Du, L., Sun, T., Shen, J., Chen, K., Jiang, H. and Shen, X. (2005) Severe Acute Respiratory Syndrome Coronavirus 3C-like Proteinase N Terminus Is Indispensable for Proteolytic Activity but Not for Enzyme Dimerization: BIOCHEMICAL AND THERMODYNAMIC INVESTIGATION IN CONJUNCTION WITH MOLECULAR DYNAMICS SIMULATIONS. J. Biol. Chem. 280(1), 164-173.
    Chen, W. and Baric, R.S. (1995) Function of a 5'-end genomic RNA mutation that evolves during persistent mouse hepatitis virus infection in vitro. J Virol 69(12), 7529-40.
    Chim, S.S., Tsui, S.K., Chan, K.C., Au, T.C., Hung, E.C., Tong, Y.K., Chiu, R.W., Ng, E.K., Chan, P.K., Chu, C.M., Sung, J.J., Tarn, J.S., Fung, K.P., Waye, M.M., Lee, C.Y., Yuen, K.Y. and Lo, Y.M. (2003) Genomic characterisation of the severe acute respiratory syndrome coronavirus of Amoy Gardens outbreak in Hong Kong. Lancet 362(9398), 1807-8.
    Chinese, S.M.E.C. (2004) Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303(5664), 1666-9.
    Chiu, R.W., Chim, S.S. and Lo, Y.M. (2003) Molecular epidemiology of SARS-from Amoy Gardens to Taiwan. N Engl J Med 349(19), 1875-6.
    Chong, P.Y., Chui, P., Ling, A.E., Franks, T.J., Tai, D.Y., Leo, Y.S., Kaw, G.J., Wansaicheong, G., Chan, K.P., Ean Oon, L.L., Teo, E.S., Tan, K.B., Nakajima, N., Sata, T. and Travis, W.D. (2004) Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore: challenges in determining a SARS diagnosis. Arch Pathol Lab Med 128(2), 195-204.
    Chu, C.M., Cheng, V.C., Hung, I.F., Wong, M.M., Chan, K.H., Chan, K.S., Kao, R.Y., Poon, L.L., Wong, C.L., Guan, Y., Peiris, J.S. and Yuen, K.Y. (2004) Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 59(3), 252-6.
    Clark, B. and McKendrick, M. (2004) A review of viral gastroenteritis. Curr Opin Infect Dis 17(5), 461-9.
    Compton, S.R. (1994) Enterotropic strains of mouse coronavirus differ in their use of murine carcinoembryonic antigen-related glycoprotein receptors. Virology 203(1), 197-201.
    Corse, E. and Machamer, C.E. (2000) Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J Virol 74(9), 4319-26.
    Davies, H.A., Dourmashkin, R.R. and Macnaughton, M.R. (1981) Ribonucleoprotein of avian infectious bronchitis virus. J Gen Virol 53(Pt 1), 67-74.
    de Groot, R.J., Luytjes, W., Horzinek, M.C., van der Zeijst, B.A., Spaan, W.J. and Lenstra, J.A. (1987) Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J Mol Biol 196(4), 963-6.
    de Haan, C.A., Kuo, L., Masters, P.S., Vennema, H. and Rottier, P.J. (1998) Coronavirus particle assembly: primary structure requirements of the membrane protein. J Virol 72(8), 6838-50.
    de Haan, C.A., Masters, P.S., Shen, X., Weiss, S. and Rottier, P.J. (2002) The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology 296(1), 177-89.
    de Haan, C.A., Smeets, M, Vernooij, F., Vennema, H. and Rottier, P.J. (1999) Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. J Virol 73(9), 7441-52.
    de Vries, A.A., Chirnside, E.D., Bredenbeek, P.J., Gravestein, L.A., Horzinek, M.C. and Spaan, W.J. (1990) All subgenomic mRNAs of equine arteritis virus contain a common leader sequence. Nucleic Acids Res 18(11), 3241-7.
    Dea, S., Marsolais, G., Beaubien, J. and Ruppanner, R. (1986) Coronaviruses associated with outbreaks of transmissible enteritis of turkeys in Quebec: hemagglutination properties and cell cultivation. Avian Dis 30(2), 319-26.
    Delmas, B., Gelfi, J., Kut, E., Sjostrom, H., Noren, O. and Laude, H. (1994) Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site. J Virol 68(8), 5216-24.
    Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L.K., Sjostrom, H., Noren, O. and Laude, H. (1992) Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357(6377), 417-20.
    Delmas, B., Gelfi, J., Sjostrom, H., Noren, O. and Laude, H. (1993) Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv Exp Med Biol 342,293-8.
    Delmas, B., Kut, E., Gelfi, J. and Laude, H. (1995) Overexpression of TGEV cell receptor impairs the production of virus particles. Adv Exp Med Biol 380, 379-85.
    Denison, M.R., Zoltick, P.W., Hughes, S.A., Giangreco, B., Olson, A.L., Perlman, S., Leibowitz, J.L. and Weiss, S.R. (1992) Intracellular processing of the N-terminal ORF 1a proteins of the coronavirus MHV-A59 requires multiple proteolytic events. Virology 189(1), 274-84.
    Descombes, P. and Schibler, U. (1991) A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67(3), 569-79.
    Dinesh-Kumar, S.P. and Miller, W.A. (1993) Control of start codon choice on a plant viral RNA encoding overlapping genes. Plant Cell 5(6), 679-92.
    Drosten, C, Gunther, S., Preiser, W., van der Werf, S., Brodt, H R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R.A., Berger, A., Burguiere, A.M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J.C.,
     Muller, S., Rickerts, V., Sturmer, M, Vieth, S., Klenk, H.D., Osterhaus, A.D., Schmitz, H. and Doerr, H.W. (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348(20), 1967-76.
    Duff, K.C. and Ashley, R.H. (1992) The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. Virology 190(1), 485-9.
    Dveksler, G.S., Basile, A.A., Cardellichio, C.B., Beauchemin, N., Dieffenbach, C.W. and Holmes, K.V. (1993a) Expression of MHV-A59 receptor glycoproteins in susceptible and resistant strains of mice. Adv Exp Med Biol 342, 267-72.
    Dveksler, G.S., Pensiero, M.N., Dieffenbach, C.W., Cardellichio, C.B., Basile, A.A., Elia, P.E. and Holmes, K.V. (1993b) Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor. Proc Natl Acad Sci U S A 90(5), 1716-20.
    Ebner, D., Raabe, T. and Siddell, S.G. (1988) Identification of the coronavirus MHV- JHM mRNA 4 product. J Gen Virol 69 (Pt 5), 1041-50.
    Eleouet, J.F., Slee, E.A., Saurini, F., Castagne, N., Poncet, D., Garrido, C, Solary, E. and Martin, S.J. (2000) The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and -7 during TGEV-induced apoptosis. J Virol 74(9), 3975-83.
    Escors, D., Izeta, A., Capiscol, C. and Enjuanes, L. (2003) Transmissible gastroenteritis coronavirus packaging signal is located at the 5' end of the virus genome. J Virol 77(14), 7890-902.
    Escors, D., Ortego, J. and Enjuanes, L. (2001) The membrane M protein of the transmissible gastroenteritis coronavirus binds to the internal core through the carboxy-terminus. Adv Exp Med Biol 494, 589-93.
    Ewart, G.D., Sutherland, T., Gage, P.W. and Cox, G.B. (1996) The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J Virol 70(10), 7108-15.
    Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., Ma, L., Lai, B., Pei, J., Liu, Y., Chen, J. and Lai, L. (2004) Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem 279(3), 1637-42.
    Fischer, F., Peng, D., Hingley, S., Weiss, S. and Masters, P. (1997) The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. J. Virol. 71(2), 996- 1003.
    Fischer, F., Stegen, C.F., Masters, P.S. and Samsonoff, W.A. (1998) Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. J Virol 72(10), 7885-94.
    Fischer, W.B. and Sansom, M.S. (2002) Viral ion channels: structure and function. Biochim Biophys Acta 1561(1), 27-45.
    Fouchier, R.A., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G.J., van den Hoogen, B.G., Peiris, M., Lim, W., Stohr, K. and Osterhaus, A.D. (2003) Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423(6937), 240.
    Franks, T.J., Chong, P.Y., Chui, P., Galvin, J.R., Lourens, R.M., Reid, A.H., Selbs, E., McEvoy, C.P., Hayden, C.D., Fukuoka, J., Taubenberger, J.K. and Travis, W.D. (2003) Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum Pathol 34(8), 743-8.
    Fraser, S.D., Wilkes-Johnston, J. and Browder, L.W. (1996) Effects of c-myc first exons and 5' synthetic hairpins on RNA translation in oocytes and early embryos of Xenopus laevis. Oncogene 12(6), 1223-30.
    Gagneten, S., Gout, O., Dubois-Dalcq, M., Rottier, P., Rossen, J. and Holmes, K.V. (1995) Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J Virol 69(2), 889-95.
    Gallagher, T.M. (1995) Overexpression of the MHV receptor. Effect on progeny virus secretion. Adv Exp Med Biol 380, 331-6.
    Gallagher, T.M. and Buchmeier, M.J. (2001) Coronavirus spike proteins in viral entry and pathogenesis. Virology 279(2), 371-4.
    Gallagher, T.M., Buchmeier, M.J. and Perlman, S. (1992) Cell receptor-independent infection by a neurotropic murine coronavirus. Virology 191(1), 517-22.
    Gallagher, T.M., Buchmeier, M.J. and Perlman, S. (1993) Dissemination of MHV4 (strain JHM) infection does not require specific coronavirus receptors. Adv Exp Med Biol 342, 279-84.
    Gallagher, T.M., Escarmis, C. and Buchmeier, M.J. (1991) Alteration of the pH dependence of coronavirus-induced cell fusion: effect of mutations in the spike glycoprotein. J Virol 65(4), 1916-28.
    Godfraind, C, Langreth, S.G., Cardellichio, C.B., Knobler, R., Coutelier, J.P., Dubois- Dalcq, M. and Holmes, K.V. (1995) Tissue and cellular distribution of an adhesion molecule in the carcinoembryonic antigen family that serves as a receptor for mouse hepatitis virus. Lab Invest 73(5), 615-27.
    Gombold, J.L., Hingley, S.T. and Weiss, S.R. (1993a) Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal. J Virol 67(8), 4504-12.
    Gombold, J.L., Hingley, S.T. and Weiss, S.R. (1993b) Identification of peplomer cleavage site mutations arising during persistence of MHV-A59. Adv Exp Med Biol 342, 157-63.
    Gonzalez, M.E. and Carrasco, L. (2003) Viroporins. FEBS Lett 552(1), 28-34.
    Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K. and Baker, S.C. (2002) RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol 76(8), 3697-708.
    Griffin, S.D., Beales, L.P., Clarke, D.S., Worsfold, O., Evans, S.D., Jaeger, J., Harris, M.P. and Rowlands, D.J. (2003) The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett 535(1-3), 34-8.
    Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo, S.W., Li, P.H., Zhang, L.J., Guan, Y.J., Butt, K.M., Wong, K.L., Chan, K.W., Lim, W., Shortridge, K.F., Yuen, K.Y., Peiris, J.S. and Poon, L.L. (2003) Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302(5643), 276-8.
    Hamming, I., Timens, W., Bulthuis, M.L., Lely, A.T., Navis, G.J. and van Goor, H. (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203(2), 631-7.
    Handley-Gearhart, P.M., Stephen, A.G., Trausch-Azar, J.S., Ciechanover, A. and Schwartz, A.L. (1994) Human ubiquitin-activating enzyme, El. Indication of
     potential nuclear and cytoplasmic subpopulations using epitope-tagged cDNA constructs. J Biol Chem 269(52), 33171-8.
    Hansen, G.H., Delmas, B., Besnardeau, L., Vogel, L.K., Laude, H., Sjostrom, H. and Noren, O. (1998) The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment. J Virol 72(1), 527-34.
    Harcourt, B.H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K.M., Smith, C.M., Rota, P.A. and Baker, S.C. (2004) Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol 78(24), 13600-12.
    He, R., Dobie, F., Ballantine, M., Leeson, A., Li, Y., Bastien, N., Cutts, T., Andonov, A., Cao, J., Booth, T.F., Plummer, F.A., Tyler, S., Baker, L. and Li, X. (2004a) Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun 316(2), 476-83.
    He, R., Leeson, A., Andonov, A., Li, Y., Bastien, N., Cao, J., Osiowy, C, Dobie, F., Cutts, T., Ballantine, M. and Li, X. (2003) Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun 311(4), 870-6.
    He, R., Leeson, A., Ballantine, M., Andonov, A., Baker, L., Dobie, F., Li, Y., Bastien, N., Feldmann, H., Strocher, U., Theriault, S., Cutts, T., Cao, J., Booth, T.F., Plummer, F.A., Tyler, S. and Li, X. (2004b) Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res 105(2), 121-5.
    Hegyi, A. and Kolb, A.F. (1998) Characterization of determinants involved in the feline infectious peritonitis virus receptor function of feline aminopeptidase N. J Gen Virol 79(Pt 6), 1387-91.
    Helenius, A. and Marsh, M. (1982) Endocytosis of enveloped animal viruses. Ciba Found Symp(92), 59-76.
    Herold, J., Raabe, T. and Siddell, S. (1993) Molecular analysis of the human coronavirus (strain 229E) genome. Arch Virol Suppl 7,63-74.
    Herold, J. and Siddell, S.G. (1993) An 'elaborated' pseudoknot is. required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Res 21(25), 5838-42.
    Hiscox, J.A., Wurm, T., Wilson, L., Britton, P., Cavanagh, D. and Brooks, G. (2001) The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J Virol 75(1), 506-12.
    Ho, Y., Lin, P.H., Liu, C.Y., Lee, S.P. and Chao, Y.C. (2004) Assembly of human severe acute respiratory syndrome coronavirus-like particles. Biochem Biophys Res Commun 318(4), 833-8.
    Hofmann, M.A. and Brain, D.A. (1991) The 5' end of coronavirus minus-strand RNAs contains a short poly(U) tract. J Virol 65(11), 6331-3.
    Hofmann, M.A., Sethna, P.B. and Brian, D.A. (1990) Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. J Virol 64(9), 4108-14.
    Hogue, B.G. (1995) Bovine coronavirus nucleocapsid protein processing and assembly. Adv Exp Med Biol 380, 259-63.
    Holmes, K.V. (2003) SARS-associated coronavirus. N Engl J Med 348(20), 1948-51.
    Hong, T., Wang, J.W., Sun, Y.L., Duan, S.M., Chen, L.B., Qu, J.G., Ni, A.P., Liang, G.D., Ren, L.L., Yang, R.Q., Guo, L., Zhou, W.M., Chen, J., Li, D.X., Xu, W.B., Xu, H., Guo, Y.J., Dai, S.L., Bi, S.L., Dong, X.P. and Ruan, L. (2003) [Chlamydia-like and coronavirus-like agents found in dead cases of atypical pneumonia by electron microscopy]. Zhonghua Yi Xue Za Zhi 83(8), 632-6.
    Hu, Y., Wen, J., Tang, L., Zhang, H., Zhang, X., Li, Y., Wang, J., Han, Y., Li, G., Shi, J., Tian, X., Jiang, F., Zhao, X., Liu, S., Zeng, C. and Yang, H. (2003) The M protein of SARS-CoV: basic structural and immunological properties. Genomics Proteomics Bioinformatics 1(2), 118-30.
    Hui, D.S., Chan, M.C., Wu, A.K. and Ng, P.C. (2004) Severe acute respiratory syndrome (SARS): epidemiology and clinical features. Postgrad Med J 80(945), 373-81.
    Hussain, S., Pan, J., Chen, Y., Yang, Y., Xu, J., Peng, Y., Wu, Y., Li, Z., Zhu, Y., Tien, P. and Guo, D. (2005) Identification of Novel Subgenomic RNAs and Noncanonical Transcription Initiation Signals of Severe Acute Respiratory Syndrome Coronavirus. J Virol 79(9), 5288-95.
    Hwang, D.M., Chamberlain, D.W., Poutanen, S.M., Low, D.E., Asa, S.L. and Butany, J. (2005) Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod Pathol 18(1), 1-10.
    Ingallinella, P., Bianchi, E., Finotto, M, Cantoni, G., Eckert, D.M., Supekar, V.M., Bruckmann, C, Carfi, A. and Pessi, A. (2004) Structural characterization of the fusion-active complex of severe acute respiratory syndrome (SARS) coronavirus. Proc Natl Acad Sci U S A 101(23), 8709-14.
    Ito, N., Mossel, E.C., Narayanan, K., Popov, V.L., Huang, C, Inoue, T., Peters, C.J. and Makino, S. (2005) Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein. J Virol 79(5), 3182-6.
    Ivanov, K.A., Thiel, V., Dobbe, J.C., van der Meer, Y., Snijder, E.J. and Ziebuhr, J. (2004) Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78(11), 5619-32.
    Iverson, L.E. and Rose, J.K. (1981) Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell 23(2), 477-84.
    Jang, T.N., Yeh, D.Y., Shen, S.H., Huang, C.H., Jiang, J.S. and Kao, S.J. (2004) Severe acute respiratory syndrome in Taiwan: analysis of epidemiological characteristics in 29 cases. J Infect 48(1), 23-31.
    Jeffers, S.A., Tusell, S.M., Gillim-Ross, L., Hemmila, E.M., Achenbach, J.E., Babcock, G.J., Thomas, W.D., Jr., Thackray, L.B., Young, M.D., Mason, R.J., Ambrosino, D.M., Wentworth, D.E., Demartini, J.C. and Holmes, K.V. (2004) CD209L (L- SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 101(44), 15748-53.
    Jeong, Y.S. and Makino, S. (1992) Mechanism of coronavirus transcription: duration of primary transcription initiation activity and effects of subgenomic RNA transcription on RNA replication. J Virol 66(6), 3339-46.
    Jonassen, C.M., Jonassen, T.O. and Grinde, B. (1998) A common RNA motif in the 3' end of the genomes of astroviruses, avian infectious bronchitis virus and an equine rhinovirus. J Gen Virol 79 ( Pt 4), 715-8.
    Jones, P.L., Korte, T. and Blumenthal, R. (1998) Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J Biol Chem 273(1), 404-9.
    Joo, M. and Makino, S. (1992) Mutagenic analysis of the coronavirus intergenic consensus sequence. J Virol 66(11), 6330-7.
    Kamer, G. and Argos, P. (1984) Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res 12(18), 7269-82.
    Kielian, M.C., Marsh, M. and Helenius, A. (1986) Kinetics of endosome acidification detected by mutant and wild-type Semliki Forest virus. Embo J 5(12), 3103-9.
    Kolb, A.F., Hegyi, A., Maile, J., Heister, A., Hagemann, M. and Siddell, S.G. (1998) Molecular analysis of the coronavirus-receptor function of aminopeptidase N. Adv Exp Med Biol 440, 61-7.
    Kolb, A.F., Hegyi, A. and Siddell, S.G. (1997) Identification of residues critical for the human coronavirus 229E receptor function of human aminopeptidase N. J Gen Virol 78(Pt 11), 2795-802.
    Konings, D.A., Bredenbeek, P.J., Noten, J.F., Hogeweg, P. and Spaan, W.J. (1988) Differential premature termination of transcription as a proposed mechanism for the regulation of coronavirus gene expression. Nucleic Acids Res 16(22), 10849- 60.
    Kooi, C, Cervin, M. and Anderson, R. (1991) Differentiation of acid-pH-dependent and - nondependent entry pathways for mouse hepatitis virus. Virology 180(1), 108-19.
    Kozak, M. (1986a) Bifunctional messenger RNAs in eukaryotes. Cell 47(4), 481-3.
    Kozak, M. (1986b) Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc Natl Acad Sci U S A 83(9), 2850-4.
    Kozak, M. (1986c) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2), 283-92.
    Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196(4), 947-50.
    Kozak, M. (1989a) Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol 9(11), 5134-42.
    Kozak, M. (1989b) Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol Cell Biol 9(11), 5073-80.
    Kozak, M. (1991a) An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 115(4), 887-903.
    Kozak, M. (1991b) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266(30), 19867-70.
    Krempl, C, Ballesteros, M.L., Enjuanes, L. and Herrler, G. (1998a) Isolation of hemagglutination-defective mutants for the analysis of the sialic acid binding activity of transmissible gastroenteritis virus. Adv Exp Med Biol 440, 563-8.
    Krempl, C, Ballesteros, M.L., Zimmer, G., Enjuanes, L., Klenk, H.D. and Herrler, G. (2000) Characterization of the sialic acid binding activity of transmissible gastroenteritis coronavirus by analysis of haemagglutination-deficient mutants. J Gen Virol 81(Pt 2), 489-96.
    Krempl, C, Laude, H. and Herrler, G. (1998b) Is the sialic acid binding activity of the S protein involved in the enteropathogenicity of transmissible gastroenteritis virus? Adv Exp Med Biol 440, 557-61.
    Krempl, C, Schultze, B. and Herrler, G. (1995) Analysis of cellular receptors for human coronavirus OC43. Adv Exp Med Biol 380,371-4.
    Krueger, D.K., Kelly, S.M., Lewicki, D.N., Ruffolo, R. and Gallagher, T.M. (2001) Variations in disparate regions of the murine coronavirus spike protein impact the initiation of membrane fusion. J Virol 75(6), 2792-802.
    Krummel, B. and Chamberlin, M.J. (1992) Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Individual complexes halted along different transcription units have distinct and unexpected biochemical properties. J Mol Biol 225(2), 221-37.
    Krzystyniak, K. and Dupuy, J.M. (1984) Entry of mouse hepatitis virus 3 into cells. J Gen Virol 65 (Pt 1), 227-31.
    Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S., Urbani, C, Comer, J.A., Lim, W., Rollin, P.E., Dowell, S.F., Ling, A.E., Humphrey, C.D., Shieh, W.J., Guarner, J., Paddock, C.D., Rota, P., Fields, B., DeRisi, J., Yang, J.Y., Cox, N., Hughes, J.M., LeDuc, J.W., Bellini, W.J. and Anderson, L.J. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348(20), 1953-66.
    Kubo, H., Yamada, Y.K. and Taguchi, F. (1994) Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol 68(9), 5403-10.
    Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Laman, J.D., de Jong, T., van Doornum, G., Lim, W., Ling, A.E., Chan, P.K., Tarn, J.S., Zambon, M.C, Gopal, R., Drosten, C, van der Werf, S., Escriou,
     N., Manuguerra, J.C, Stohr, K., Peiris, J.S. and Osterhaus, A.D. (2003) Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362(9380), 263-70.
    Kuo, L. and Masters, P.S. (2002) Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. J Virol 76(10), 4987-99.
    Kuo, L. and Masters, P.S. (2003) The small envelope protein E is not essential for murine coronavirus replication. J Virol 77(8), 4597-608.
    Lachance, C, Arbour, N., Cashman, N.R. and Talbot, P.J. (1998) Involvement of aminopeptidase N (CD13) in infection of human neural cells by human coronavirus 229E. J Virol 72(8), 6511-9.
    Lai, M.M. (1990) Coronavirus: organization, replication and expression of genome. Annu Rev Microbiol 44, 303-33.
    Lai, M.M., Baric, R.S., Brayton, P.R. and Stohlman, S.A. (1984) Studies on the mechanism of RNA synthesis of a murine coronavirus. Adv Exp Med Biol 173, 187-200.
    Lai, M.M. and Cavanagh, D. (1997) The molecular biology of coronaviruses. Adv Virus Res 48,1-100.
    Lai, M.M., Patton, C.D., Baric, R.S. and Stohlman, S.A. (1983) Presence of leader sequences in the mRNA of mouse hepatitis virus. J Virol 46(3), 1027-33.
    Lai, M.M., Patton, CD. and Stohlman, S.A. (1982) Replication of mouse hepatitis virus: negative-stranded RNA and replicative form RNA are of genome length. J Virol 44(2), 487-92.
    Lai, M.M. and Stohlman, S.A. (1981) Genome structure of mouse hepatitis virus: comparative analysis by oligonucleotide mapping. Adv Exp Med Biol 142, 69-82.
    Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G.M., Ahuja, A., Yung, M.Y., Leung, C.B., To, K.F., Lui, S.F., Szeto, C.C., Chung, S. and Sung, J.J. (2003) A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348(20), 1986-94.
    Levis, R., Cardellichio, C.B., Scanga, C.A., Compton, S.R. and Holmes, K.V. (1995) Multiple receptor-dependent steps determine the species specificity of HCV-229E infection. Adv Exp Med Biol 380, 337-43.
    Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Sullivan, J.L., Luzuriaga, K., Greenough, T.C., Choe, H. and Farzan, M. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965), 450-4.
    Lim, K.P., Ng, L.F. and Liu, D.X. (2000) Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame la of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products. J Virol 74(4), 1674-85.
    Lin, C.W., Tsai, C.H., Tsai, F.J., Chen, P.J., Lai, C.C., Wan, L., Chiu, H.H. and Lin, K.H. (2004) Characterization of trans- and cis-cleavage activity of the SARS coronavirus 3CLpro protease: basis for the in vitro screening of anti-SARS drugs. FEBS Lett 574(1-3), 131-7.
    Lin, F.T., MacDougald, O.A., Diehl, A.M. and Lane, M.D. (1993) A 30-kDa alternative translation product of the CCAAT/enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. Proc Natl Acad Sci U S A 90(20), 9606-10.
    Lin, X., O'Reilly, K.L. and Storz, J. (1997) Infection of polarized epithelial cells with enteric and respiratory tract bovine coronaviruses and release of virus progeny. Am J Vet Res 58(10), 1120-4.
    Liu, C.L., Lu, Y.T., Peng, M.J., Chen, P.J., Lin, R.L., Wu, C.L. and Kuo, H.T. (2004a) Clinical and laboratory features of severe acute respiratory syndrome vis-a-vis onset of fever. Chest 126(2), 509-17.
    Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C.R., Xiong, H., Farmar, J., Debnath, A.K., Tien, P. and Jiang, S. (2004b) Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 363(9413), 938-47.
    Locker, J.K., Griffiths, G., Horzinek, M.C. and Rottier, P.J. (1992) O-glycosylation of the coronavirus M protein. Differential localization of sialyltransferases in N- and O-linked glycosylation. J Biol Chem 267(20), 14094-101.
    Lucchiari, M.A. and Pereira, C.A. (1990) A major role of macrophage activation by interferon-gamma during mouse hepatitis virus type 3 infection. II. Age- dependent resistance. Immunobiology 181(1), 31-9.
    Luo, C, Luo, H., Zheng, S., Gui, C, Yue, L., Yu, C, Sun, T., He, P., Chen, J., Shen, J., Luo, X., Li, Y., Liu, H., Bai, D., Yang, Y., Li, F., Zuo, J., Hilgenfeld, R., Pei, G., Chen, K., Shen, X. and Jiang, H. (2004) Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem Biophys Res Commun 321(3), 557-65.
    Luo, Z.L. and Weiss, S.R. (1998) Mutational analysis of fusion peptide-like regions in the mouse hepatitis virus strain A59 spike protein. Adv Exp Med Biol 440,17-23.
    Luytjes, W., Sturman, L.S., Bredenbeek, P.J., Charite, J., van der Zeijst, B.A., Horzinek, M.C. and Spaan, W.J. (1987) Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161(2), 479-87.
    Maeda, J., Maeda, A. and Makino, S. (1999) Release of coronavims E protein in membrane vesicles from vims-infected cells and E protein-expressing cells. Virology 263(2), 265-72.
    Makino, S., Joo, M. and Makino, J.K. (1991) A system for study of coronavirus mRNA synthesis: a regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion. J Virol 65(11), 6031-41.
    Makino, S., Stohlman, S.A. and Lai, M.M. (1986) Leader sequences of murine coronavims mRNAs can be freely reassorted: evidence for the role of free leader RNA in transcription. Proc Natl Acad Sci U S A 83(12), 4204-8.
    Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., Khattra, J., Asano, J.K., Barber, S.A., Chan, S.Y., Cloutier, A., Coughlin, S.M., Freeman, D., Girn, N., Griffith, O.L., Leach, S.R., Mayo, M., McDonald, H., Montgomery, S.B., Pandoh, P.K., Petrescu, A.S., Robertson, A.G., Schein, J.E., Siddiqui, A., Smailus, D.E., Stott, J.M., Yang, G.S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T.F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G.A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R.C., Krajden, M., Petric, M., Skowronski, D.M., Upton, C. and Roper, R.L. (2003) The Genome sequence of the SARS-associated coronavims. Science 300(5624), 1399-404.
    Martina, B.E., Haagmans, B.L., Kuiken, T., Fouchier, R.A., Rimmelzwaan, G.F., Van Amerongen, G., Peiris, J.S., Lim, W. and Osterhaus, A.D. (2003) Virology: SARS virus infection of cats and ferrets. Nature 425(6961), 915.
    Mauracher, C.A., Gillam, S., Shukin, R. and Tingle, A.J. (1991) pH-dependent solubility shift of rubella virus capsid protein. Virology 181(2), 773-7.
    Mazzulli, T., Farcas, G.A., Poutanen, S.M., Willey, B.M., Low, D.E., Butany, J., Asa, S.L. and Kain, K.C. (2004) Severe acute respiratory syndrome-associated coronavirus in lung tissue. Emerg Infect Dis 10(1), 20-4.
    Melton, J.V., Ewart, G.D., Weir, R.C., Board, P.G., Lee, E. and Gage, P.W. (2002) Alphavirus 6K proteins form ion channels. J Biol Chem 277(49), 46923-31.
    Mizzen, L., Daya, M. and Anderson, R. (1987) The role of protease-dependent cell membrane fusion in persistent and lytic infections of murine hepatitis virus. Adv Exp Med Biol 218, 175-86.
    Mizzen, L., Hilton, A., Cheley, S. and Anderson, R. (1985) Attenuation of murine coronavirus infection by ammonium chloride. Virology 142(2), 378-88.
    Monceyron, C, Grinde, B. and Jonassen, T.O. (1997) Molecular characterisation of the 3'-end of the astrovirus genome. Arch Virol 142(4), 699-706.
    Mossel, E.C., Huang, C, Narayanan, K., Makino, S., Tesh, R.B. and Peters, C.J. (2005) Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J Virol 79(6), 3846-50.
    Moustakas, A., Sonstegard, T.S. and Hackett, P.B. (1993) Effects of the open reading frames in the Rous sarcoma virus leader RNA on translation. J Virol 67(7), 4350-7.
    Nagy, P.D. and Simon, A.E. (1997) New insights into the mechanisms of RNA recombination. Virology 235(1), 1-9.
    Nakajima, N., Asahi-Ozaki, Y., Nagata, N., Sato, Y., Dizon, F., Paladin, F.J., Olveda, R.M., Odagiri, T., Tashio, M. and Sata, T. (2003) SARS coronavirus-infected cells in lung detected by new in situ hybridization technique. Jpn J Infect Dis 56(3), 139-41.
    Narayanan, K., Chen, C.J., Maeda, J. and Makino, S. (2003) Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal..J Virol 77(5), 2922-7.
    Narayanan, K., Maeda, A., Maeda, J. and Makino, S. (2000) Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol 74(17), 8127-34.
    Narayanan, K. and Makino, S. (2001) Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging. J Virol 75(19), 9059-67.
    Nash, T.C. and Buchmeier, M.J. (1997) Entry of mouse hepatitis virus into cells by endosomal and nonendosomal pathways. Virology 233(1), 1-8.
    Ng, L.F. and Liu, D.X. (2000) Further characterization of the coronavirus infectious bronchitis virus 3C-like proteinase and determination of a new cleavage site. Virology 272(1), 27-39.
    Nicholls, J.M., Poon, L.L., Lee, K.C., Ng, W.F., Lai, ST., Leung, C.Y., Chu, C.M., Hui, P.K., Mak, K.L., Lim, W., Yan, K.W., Chan, K.H., Tsang, N.C., Guan, Y., Yuen, K.Y. and Peiris, J.S. (2003) Lung pathology of fatal severe acute respiratory syndrome. Lancet 361(9371), 1773-8.
    Nudler, E., Kashlev, M., Nikiforov, V. and Goldfarb, A. (1995) Coupling between transcription termination and RNA polymerase inchworming. Cell 81(3), 351-7.
    Ohtsuka, N. and Taguchi, F. (1997) Mouse susceptibility to mouse hepatitis virus infection is linked to viral receptor genotype. J Virol 71(11), 8860-3.
    Opstelten, D.J., Raamsman, M.J., Wolfs, K., Horzinek, M.C. and Rottier, P.J. (1995) Envelope glycoprotein interactions in coronavirus assembly. J Cell Biol 131(2), 339-49.
    Ortego, J., Escors, D., Laude, H. and Enjuanes, L. (2002) Generation of a replication- competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome. J Virol 76(22), 11518-29.
    Osterhaus, A.D., Fouchier, R.A. and Kuiken, T. (2004) The aetiology of SARS: Koch's postulates fulfilled. Philos Trans R Soc Lond B Biol Sci 359(1447), 1081-2.
    Pasternak, A.O., Spaan, W.J. and Snijder, E.J. (2004) Regulation of relative abundance of arterivirus subgenomic mRNAs. J Virol 78(15), 8102-13.
    Pasternak, A.O., van den Born, E., Spaan, W.J. and Snijder, E.J. (2001) Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. Embo J 20(24), 7220-8.
    Pasternak, A.O., van den Born, E., Spaan, W.J. and Snijder, E.J. (2003) The stability of the duplex between sense and antisense transcription-regulating sequences is a crucial factor in arterivirus subgenomic mRNA synthesis. J Virol 77(2), 1175-83.
    Pavlakis, G.N. and Felber, B.K. (1990) Regulation of expression of human immunodeficiency virus. New Biol 2(1), 20-31.
    Pavlovic, D., Neville, D.C., Argaud, O., Blumberg, B., Dwek, R.A., Fischer, W.B. and Zitzmann, N. (2003) The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci U S A 100(10), 6104-8.
    Payne, H.R., Storz, J. and Henk, W.G. (1990) Initial events in bovine coronavirus infection: analysis through immunogold probes and lysosomotropic inhibitors. Arch Virol 114(3-4), 175-89.
    Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A. and Barker, J. (1981) An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am J Vet Res 42(3), 368-77.
    Peiris, J.S., Lai, S.T., Poon, L.L., Guan, Y., Yam, L.Y., Lim, W., Nicholls, J., Yee, W.K., Yan, W.W., Cheung, M.T., Cheng, V.C., Chan, K.H., Tsang, D.N., Yung, R.W., Ng, T.K. and Yuen, K.Y. (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361(9366), 1319-25.
    Penzes, Z., Gonzalez, J.M., Calvo, E., Izeta, A., Smerdou, C, Mendez, A., Sanchez, C.M., Sola, I., Almazan, F. and Enjuanes, L. (2001) Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the purdue virus cluster. Virus Genes 23(1), 105-18.
    Pickel, K., Muller, M.A. and ter Meulen, V. (1981) Analysis of age-dependent resistance to murine coronavirus JHM infection in mice. Infect Immun 34(3), 648-54.
    Portis, J.L., Spangrude, G.J. and McAtee, F.J. (1994) Identification of a sequence in the unique 5' open reading frame of the gene encoding glycosylated Gag which influences the incubation period of neurodegenerative disease induced by a murine retrovirus. J Virol 68(6), 3879-87.
    Premkumar, A., Wilson, L., Ewart, G.D. and Gage, P.W. (2004) Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett 557(1-3), 99-103.
    Prentice, E., Jerome, W.G., Yoshimori, T., Mizushima, N. and Denison, MR. (2004a) Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem 279(11), 10136-41.
    Prentice, E., McAuliffe, J., Lu, X., Subbarao, K. and Denison, M.R. (2004b) Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol 78(18), 9977-86.
    Ramos, F.D., Carrasco, M, Doyle, T. and Brierley, I. (2004) Programmed -1 ribosomal frameshifting in the SARS coronavirus. Biochem Soc Trans 32(Pt 6), 1081-3.
    Rao, P.V. and Gallagher, T.M. (1998) Intracellular complexes of viral spike and cellular receptor accumulate during cytopathic murine coronavirus infections. J Virol 72(4), 3278-88.
    report, c. (2003) Severe acute respiratory syndrome (SARS) and coronavirus testing- United States, 2003. MMWR Morb Mortal Wkly Rep 52(14), 297-302.
    Risco, C, Anton, I.M., Enjuanes, L. and Carrascosa, J.L. (1996) The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol 70(7), 4773-7.
    Risco, C, Muntion, M, Enjuanes, L. and Carrascosa, J.L. (1998) Two types of virus- related particles are found during transmissible gastroenteritis virus morphogenesis. J Virol 72(5), 4022-31.
    Robertson, M.P., Igel, H., Baertsch, R., Haussler, D., Ares, M., Jr. and Scott, W.G. (2005) The structure of a rigorously conserved RNA element within the SARS virus genome. PLoS Biol 3(1), e5.
    Rossen, J.W., Bekker, C.P., Voorhout, W.F., Strous, G.J., van der Ende, A. and Rottier, P.J. (1994) Entry and release of transmissible gastroenteritis coronavirus are restricted to apical surfaces of polarized epithelial cells. J Virol 68(12), 7966-73.
    Rossen, J.W., Horzinek, M.C. and Rottier, P.J. (1995a) Coronavirus infection of polarized epithelial cells. Trends Microbiol 3(12), 486-90.
    Rossen, J.W., Strous, G.J., Horzinek, M.C. and Rottier, P.J. (1997) Mouse hepatitis virus strain A59 is released from opposite sides of different epithelial cell types. J Gen Virol 78 (Pt 1), 61-9.
    Rossen, J.W., Voorhout, W.F., Horzinek, M.C, van der Ende, A., Strous, G.J. and Rottier, P.J. (1995b) MHV-A59 enters polarized murine epithelial cells through the apical surface but is released basolaterally. Virology 210(1), 54-66.
    Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Penaranda, S., Bankamp, B., Maher, K., Chen, M.H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J.L., Chen, Q., Wang, D., Erdman, D.D., Peret, T.C., Burns, C, Ksiazek, T.G., Rollin, P.E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A.D., Drosten, C, Pallansch, M.A., Anderson, L.J. and Bellini, W.J. (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300(5624), 1394-9.
    Ruan, Y.J., Wei, C.L., Ee, A.L., Vega, V.B., Thoreau, H., Su, S.T., Chia, J.M., Ng, P., Chiu, K.P., Lim, L., Zhang, T., Peng, C.K., Lin, E.O., Lee, N.M., Yee, S.L., Ng, L.F., Chee, R.E., Stanton, L.W., Long, P.M. and Liu, E.T. (2003) Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet 361(9371), 1779-85.
    Salanueva, I.J., Carrascosa, J.L. and Risco, C. (1999) Structural maturation of the transmissible gastroenteritis coronavirus. J Virol 73(10), 7952-64.
    Sanchez, C.M., Jimenez, G., Laviada, M.D., Correa, I., Sune, C, Bullido, M., Gebauer, F., Smerdou, C, Callebaut, P., Escribano, J.M. and et al. (1990) Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 174(2), 410-7.
    Sarma, J.D., Scheen, E., Seo, S.H., Koval, M. and Weiss, S.R. (2002) Enhanced green fluorescent protein expression may be used to monitor murine coronavirus spread in vitro and in the mouse central nervous system. J Neurovirol 8(5), 381-91.
    Sawicki, D., Wang, T. and Sawicki, S. (2001) The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol 82(Pt 2), 385-96.
    Sawicki, S.G., Lu, J.H. and Holmes, K.V. (1995) Persistent infection of cultured cells with mouse hepatitis virus (MHV) results from the epigenetic expression of the MHV receptor. J Virol 69(9), 5535-43.
    Sawicki, S.G. and Sawicki, D.L. (1986) Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis. J Virol 57(1), 328-34.
    Sawicki, S.G. and Sawicki, D.L. (1990) Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J Virol 64(3), 1050-6.
    Sawicki, S.G. and Sawicki, D.L. (1995) Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv Exp Med Biol 380, 499-506.
    Sawicki, S.G. and Sawicki, D.L. (1998) A new model for coronavirus transcription. Adv Exp Med Biol 440, 215-9.
    Schaad, M.C. and Baric, R.S. (1993) Evidence for new transcriptional units encoded at the 3' end of the mouse hepatitis virus genome. Virology 196(1), 190-8.
    Schaad, M.C. and Baric, R.S. (1994) Genetics of mouse hepatitis virus transcription: evidence that subgenomic negative strands are functional templates. J Virol 68(12), 8169-79.
    Schickli, J.H., Zelus, B.D., Wentworth, D.E., Sawicki, S.G. and Holmes, K.V. (1997) The murine coronavirus mouse hepatitis virus strain A59 from persistently infected murine cells exhibits an extended host range. J Virol 71(12), 9499-507.
    Schmidt-Mende, J., Bieck, E., Hugle, T., Penin, F., Rice, C.M., Blum, H.E. and Moradpour, D. (2001) Determinants for membrane association of the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 276(47), 44052-63.
    Schochetman, G., Stevens, R.H. and Simpson, R.W. (1977) Presence of infectious polyadenylated RNA in coronavirus avian bronchitis virus. Virology 77(2), 772- 82.
    Schubert, U., Ferrer-Montiel, A.V., Oblatt-Montal, M., Henklein, P., Strebel, K. and Montal, M. (1996) Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett 398(1), 12-8.
    Schultze, B., Enjuanes, L. and Herrler, G. (1995) Analysis of the sialic acid-binding activity of the transmissible gastroenteritis virus. Adv Exp Med Biol 380, 367-70.
    Schultze, B., Gross, H.J., Brossmer, R. and Herrler, G. (1991) The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J Virol 65(11), 6232-7.
    Schultze, B. and Herrler, G. (1992) Bovine coronavirus uses N-acetyl-9-O- acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J Gen Virol 73 ( Pt 4), 901-6.
    Schultze, B. and Herrler, G. (1995) Polarized entry of bovine coronavirus in epithelial cells. Adv Exp Med Biol 380, 375-8.
    Schultze, B., Zimmer, G. and Herrler, G. (1996) Virus entry into a polarized epithelial cell line (MDCK): similarities and dissimilarities between influenza C virus and bovine coronavirus. J Gen Virol 77 (Pt 10), 2507-14.
    Schwartz, S., Felber, B.K., Fenyo, E.M. and Pavlakis, G.N. (1990) Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J Virol 64(11), 5448-56.
    Senanayake, S.D. and Brian, D.A. (1997) Bovine coronavirus I protein synthesis follows ribosomal scanning on the bicistronic N mRNA. Virus Res 48(1), 101-5.
    Senanayake, S.D. and Brian, D.A. (1999) Translation from the 5' untranslated region (UTR) of mRNA 1 is repressed, but that from the 5' UTR of mRNA 7 is stimulated in coronavirus-infected cells. J Virol 73(10), 8003-9.
    Senanayake, S.D., Hofmann, M.A., Maki, J.L. and Brian, D.A. (1992) The nucleocapsid protein gene of bovine coronavirus is bicistronic. J Virol 66(9), 5277-83.
    Sethna, P.B., Hofmann, M.A. and Brian, D.A. (1991) Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J Virol 65(1), 320-5.
    Sethna, P.B., Hung, S.L. and Brian, D.A. (1989) Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. Proc Natl Acad Sci U S A 86(14), 5626-30.
    Shen, X., Xue, J.H., Yu, C.Y., Luo, H.B., Qin, L., Yu, X.J., Chen, J., Chen, L.L., Xiong, B., Yue, L.D., Cai, J.H., Shen, J.H., Luo, X.M., Chen, K.X., Shi, T.L., Li, Y.X., Hu, G.X. and Jiang, H.L. (2003) Small envelope protein E of SARS: cloning, expression, purification, CD determination, and bioinformatics analysis. Acta Pharmacol Sin 24(6), 505-11.
    Shi, J., Wei, Z. and Song, J. (2004) Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors. J Biol Chem 279(23), 24765-73.
    Shi, S.T., Schiller, J.J., Kanjanahaluethai, A., Baker, S.C., Oh, J.W. and Lai, M.M. (1999) Colocalization and membrane association of murine hepatitis virus gene 1. products and De novo-synthesized viral RNA in infected cells. J Virol 73(7), 5957-69.
    Shibata, M., Aoki, H., Tsurumi, T., Sugiura, Y., Nishiyama, Y., Suzuki, S. and Maeno, K. (1983) Mechanism of uncoating of influenza B virus in MDCK cells: action of chloroquine. J Gen Virol 64(Pt 5), 1149-56.
    Shieh, C.K., Soe, L.H., Makino, S., Chang, M.F., Stohlman, S.A. and Lai, M.M. (1987) The 5'-end sequence of the murine coronavirus genome: implications for multiple fusion sites in leader-primed transcription. Virology 156(2), 321-30.
    Shire, D., Carillon, C, Kaghad, M., Calandra, B., Rinaldi-Carmona, M., Le Fur, G., Caput, D. and Ferrara, P. (1995) An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J Biol Chem 270(8), 3726-31.
    Siegel, R.W., Bellon, L., Beigelman, L. and Kao, C.C. (1998) Moieties in an RNA promoter specifically recognized by a viral RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 95(20), 11613-8.
    Sirinarumitr, T., Kluge, J.P. and Paul, P.S. (1998) Transmissible gastroenteritis virus induced apoptosis in swine testes cell cultures. Arch Virol 143(12), 2471-85.
    Skinner, M. and Siddell, S. (1984) Nucleotide sequencing of mouse hepatitis virus strain JHM messenger RNA 7. Adv Exp Med Biol 173, 163-71.
    Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Rozanov, M., Spaan, W.J. and Gorbalenya, A.E. (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331(5), 991-1004.
    Snijder, E.J. and Meulenberg, J.J. (1998) The molecular biology of arteriviruses. J Gen Virol 79(Pt 5), 961-79.
    Sola, I., Alonso, S., Zuniga, S., Balasch, M., Plana-Duran, J. and Enjuanes, L. (2003) Engineering the transmissible gastroenteritis virus genome as an expression vector inducing lactogenic immunity. J Virol 77(7), 4357-69.
    Sola, I., Moreno, J.L., Zuniga, S., Alonso, S. and Enjuanes, L. (2005) Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis. J Virol 79(4), 2506-16.
    Spaan, W., Cavanagh, D. and Horzinek, M.C. (1988) Coronaviruses: structure and genome expression. J Gen Virol 69 (Pt 12), 2939-52.
    St Cyr-Coats, K.S., Storz, J., Hussain, K.A. and Schnorr, K.L. (1988) Structural proteins of bovine coronavirus strain L 9: effects of the host cell and trypsin treatment. Arch Virol 103(1-2), 35-45.
    Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H.D. and Rappuoli, R. (2003) SARS-beginning to understand a new vims. Nat Rev Microbiol 1(3), 209-18.
    Stohlman, S.A., Frelinger, J.A. and Weiner, L.P. (1980) Resistance to fatal central nervous system disease by mouse hepatitis vims, strain JHM. II. Adherent cell-mediated protection. J Immunol 124(4), 1733-9.
    Sturman, L.S. and Holmes, K.V. (1984) Proteolytic cleavage of peplomeric glycoprotein E2 of MHV yields two 90K subunits and activates cell fusion. Adv Exp Med Biol 173,25-35.
    Sturman, L.S., Ricard, C.S. and Holmes, K.V. (1985) Proteolytic cleavage of the E2 glycoprotein of murine coronavims: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J Virol 56(3), 904-11.
    Subbarao, K., McAuliffe, J., Vogel, L., Fahle, G., Fischer, S., Tatti, K., Packard, M., Shieh, W.J., Zaki, S. and Murphy, B. (2004) Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavims in the respiratory tract of mice. J Virol 78(7), 3572-7.
    Sui, J., Li, W., Murakami, A., Tamin, A., Matthews, L.J., Wong, S.K., Moore, M.J., St Clair Tallarico, A., Olurinde, M., Choe, H., Anderson, L.J., Bellini, W.J., Farzan, M. and Marasco, W.A. (2004) Potent neutralization of severe acute respiratory syndrome (SARS) coronavims by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A.
    Surjit, M., Liu, B., Kumar, P., Chow, V.T. and Lal, S.K. (2004) The nucleocapsid protein of the SARS coronavims is capable of self-association through a C-terminal 209 ammo acid interaction domain. Biochem Biophys Res Commun 317(4), 1030-6.
    Sutton, G., Fry, E., Carter, L., Sainsbury, S., Walter, T., Nettleship, J., Berrow, N., Owens, R., Gilbert, R., Davidson, A., Siddell, S., Poon, L.L., Diprose, J., Alderton, D., Walsh, M., Grimes, J.M. and Stuart, D.I. (2004) The nsp9 Replicase Protein of SARS-Coronavirus, Structure and Functional Insights. Structure (Camb) 12(2), 341-53.
    Taguchi, F., Kubo, H., Suzuki, H. and Yamada, Y.K. (1995) Localization of neutralizing epitopes and receptor-binding site in murine coronavirus spike protein. Adv Exp Med Biol 380, 359-65.
    Taguchi, F., Yamada, A. and Fujiwara, K. (1979) Factors involved in the age-dependent resistance of mice infected with low-virulence mouse hepatitis virus. Arch Virol 62(4), 333-40.
    Tahara, S.M., Dietlin, T.A., Bergmann, C.C., Nelson, G.W., Kyuwa, S., Anthony, R.P. and Stohlman, S.A. (1994) Coronavirus translational regulation: leader affects mRNA efficiency. Virology 202(2), 621-30.
    Tan, Y.J., Fielding, B.C., Goh, P.Y., Shen, S., Tan, T.H., Lim, S.G. and Hong, W. (2004) Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J Virol 78(24), 14043-7.
    Thiel, V., Herold, J., Schelle, B. and Siddell, S.G. (2001) Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol 75(14), 6676-81.
    Thiel, V., Ivanov, K.A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Snijder, E.J., Rabenau, H., Doerr, H.W., Gorbalenya, A.E. and Ziebuhr, J. (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84(Pt 9), 2305-15.
    To, K.F., Tong, J.H., Chan, P.K., Au, F.W., Chim, S.S., Chan, K.C., Cheung, J.L., Liu, E.Y., Tse, G.M., Lo, A.W., Lo, Y.M. and Ng, H.K. (2004) Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in-situ hybridization study of fatal cases. J Pathol 202(2), 157-63.
    Tresnan, D.B. and Holmes, K.V. (1998) Feline aminopeptidase N is a receptor for all group I coronaviruses. Adv Exp Med Biol 440, 69-75.
    Tresnan, D.B., Levis, R. and Holmes, K.V. (1996) Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 70(12), 8669-74.
    Tripet, B., Howard, M.W., Jobling, M., Holmes, R.K., Holmes, K.V. and Hodges, R.S. (2004) Structural characterization of the SARS-coronavirus spike S fusion protein core. J Biol Chem.
    Tsai, J.C., Zelus, B.D., Holmes, K.V. and Weiss, S.R. (2003) The N-terminal domain of the murine coronavirus spike glycoprotein determines the CEACAMl receptor specificity of the virus strain. J Virol 77(2), 841-50.
    Van Den Born, E., Gultyaev, A.P. and Snijder, E.J. (2004) Secondary structure and function of the 5'-proximal region of the equine arteritis virus RNA genome. Rna 10(3), 424-37.
    van der Meer, Y., Snijder, E.J., Dobbe, J.C., Schleich, S., Denison, M.R., Spaan, W.J. and Locker, J.K. (1999) Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J Virol 73(9), 7641-57.
    van der Most, R.G., de Groot, R.J. and Spaan, W.J. (1994) Subgenomic RNA synthesis directed by a synthetic defective interfering RNA of mouse hepatitis virus: a study of coronavirus transcription initiation. J Virol 68(6), 3656-66.
    van Marie, G., Dobbe, J.C., Gultyaev, A.P., Luytjes, W., Spaan, W.J. and Snijder, E.J. (1999) Arterivims discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci U S A 96(21), 12056-61.
    Vennema, H., Godeke, G.J., Rossen, J.W., Voorhout, W.F., Horzinek, M.C., Opstelten, D.J. and Rottier, P.J. (1996) Nucleocapsid-independent assembly of coronavirus- like particles by co-expression of viral envelope protein genes. Embo J 15(8), 2020-8.
    Viglianti, G.A., Rubinstein, E.P. and Graves, K.L. (1992) Role of TAR RNA splicing in translational regulation of simian immunodeficiency virus from rhesus macaques. J Virol 66(8), 4824-33.
    Vlasak, R., Luytjes, W., Spaan, W. and Palese, P. (1988) Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those ofinfluenza C viruses. Proc Natl Acad Sci U S A 85(12), 4526-9.
    von Grotthuss, M., Wyrwicz, L.S. and Rychlewski, L. (2003) mRNA cap-1 methyltransferase in the SARS genome. Cell 113(6), 701-2.
    von Hippel, P.H. (1998) An integrated model of the transcription complex in elongation, termination, and editing. Science 281(5377), 660-5.
    Wang, D., Meier, T.I., Chan, C.L., Feng, G., Lee, D.N. and Landick, R. (1995) Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex. Cell 81(3), 341-50.
    Wang, G., Deering, C, Macke, M., Shao, J., Burns, R., Blau, D.M., Holmes, K.V., Davidson, B.L., Perlman, S. and McCray, P.B., Jr. (2000) Human coronavirus 229E infects polarized airway epithelia from the apical surface. J Virol 74(19), 9234-9.
    Wang, P., Chen, J., Zheng, A., Nie, Y., Shi, X., Wang, W., Wang, G., Luo, M., Liu, H., Tan, L., Song, X., Wang, Z., Yin, X., Qu, X., Wang, X., Qing, T., Ding, M. and Deng, H. (2004) Expression cloning of functional receptor used by SARS coronavirus. Biochem Biophys Res Commun 315(2), 439-44.
    Weingartl, H.M. and Derbyshire, J.B. (1993) Binding of porcine transmissible gastroenteritis virus by enterocytes from newborn and weaned piglets. Vet Microbiol 35(1-2),23-32.
    Weingartl, H.M. and Derbyshire, J.B. (1994) Evidence for a putative second receptor for porcine transmissible gastroenteritis virus on the villous enterocytes of newborn pigs.J Virol 68(11), 7253-9.
    Weingartl, H.M. and Derbyshire, J.B. (1995) Cellular receptors for transmissible gastroenteritis virus on porcine enterocytes. Adv Exp Med Biol 380, 325-9.
    Wertz, G.W., Perepelitsa, V.P. and Ball, L.A. (1998) Gene rearrangement attenuates expression and lethality of a nonsegmented negative strand RNA virus. Proc Natl Acad Sci U S A 95(7), 3501-6.
    Williams, R.K., Jiang, G.S. and Holmes, K.V. (1991) Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A 88(13), 5533-6.
    Williams, R.K., Snyder, S.W. and Holmes, K.V. (1990) MHV-resistant SJL/J mice express a non-functional homolog to the MHV receptor glycoprotein. Adv Exp Med Biol 276,45-50.
    Wilson, L., McKinlay, C, Gage, P. and Ewart, G. (2004) SARS coronavirus E protein forms cation-selective ion channels. Virology 330(1), 322-31.
    Wong, S.K., Li, W., Moore, M.J., Choe, H. and Farzan, M. (2004) A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin- converting enzyme 2. J Biol Chem 279(5), 3197-201.
    Wurm, T., Chen, H., Hodgson, T., Britton, P., Brooks, G. and Hiscox, J.A. (2001) Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J Virol 75(19), 9345-56.
    Xiao, X., Chakraborti, S., Dimitrov, A.S., Gramatikoff, K. and Dimitrov, D.S. (2003) The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun 312(4), 1159-64.
    Xiao, X. and Dimitrov, D.S. (2004) The SARS-CoV S glycoprotein. Cell Mol Life Sci 61(19-20), 2428-30.
    Xu, H.Y., Lim, K.P., Shen, S. and Liu, D.X. (2001) Further identification and characterization of novel intermediate and mature cleavage products released from the ORF 1b region of the avian coronavirus infectious bronchitis virus 1a/1b polyprotein. Virology 288(2), 212-22.
    Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S.G. and Ding, J. (2003) Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res 31(24), 7117-30.
    Xu, Y., Lou, Z., Liu, Y., Pang, H., Tien, P., Gao, G.F. and Rao, Z. (2004) Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem 279(47), 49414-9.
    Yan, H., Xiao, G., Zhang, J., Hu, Y., Yuan, F., Cole, D.K., Zheng, C. and Gao, G.F. (2004) SARS coronavirus induces apoptosis in Vero E6 cells. J Med Virol 73(3), 323-31.
    Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G.F., Anand, K., Bartlam, M., Hilgenfeld, R. and Rao, Z. (2003) The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A 100(23), 13190-5.
    Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T. and Holmes, K.V. (1992) Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357(6377), 420-2.
    Yokomori, K., Banner, L.R. and Lai, M.M. (1991) Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses. Virology 183(2), 647-57.
    Yokomori, K. and Lai, M.M. (1994) Mouse hepatitis virus receptors: more than a single carcinoembryonic antigen. Arch Virol Suppl 9, 461-71.
    Yoo, D.W., Parker, M.D. and Babiuk, L.A. (1991) The S2 subunit of the spike glycoprotein of bovine coronavirus mediates membrane fusion in insect cells. Virology 180(1), 395-9.
    Yu, C.J., Chen, Y.C., Hsiao, C.H., Kuo, T.C., Chang, S.C., Lu, C.Y., Wei, W.C., Lee, C.H., Huang, L.M., Chang, M.F., Ho, H.N. and Lee, F.J. (2004) Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus. FEBS Lett 565(1-3), 111-6.
    Yuan, K., Yi, L., Chen, J., Qu, X., Qing, T., Rao, X., Jiang, P., Hu, J., Xiong, Z., Nie, Y., Shi, X., Wang, W., Ling, C, Yin, X., Fan, K., Lai, L., Ding, M. and Deng, H. (2004) Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein. Biochem Biophys Res Commun 319(3), 746-52.
    Zelus, B.D., Schickli, J.H., Blau, D.M., Weiss, S.R. and Holmes, K.V. (2003) Conformational changes in the spike glycoprotein of murine coronavirus are induced at 37 degrees C either by soluble murine CEACAM1 receptors or by pH 8. J Virol 77(2), 830-40.
    Zeng, F.Y., Chan, C.W., Chan, M.N., Chen, J.D., Chow, K.Y., Hon, C.C., Hui, K.H., Li, J., Li, V.Y., Wang, C.Y., Wang, P.Y., Guan, Y., Zheng, B., Poon, L.L., Chan, K.H., Yuen, K.Y., Peiris, J.S. and Leung, F.C. (2003) The complete genome sequence of severe acute respiratory syndrome coronavirus strain HKU-39849 (HK-39). Exp Biol Med (Maywood) 228(7), 866-73.
    Zeng, R., Yang, R.F., Shi, M.D., Jiang, M.R., Xie, Y.H., Ruan, H.Q., Jiang, X.S., Shi, L., Zhou, H., Zhang, L., Wu, X.D., Lin, Y., Ji, Y.Y., Xiong, L., Jin, Y., Dai, E.H., Wang, X.Y., Si, B.Y., Wang, J., Wang, H.X., Wang, C.E., Gan, Y.H., Li, Y.C., Cao, J.T., Zuo, J.P., Shan, S.F., Xie, E., Chen, S.H., Jiang, Z.Q., Zhang, X., Wang, Y., Pei, G., Sun, B. and Wu, J.R. (2004) Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients. J Mol Biol 341(1), 271-9.
    Zhang, X. (2001) Identification of a noncanonical transcription initiation site for transcription of a subgenomic mRNA of mouse hepatitis virus. Adv Exp Med Biol 494, 563-70.
    Zhong, N.S., Zheng, B.J., Li, Y.M., Poon, Xie, Z.H., Chan, K.H., Li, P.H., Tan, S.Y., Chang, Q., Xie, J.P., Liu, X.Q., Xu, J., Li, D.X., Yuen, K.Y., Peiris and Guan, Y. (2003a) Epidemiology and cause of severe acute respiratory syndrome (SARS) in
     Guangdong, People's Republic of China, in February, 2003. Lancet 362(9393), 1353-8.
    Zhong, Y.F., Gao, X.M., Wang, S.L., Xie, Z.G., Ma, Y., Fang, W.G., Zou, W.Z., Li, X.L., Zhang, Q.Y., Wang, W., Zhao, Z.D. and Gu, J. (2003b) [Pathologic study of circulating blood leukocytes in severe acute respiratory syndrome]. Zhonghua Yi Xue Za Zhi 83(24), 2137-41.
    Zhu, J., Xiao, G., Xu, Y., Yuan, F., Zheng, C, Liu, Y., Yan, H., Cole, D.K., Bell, J.I., Rao, Z., Tien, P. and Gao, G.F. (2004) Following the rule: formation of the 6-helix bundle of the fusion core from severe acute respiratory syndrome coronaviras spike protein and identification of potent peptide inhibitors. Biochem Biophys Res Commun 319(1), 283-8.
    Zhu, Y., Liu, M, Zhao, W., Zhang, J., Zhang, X., Wang, K., Gu, C, Wu, K., Li, Y., Zheng, C, Xiao, G., Yan, H., Guo, D., Tien, P. and Wu, J. (2005) Isolation of virus from a SARS patient and genome-wide analysis of genetic mutations related to pathogenesis and epidemiology from 47 SARS-CoV isolates. Virus Genes 30(1), 93-102.
    Ziebuhr, J., Snijder, E.J. and Gorbalenya, A.E. (2000) Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81(Pt 4), 853-79.
    Zoltick, P.W., Leibowitz, J.L., DeVries, J., Pachuk, C.J. and Weiss, S.R. (1990) Detection of mouse hepatitis virus nonstructural proteins using antisera directed against bacterial viral fusion proteins. Adv Exp Med Biol 276, 291-9.
    Zuniga, S., Sola, I., Alonso, S. and Enjuanes, L. (2004) Sequence motifs involved in the regulation of discontinuous coronaviras subgenomic RNA synthesis. J Virol 78(2), 980-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700