MADS-box基因在单子叶植物花发育中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MADS-box基因是一个大的转录因子家族,在花发育过程中起重要作用。根据对双子叶模式植物拟南芥、金鱼草和矮牵牛遗传突变体的研究,提出了花发育的ABCDE模型。该模型认为:A、B、C、D、E代表了5类功能不同的花器官特征基因,单独或联合控制花器官的发育。在这5类基因中,E类基因的功能较为复杂,它不仅是花器官特征基因,而且具有花分生组织决定性(Floral meristem determinency)。在单子叶植物中,E类基因的功能发生了很大的分化。水稻是单子叶植物的模式植物,水稻中至少有5个E类基因,分别是OsMADS1、OsMADS5、OsMADS7、OsMADS8和OsMADS34 ,其中除了对OsMADS1基因有较深入的研究外,对其它几个E类基因的功能了解甚少。我们以OsMADS8基因为切入点,利用组织原位杂交,RNAi技术对水稻中的E类基因进行了深入的研究。结果表明:OsMADS8/7基因早在花序枝梗分生组织原基就有转录,随着小穗的生长发育,逐渐集中在小穗分生组织原基,小花分生组织原基,浆片、雄蕊和心皮中表达; 在胚珠形成时,内外珠被有很强的杂交信号,而且在幼胚和胚乳中也有表达。OsMADS5在幼花时期,四轮花器官均有表达,在小穗发育后期及受精后的表达方式与OsMADS8/7基因相同。OsMADS8基因被抑制后,转基因植株没有任何表型变化,说明很可能有其它E类基因弥补了OsMADS8基因的功能缺失; 当同时抑制其它E类基因的表达时,转基因植株抽穗期明显延长,四轮花器官的发育均受到影响:稃片类似叶片状; 浆片转变为稃片类的结构; 雄蕊没有花粉; 心皮具有了稃片的特点; 没有胚珠结构的形成,同时失去了花分生组织决定性,在心皮的部位产生了新的花器官或花分生组织逆转为花序分生组织。说明水稻四轮花器官及胚珠的正常发育需要E类基因的参与,但其功能与双子叶植物如拟南芥,矮牵牛等直系同源基因相比已经发生变化; 水稻中的E类基因在维持花分生组织特征性方面起重要作用; 另外对抽穗期有影响。
    研究MADS-box基因的调控序列可以进一步揭示影响基因时空表达的内外因素。ZAG2是玉米MADS-box基因中的D类基因,控制胚珠的发育,在胚珠和心皮的内表面特异表达。我们从玉米基因组分离到了ZAG2基因翻译起始点上游3040bp的序列,并利用5’-RACE方法鉴定出了转录起始点的位置。通过不同
MADS-box genes encode a family of transcriptional factors that play a key role in flower development. Studies on several floral homeotic mutants in dicots, mainly in Arabidopsis, Snapdragan and Petunia, established the ABCDE model for the determination of floral organ identities. Class E genes contribute to the development of petals, stamens and carpels, in addition to sepals. It also specifies the floral meristem identity. In grasses, E-function genes underwent a relatively rapid functional diversification. There are at least five class E genes in rice. They are OsMADS1, OsMADS5, OsMADS7 (OsMADS45), OsMADS8 (OsMADS24) and OsMADS34, in which OsMADS1 is currently the best characterized, the others are not documented well. On the basis of the results from dicots, we investigated the E function genes in rice using In Situ Hybridization and RNAi technique. The results showed that OsMADS8/7 transcripts are first detected in branching primordia, then in spikelet meristem primordia. With the development of the flower, OsMADS8 transcripts are localized in the lodicules, developing stamens and pistil. OsMADS8 continues to express in integuments, developing embryo and endersperm. OsMADS5 has similar expression patterns to OsMADS8/7. The difference is that OsMADS5 transcripts present in all floral whorls at early stage of the flower development. Silencing of OsMADS8 by RNAi strategy had no phenotypic alteration when compared to wild-type plants, but if all the E function genes were silenced in the mean time, the floral organs and heading date were seriously affected. The palea and lemma were transformed into leaf-like structures; the lodicules were palea-like and the stamens did not produce pollen. The carpels had characteristics of palea/lemma. Ovule was not formed in the aberrant carpel and floral reversion occurred. It suggested that there is functional
    redundancy among class E genes in rice, in addition to the diversification; class E genes are required for the development of all four floral organs and ovule; E function genes specify the floral meristem identity and affected the heading date of rice. Studies on the regulatory sequence of MADS-box genes will reveal spatial and temporal control of gene expression. ZAG2 gene belongs to the class D gene of MADS-box genes in maize. It expresses in ovules and carpels. We isolated the sequence of 3040bp upstream of the translational start site of the gene. The transcriptional start site in the sequence was identified by the method of 5’-RACE. Two gene fusions between the ZAG2 genomic region and the GUS reporter gene were assembled and introduced into rice. We analyzed the regulatory sequence according to the primary results.
引文
Allshire R. (2002) RNAi and heterochromatin—a hushed-up affair. Science 297, 1818-1819.
    Alvarez-Buylla E.R., Pelaz S., Liljegren S.J., Gold S.E., Burgeff C., Ditta G.S., De Pouplana L.R., Martinez-Castilla L.,Yanofsky M.F. (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. USA 97, 5328–5333.
    Ambrose B.A., Lerner D.R., Ciceri P., Padilla C.M., Yanofsky M.F., Schmidt R.J. (2000) Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell 5, 569–579.
    Ampomanh-Dwamena C, Morris B.A., Sutherland P., Veit B, Yao J.L. (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, cause parthenocarpic fruit development and floral reversion. Plant Physiol 130, 605-617.
    Anandalakshmi R., Pruss G.J., Ge X., Marathe R., Mallory A.C., Smith T.H. Vance V.B. (1998) A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 95, 13079–13084.
    Angell S.M. and Baulcombe D.C. (1997) Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J. 16, 3675–3684.
    Angenent G.C., Colombo L. (1996) Molecular control of ovule development. Trends Plant Sci 1, 228-232.
    Angenent G.C., Franken J, Busscher M, Weiss D, van Tunen A.J. (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5, 33–44.
    Angenent G.C., Franken J., Busscher M., van Dijken A., van Went J.L., Dons H.J. M., van Tunen A.J. (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7, 1569–1582.
    Bartel B. and Bartel D.P. (2003) MicroRNAs: at the root of plant development. Plant Physiol. 132, 709–717.
    Baulcombe D. (2004) RNAi silencing in plant. Nature 431, 356-363.
    Becker A. and Theissen G. (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29, 464–489.
    Bender J. (2004) Chromatin-based silencing mechanisms. Current Opinion in Plant Biology 7, 521–526.
    Bernstein E., Caudy A.A., Hammond S.M., Hannon G.J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.
    Bowman J.L., Alvarez J., Weigel D., Meyerowitz E.M., Smyth D.R. (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119, 721–743.
    Bowman J.L., Drews G.N. and Meyerowitz E.M. (1991) Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell 3, 749-758.
    Bowman J.L., Smyth D.R. and Meyerowitz E.M. (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1-20.
    Bowman J.L., Smyth D.R., and Meyerowitz E.M. (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1–20.
    Brigneti G., Voinnet O., Li L.H., Ding S.W., Baulcombe D.C. (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739–6746.
    Brummell D.A., Balint-Kurti P., Harpster M.H., Palys J.M., Oeller P.W.(2003)Gutterson N: inverted repeat of a heterologous 3’-untranslated region for high-efficiency, high-throughput gene silencing. Plant J. 33, 798-800.
    Busch M.A., Bomblies K. and Weigel D. (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285, 585–587.
    Cacharrón J., Saedler H., Thei?en G. (1999) Expression of MADS-box genes ZMM8 and ZMM14 during inflorescence development of Zeamays discriminates between the upper and the lower floret of each spikelet. Dev Genes Evol 209,411-420.
    Carey M. and Smale S.T. (2001) Transcriptional Regulation in Eukaryotes :Concepts, Strategies and Techniques. Cold Spring Harbor Laboratory Press. Carrington J.C. and Ambros V. (2003) Role of microRNAs in plant and animal development. Science 301, 336–338.
    Chen X. M., Riechmann J.L., Jia D. X. and Meyerowitz E.M. (2000) Minimal regions in the Arabidopsis PISTILLATA promoter responsive to the APETALA3/ PISTILLATA feedback control do not contain a CArG box. Sex
    Plant Reprod 13, 85–94.
    Chuang C.F. and Meyerowitz E.M. (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 97, 4985–4990.
    Chung Y.Y., Kim S.R., Finkel D., Yanofsy M.F and An G. (1994) Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant Mol. Biol. 26, 657-665.
    Chung Y.Y., Kim S.R., Kang H.G., Noh Y.S., Park M.C., Finkel D., An G. (1995) Characterization of two rice MADS-box genes homologous to GLOBOSA. Plant Sci 109, 45–56.
    Coen E.S., Meyerowitz E.M. (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353, 31-37.
    Cogoni C. and Macino G. (1997) Isolation of quelling-defective (qde) mutants impaired in post-transcriptional transgene induced gene silencing in Neurospora crassa. Proc. Natl. Acad. Sci. 94, 10233–10238.
    Colombo L., Franken J., Koetje E., van Went J., Dons H.J.M., Angenent G.C., van Tunen A.J. (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859–1868.
    Conner J. and Liu Zhongchi (2000) LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proc. Natl. Acad. Sci.12902-12907.
    De Bodt S., Raes J., Florquin K., Rombauts S., Rouz_e P., Thei?en G., Van de Peer Y. (2003) Genome-wide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J. Mol. Evol. 56, 573–586.
    Deyholos M.K,and Sieburth L.E. (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12, 1799-1810
    Drews G.N., Bowman J.L. and Meyerowitz E.M. (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65, 991-1002.
    Egea-Cortines M. et al. (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18, 5370–5379.
    Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K. and Tuschl T. (2001b) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.
    Elbashir S.M., Lendeckel W. and Tuschl T. (2001a) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15, 188–200.
    Fan H.Y., Hu Y., Tudor M. and Ma H. (1997) Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 12, 999–1010.
    Favaro R., Immink R.G. H., Ferioli V., Bernasconi B., Byzova M., Angenent G.C., Kater M., Colombo L. (2002) Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol Genet Genomics 268, 152-159.
    Favaro R., Pinyopich A., Battaglia A., Kooiker M., Borghi L., Ditta G, Yanofsky M.F., Kater M.M. and Colombo L. (2003) MADS-Box Protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15, 2603-2611.
    Fernandez D.E.,Heck G.R.,Perry S.E., Patterson S.E., Bleecker A.B. and Fang Su-Chiung (2000) The embryo MADS domain factor AGL15 acts postembryonically: inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12, 183-197.
    Ferra′ndiz C., Gu Q., Martienssen R., Yanofsky M.F. (2000) Redundant regulation of meristem identity and plant architecture by FRUITFUL, APETALA1 and CAULIFLOWER. Development 127, 725–734.
    Ferrario S. Immink R.G.H., Shchennikova A., Busscher-Lange J., Angenent G.C. (2003) The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15, 914–925.
    Ferrario S., Immink R. G.H. and Angenent G.C. (2004) Conservation and diversity in flower land. Current Opinion in Plant Biology 7, 84–91.
    Fire A., Xu S., Montgomery M.K., Kostas, S.A., Driver S.E. and Mello C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.
    Flanagan C.A., Ma H. (1994) Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol Biol. 26, 581-595.
    Fornara F., Parˇenicova′ L., Falasca G., Pelucchi N., Masiero S., Ciannamea S., Lopez-Dee Z., Altamura M.M., Colombo L. and Kater M.M. (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiology 135, 2207–2219.
    Francois P. et al. (1999) A genetic framework for floral pattering. Nature 395, 561-566.
    Gale M., Devos K. (1998) Comparative genetics in the grasses. Proc Natl Acad Sci 95, 1971–1974.
    Goto K. and Meyerowitz E.M. (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548-1560.
    Greco R., Stagi L., Colombo L., Agenent G.C., Sari-Gorla M., Pè M.E. (1997) MADS-box genes expressed in developing inflorescences of rice and sorghum. Mol Gen Genet 253, 615–623.
    Guo H.S., Fei J.F., Xie Q., Chua N.H. (2003) A chemical-regulated inducible RNAi system in plants. Plant J. 34, 383-392.
    Guo S.and Kemphues K.J. (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620.
    Hamilton A.J. and Baulcombe D.C. (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.
    Hammond S.M., Bernstein E., Beach D. and Hannon G.J. (2000) An RNA-directed nuclease mediates posttranscriptional gene silencing in Drosophila cells. Nature 404, 293–296.
    Hannon G.J. (2002) RNA interference. Nature 418, 244-251.
    Hill J.P. and Lord E.M. (1989) Floral development in Arabidopsis thaliana: comparison of the wild-type and the homeotic pistillata mutant. Can. J. Bot. 67, 2922-2936.
    Hill T.A., Day C.D., Zondlo S.C., Thackeray A.G. and Irish V.F. (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125, 1711–1721.
    Hong R.L., Hamaguchi L., Busch M.A. and Weigel D. (2003) Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shodowing. Plant Cell 15, 1296-1309.
    Honma T and Goto K(2000)The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development127, 2021-2030.
    Honma T. and Goto K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525–529.
    Huang H., Mizukami Y. and Ma H. (1993) Isolation and characterization of the binding sequence for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucl. Acids Res. 21, 4769-4776.
    Immink R.G. Gadella T.W., Ferrario S., Busscher M., Angenent G.C. (2002) Analysis of MADS box protein–protein interactions in living plant cells. Proc. Natl. Acad. Sci.99, 2416–2421.
    Irish V.F. and Yamamoto Y.T. (1995) Conservation of floral homeotic gene function between Arabidopsis and Antirrhinum. Plant Cell 7, 1635-1644.
    Ito T., Sakai H. and Meyerowitz E.M. (2003) Whorl-specific expression of the SUPERMAN gene of Arabidopsis is mediated by cis-elements in the transcribed region. Current Biology 13, 1524–1530.
    Jack T. (2001) Relearning our ABCs: New twists on an old model. Trends Plant Sci. 6, 310–316.
    Jack T., Brockman L.L. and Meyerowitz E.M. (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683-697.
    Jack T., Fox, G.L. and Meyerowitz E.M. (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76, 703-716.
    Jang S., An K., Lee S., An G. (2002) Characterization of tobacco MADS box genes involved in floral initiation. Plant Cell Physiol 43, 230–238.
    Jefferson R.A., Kavanagh T.A., Bevan M.W. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J. 6, 3901-7.
    Jeon J.S., Jang S., Lee S., Nam J., Kim C., Lee S. H., Chung Y.Y., Kim S.R., Lee Y.H., Cho Y.G. (2000a) Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12, 871–884.
    Jeon J.S., Lee S., Jung K.H., Yang W.S., Yi G.H., Oh B.G., An G. (2000b) Production of transgenic rice plants showing reduced heading date and plant
    height by ectopic expression of riceMADS box genes.Mol Breed 6, 581–592.
    Jofuku K.D., den Boer B.G. W., van Montagu M. and Okamuro J.K. (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211-1225.
    Kang H.G. and An G. (1997a) Isolation and characterization of a rice MADS box gene belonging to the AGL2 gene family. Mol Cells 7, 45-51.
    Kang H.G., Jang S., Chung J.E., Cho Y.G., An G. (1997b) Characterization of two rice MADS box genes that control flowering time. Mol Cells 7, 559-66.
    Kang H.G., Jong-Seong J., Lee S., An G. (1998) Identification of class B and class C organ identity genes from rice plants. Plant Mol Biol 38, 1021-1029.
    Kang H.G., Noh Y.S., Chun Y.Y., Costa M.A., Jang S., An K., An G. (1995) Phenotypic alteration of petal and sepal by ectopic expression of a rice MADS-box gene in tobacco. Plant Mol Biol 29, 1-10.
    Kapoor M., Tsuda S, Tanaka Y, Mayama T., Okuyama Y., Tsuchimoto S. and Kasschau K.D. and Carrington J.C. (1998)A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461–470. Kennerdell J.R. and Carthew R.W (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026.
    Ketting R.F. et al. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659.
    Klahre U., Cre′ te′ P, Leuenberger S.A., Iglesias V.A., Meins F.J. (2002) High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proc Natl. Acad. Sci. 99, 11981–11986.
    Kotilainen M., Elomaa P., Uimari A., Albert V.A., Yu D., Teeri T.H. (2000) GRCD1, an AGL2-like MADS-box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 1, 1893–1902.
    Krizek B.A. and Meyerowitz E.M. (1996) The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122, 11-22.
    Kyozuka J. and Shimamoto K. (2002) Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens on transgenic rice plants. Plant Cell Physiol 43, 130-135.
    Kyozuka J., Kobayashi T., Morita M., Shimamoto K. (2000) Spatially and temporally regulated expression of rice MADS-box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41, 710–718.
    Lamb R.S. and Irish V.F. (2003) Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc. Natl. Acad. Sci. U. S. A. 100, 6558–6563.
    Lee I., Wolfe D.S., Nilsson O. and Weigel D. (1997) A LEAFY coregulator encoded by UNUSUAL FLORAL ORGANS. Curr. Biol. 7, 95-104.
    Lee S., Jeon J.S., An K., Moon Y.H., Lee S., Chung Y.Y. and An G. (2003) Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta 217, 904-911.
    Lee S., Kim J., Son J.S., Nam J., Jeong D.H., Lee K., Jang S.J., Yoo J., Lee J., Lee D.Y., Kang H.G. and An G. (2003) Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic anlyses: MADS-box genes as a test case. Plant Cell Physiol 44, 1403-1411.
    Levin J.Z. and Meyerowitz E.M. (1995) UFO: An Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7, 529-548.
    Lid S.E., Meeley R.B., Min Z., Nichols S. and Olsen O.A. (2004) Knock-out mutants of two members of the AGL2 subfamily of MADS-box genes expressed during maize kernel development. Plant Science 167, 575–582.
    Lim J., Moon Y.H., An G. and Jang S.K. (2000) Two rice MADS domain proteins interact with OsMADS1. Plant Molecular Biology 44, 513–527.
    Liu Z. and Meyerowitz E.M. (1995) LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development 121, 975-991.
    Lohmann J.U., Hong R., Hobe M., Busch M. A., Parcy F., Simon R. and Weigel D. (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105, 793–803.
    Lopez-Dee Z.P., Wittich P., Enrico Pe M., Rigola D., Del Buono I., Sari-Gorla M., Kater M.M, Colombo L. (1999) OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet 25, 237–244.
    Ma H., Yanofsky M.F., Meyerowitz E.M. (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484–495.
    Malcomber S.T. and Kellogg E.A. (2004) Heterogeneous Expression Patterns and Separate Roles of the SEPALLATA Gene LEAFY HULL STERILE1 in Grasses. Plant Cell 16, 1692-1706.
    Mandel M.A., Gustafson-Brown C., Savidge B. and Yanofsky M.F. (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273-277.
    Mandel M.A. and Yanofsky M.F. (1995) A gene triggering flower formation in Arabidopsis. Nature 377, 522–524.
    Mandel M.A. and Yanofsky M.F.(1998) The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod 11, 22-28.
    Martienssen R. and Irish V. (1999) Copying out our ABCs. trends in Genetics 15, 435-437.
    Mette M.F., Aufsatz W., van der Winden J., Matzke M.A., Matzke A.J.M.( 2000 ) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 19, 5194-5201.
    Mitsuhara I., Shirasawa S.N., Iwai T., Nakamura S., Honkura R., Ohashi Y.(2002)Release from post-transcriptional gene silencing by cell proliferation in transgenic tobacco plants: possible mechanism for noninheritance of the silencing. Genetics 160, 343-352.
    Mizukami Y. and Ma, H. (1997) Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 9, 393–408.
    Moon Y.H, Kang H.G., Jung J.Y., Jeon J.S., Sung S.K., An G. (1999a) Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol 120, 1193–1203.
    Moon Y.H., Jung J.Y., Kang H.G., An G. (1999b) Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Mol Biol 40, 167–177.
    Münster T., Pahnke J., Di Rosa A., Kim J.T., Martin W., Saedler H., Thei?en G. (1997) Floral homeotic genes were recruited from homologous MADS-box genes pre-existing in the common ancestor of ferns and seed plants. Proc. Natl. Acad.
    Sci. USA 94, 2415–2420.
    Nagasawa N., Miyoshi M., Sano Y., Satoh H, Hirano H., Sakai H., Nagato Y. (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130, 705-708.
    Nakagawa M., Shimamoto K. and Kyozuka J. (2002) Overexpression of RCN1 and RCN2, rice TERMINALFLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. The Plant Journal 29, 743-750.
    Nam J., Kim J., Lee S., An G., Ma H. and Nei M. (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc. Natl. Acad. Sci. USA 101, 1910-1915.
    Napoli C.A., Lemieux C. and Jorgensen R. (1990). Introduction of a chimeric chalcone synthetase gene in Petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2, 279–289.
    Norman C. et al. (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-Fos serum response element. Cell 55, 989–1003.
    Novina C.D. and Sharp P.A. (2004) The RNA evolution. Natue 430, 161-164.
    Nykanen A., Haley B. and Zamore, P.D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 .
    Okamuro J.K., den Boer. and Jofuku K.D. (1993) Regulation of Arabidopsis flower development. Plant Cell 5, 1183–1193.
    Parcy F., Nilsson O., Busch M. A., Lee I. and Weigel D. (1998) A genetic framework for floral patterning. Nature 395, 561–566.
    Passmore S., Maine G.T., Elble R., Christ C., Tye B.K. (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT a cells. J. Mol. Biol. 204, 593–606.
    Pelaz S., Ditta G. S., Baumann E., Wisman E. and Yanofsky M. F. (2000) B and C floral organ identity functions require SEPALATA MADS-box genes. Nature 405, 200–203.
    Pelaz S., Gustafson-Brown C., Kohalmi S.E., Crosby W.L., Yanofsky M.F. (2001b) APETALA1 and SEPALLATA3 interact to promote flower. Plant J. 264, 385-394.
    Pelaz S., Tapia-Lopez R., Alvarez-Buylla E.R., and Yanofsky M.F. (2001a) Conversion of leaves into petals in Arabidopsis. Curr. Biol. 11, 182–184.
    Pelucchi N., Fornara F., Favalli C., Masiero S., Lago C., Enrico Pè M., Colombo L., Katater M.M. (2002) Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod 15, 113–122.
    Perry S.E., Nichols K.W. and Fernandez D.E. (1996)The MADS domain protein AGL15 localizes to the nucleus during early stages of seed development. Plant Cell 8, 1977–1989.
    Pnueli L., Hareven D., Broday .L, Hurwitz C., Lifschitz E. (1994) The TM5 MADS-box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6,175–186
    Pnueli L., Hareven D., Rounsley S.D., Yanofsky M.F. and Lifschitz E. (1994b) Plant Cell 6, 163–173.
    Prasad K. and Vijayraghavam U. (2003) Double-stranded RNA interference of a rice PI/GLO paralog OsMADS2, uncovers its second-whorl-specific function in floral organ patterning. Genetics 165, 2301-2305.
    Prasad K., Sriram P., Santhosh Kumar C., Kushalappa K., Vijayraghavan U. (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211, 281-290.
    Reinhart B.J. et al. (2002) MicroRNAs in plants. Genes Dev. 16, 1616–1626.
    Rhoades M.W. et al. (2002) Prediction of plant microRNA targets. Cell 110, 513–520.
    Riechmann J.L., Meyerowitz E.M. (1997) MADS domain proteins in plant development. Biol. Chem. 378, 1079–1101.
    Rounsley S.D., Ditta G.S., Yanofsky M.F. (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259-1269.
    Samach A., Kohalmi S.E., Motte P, Datla R., Haughn G.W. (1997) Divergence of function and regulation of class B floral organ identity genes. Plant Cell 9, 559–570.
    Savidge B., Rounsley S.D. and Yanofsky M.F. (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7, 721-733.
    Schmidt R.J., Veit B., Mandel M.A., Mena M., Hake S. and Yanofsky M.F. (1993) Identification and molecular characterization of ZAG1, the maize homolog of the
    Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5, 729-737.
    Schmidt R.J., Ambrose B.A. (1998) The blooming of the grass flower development. Curr. Opin. Plant Biol. 1, 60–67.
    Schwarz-Sommer Z., Hue I., Huijser P., Flor, P.J., Hansen R., Tetens F., Lonnig W.E., Saedler H. and Sommer H. (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251-263.
    Shimamoto K and Kyozuka J(2002)Rice as an model for comparative genomics of plants. Annu. Rev. Plant Biol. 2002. 53, 399–419.
    Shiraishi H., Okada K. and Shimura Y. (1993) Nucleotide sequences recognized by the AGAMOUS MADS domain of Arabidopsis thaliana in vitro. Plant J. 4, 385-398.
    Shore P. and Sharrocks A.D. (1995)The MADS-box family of transcription factors. Eur. J. Biochem. 229, 1–13.
    Sieburth L.E. and Meyerowitz E.M. (1997) Molecular dissection of the AGAMOUS control region shows that cis-elements for spatial regulation are located intragenically. Plant Cell 9, 355–365.
    Smith N.A., Singh S.P., Wang M.B., Stoutjesdijk P.A., Green A.G., Waterhouse P.M. (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407, 319–320
    Sommer H., Beltran J.P., Huijser P., Pape H., Lonnig W.E., Saedler H., Schwarz-Sommer Z. (1990) DEFICIENS, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605–613.
    Takatsuji H. (2002) Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function. The Plant J. 32, 115–127 Tang G. and Galili G. (2004) Using RNAi to improve plant nutritional value: from mechanism to application. TRENDS in Biotechnology 22, 463-469.
    Theiβen G. and Saedler H. (2001b) Floral quartets. Nature 409, 469-471.
    Theiβen G., Becker A., Di Rosa A., Kanno A., Kim J.T., Münster T., Winter K.U. and Saedler H. (2000) A short history of MADS-box genes in plants. Plant Mol. Biol. 42, 115–149.
    Theiβen G.(2001a) Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85.
    Theiβen G.(2001b) Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85.
    Theiβen G., Strater T., Fischer A. and Saedler H. (1995) Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize. Gene 156, 155–166.
    Tilly J., Allen D.W., Jack T. (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125, 1647–1657.
    Tuschl T., Zamore P.D., Lehmann R., Bartel D.P. and Sharp P.A. (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191–3197.
    Tzeng T.Y., Hsiao C.C., Chi P.J. and Yang C.H. (2003) Two Lily SEPALLATA-Like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiology 133, 1091-1101.
    Uimari A., Kotilainen M., Elomaa, P., Yu D., Albert V.A., Teeri T.H (2004) Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proc Natl Acad Sci 101, 15817-15822.
    Vandenbussche M., Zethof J., Souer E., Koes R., Tornielli G.B., Pezzotti M., Ferrario S., Angenent G.C. and Gerats T. (2003) Toward the Analysis of the Petunia MADS Box Gene Family by Reverse and Forward Transposon Insertion Mutagenesis Approaches: B, C, and D Floral Organ Identity Functions Require SEPALLATALike MADS Box Genes in Petunia. Plant Cell 15, 2680-2693.
    Vrebalov J., Ruezinsky D., Padmanabhan V., White R., Medrano D., Drake R., Schuch W., Giovannoni J. (2002) A MADS-box gene necessary for fruit ripening at the tomato Ripining-Inhibitor (Rin) locus. Science 296, 343–346.
    Waterhouse P.M., Helliwell C.A. (2003) Exploring plant genomes by RNA induced gene silencing. Nat Rev Genet. 4, 29-38.
    Weigel D. and Meyerowitz E.M. (1993) Activation of floral homeotic genes in Arabidopsis. Science 261, 1723-1726.
    Weigel D. and Meyerowitz E.M. (1994) The ABCs floral homeotic genes. Cell 78, 203-209.
    Wesley S.V., Helliwell C.A., Smith N.A., Wang M.B., Rouse D.T., Liu Q., Gooding P.S., Singh S.P., Abbott D., Stoutjesdijk P.A. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27, 581-590.
    Wynne J. and Treisman R. (1992) SRF and MCM1 have related but distinct DNA binding specificities. Nucl. Acids Res. 20, 3297-3303.
    Xiao H., Wang Y., Liu D.F., Wang W.M., Li X.B., Zhao X.F., Xu J.C., Zhai W.X. and Zhu L.H. (2003) Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol 52, 957-966.
    Yanofsky M.F., Ma H., Bowman J.L., Drews G.N., Feldmann K.A. and Meyerowitz E.M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 3539.
    Yu H., Goh C.J. (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123, 1325–1336.
    Zamore P., Tuschl T., Sharp P. and Bartel D (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33.
    刘良式 等 (1998) 植物分子遗传学 科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700