稠密气固两相流颗粒聚团流动与反应特性的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稠密气固两相流动是多相流动的一个主要研究方向,而颗粒团聚是气固两相流动中稠密流动条件下的一种重要现象。但是,由于气固两相流动影响因素的复杂性,气固两相流动的机理尚不十分清楚。随着计算机技术的飞速发展和计算方法的不断改进和完善,结合计算数学和计算流体力学的数值模拟技术,以其独特的优点已经成为气固两相流动研究的主要方法。
     本文建立了离散颗粒运动—碰撞解耦模型,模型中应用直接模拟蒙特卡罗方法(DSMC)模拟颗粒间的碰撞过程。基于气相输送能量守恒,建立了以输送能分配确定气相欧拉坐标与颗粒相拉格朗日坐标耦合的计算方法,提出了确定颗粒当地局部气体速度的计算模型。该计算方法考虑了在计算网格气体作用的贡献,同时也考虑了颗粒的空间分布和局部颗粒浓度的影响。从而合理地反映颗粒聚团导致局部颗粒浓度分布不均对当地气体速度的影响。基于分子动力学和颗粒动理学,应用颗粒平均自由程,导出了确定颗粒聚团中颗粒数的计算方法。应用考虑颗粒碰撞过程中弹性变形和塑性变形的颗粒非弹性碰撞恢复系数,模拟颗粒的碰撞过程。采用了引入径向分布函数的颗粒间碰撞概率的计算方法,考虑局部颗粒浓度不均匀性对颗粒碰撞概率的影响。采用大涡模拟(LES)研究气相湍流。应用了子网格技术进行颗粒碰撞对的抽样,采用此技术可以减小计算工作量并且减小计算网格内颗粒浓度不均匀性对颗粒碰撞概率计算的影响。
     应用LES-DSMC方法模拟了循环流化床上升管内气固两相流动特性,得到了时均颗粒速度和浓度的分布情况,以及单颗粒的运动规律。研究了气体表观速度和颗粒碰撞弹性恢复系数对团聚物存在时间、平均颗粒浓度、生成频率以及两相流流动特性的影响。研究了颗粒聚团和分散颗粒的颗粒温度和颗粒碰撞频率随颗粒浓度的变化规律。研究表明分散颗粒的颗粒温度随颗粒浓度增加,达到最大值后,随颗粒浓度增大而下降。而颗粒聚团的颗粒温度随着颗粒浓度增加而下降。随着颗粒浓度的增加,颗粒聚团的颗粒碰撞频率和分散颗粒的碰撞频率增加,模拟计算值低于颗粒动理学计算值。随着颗粒浓度的增加,聚团内的颗粒数增加。与分散颗粒相比,颗粒聚团具有大的脉动能量。同时颗粒团聚将增加颗粒的停留时间。
     建立了一维非稳态球形颗粒群燃烧模型,模拟了静态下煤粉颗粒团的着火和燃烧过程,同时给出了颗粒团的结构参数和环境参数对着火和燃烧的影响。颗粒群燃烧数G小于60时,煤粉颗粒团的着火先是异相着火,而当颗粒群燃烧数G大于60时,煤粉颗粒团的着火先是均相着火。随着煤粉聚团的颗粒浓度的增加,煤粉聚团的着火延迟先减小后增加。煤粉颗粒尺寸的增加和外部温度的降低会明显延迟均相着火,但是对颗粒团的燃烧速率影响不大。环境氧气浓度的增加会减小着火延迟,加快颗粒团的燃烧速率。
     建立碳颗粒聚团燃烧反应模型,数值模拟气体流过碳颗粒聚团的燃烧过程,分析聚团空隙率、进口气体速度、进口气体温度和活化能等对碳颗粒聚团燃烧过程的影响,分析了颗粒聚团内不同位置的颗粒所消耗的碳量的变化规律。模拟结果表明碳颗粒聚团内沿来流方向温度以及CO和CO2含量逐渐升高,O2含量逐渐降低。碳颗粒聚团燃烧消耗的碳量随着聚团空隙率、进口气体速度和进口气体温度的增加而增加,随活化能的增加而减少。研究碳颗粒聚团轴向方向NO和N2O的变化规律,碳颗粒的团聚可有效降低燃烧过程中NO和N2O的排放。研究颗粒聚团和孤立单颗粒所受到的气动力的变化,获得了颗粒聚团的阻力系数与孤立单颗粒的阻力系数的比值的变化规律。孤立单颗粒所受到的气动力高于聚团中任何单颗粒。颗粒聚团的阻力系数与孤立单颗粒的阻力系数的比值随聚团空隙率的增加而趋近于1。采用动态分层动网格更新方法,对颗粒团聚过程中气体对颗粒聚团作用力进行了数值模拟。计算表明在颗粒团聚过程中,气体作用在颗粒聚团上的气动力逐渐减小,直至颗粒聚团后所具有的气动力为最小。颗粒团聚将明显降低气体与颗粒之间的作用。
     建立了石灰石颗粒聚团脱硫化学反应过程数学模型,数值模拟了气体流过石灰石颗粒聚团的脱硫过程,分析了聚团空隙率、进口气体速度和温度对石灰石颗粒聚团和孤立单石灰石颗粒脱除SO2的影响。石灰石颗粒聚团吸收的SO2的量随聚团空隙率和进口气体速度的增加而增加,石灰石颗粒的比表面积与煅烧温度有关,在温度低于1253K时,比表面积随温度的增加而减少,但脱硫反应速率随温度的升高而增加,综合考虑以上两个因素,脱硫反应速率随温度的增加先增加后减少,孤立单颗粒吸收SO2的量高于聚团中任一单颗粒。研究了石灰石颗粒聚团对脱除NO的影响,石灰石颗粒的团聚可降低NO的排放。
     建立了萘颗粒聚团传热传质过程数学模型,数值模拟了气体流过萘颗粒和萘颗粒聚团的传热传质过程,分析了聚团空隙率、进口气体速度和温度对颗粒聚团传热传质过程的影响。对气流中孤立单颗粒的传热传质模拟计算表明,模拟结果与现有关联式预测的结果相吻合的。随着入口气体流速的增加,气体对颗粒聚团的对流换热系数和传质系数增加。随着颗粒聚团空隙率的增大,气体与颗粒聚团之间的对流换热系数和传质系数增加。随着颗粒聚团中颗粒数的增加,气体与颗粒聚团之间的对流换热系数和传质系数下降。颗粒团聚将降低气体与颗粒之间的对流换热系数和传质系数,进而降低气体与颗粒之间的传递能力。
Hydrodynamics of dense gas-solid two-phase flow is a key research field in multiphase flow, and the formation of cluster is a main phenomenon in the dense gas-solid two-phase flow. The mechanism of dense gas-solid two-phase flow is not completely understood due to the complexity of flow. With the rapid development of hardware and calculation technique, computational fluid dynamics (CFD) have been become an important research approach because of its unique advantage.
     A discrete particle motion-collision decoupled model is established in which particle collision is modeled by means of direct simulation Monte Carlo (DSMC) method. A mathematical model which couples gas phase in the Euler coordinate with particles in the Lagrange coordinate is proposed on the basis of the balance of the transport kinetic energy. From the transport kinetic energy, the gas parameters are determined from local particle positions and porosity. Based on the kinetic theory of granular flow and the mean free path of particles, the particles belong to the cluster are determined. The radial distribution function is introduced in order to take into account the effect of the uneven local particle concentration on the particle collision probability. The large eddy simulation (LES) is used to model gas turbulence. The sub-cell technology is applied to save computational time and reduce uneven local particle concentration on the particle collision probability in computational cell. The interaction between gas phase and simulated particle is determined by means of Newtonian third law. A modified velocity-dependent restitution coefficient in which the impact velocity is replaced by the absolute relative velocity between two particles and the collision joins the two regimes of dissipations (viscoelastic and plastic) is used to model particle collisions in the numerical simulations.
     Numerical simulations of flow behavior of dispersed particles and clusters are performed in a circulating fluidized bed by means of the LES-DSMC methods. The distributions of time-averaged particle velocity and concentration are obtained. The effects of superficial gas velocities and restitution coefficients on existence time of cluster, average concentration of particle, occurrence frequency of cluster and the flow behavior of two-phase flow are analyzed. For the clusters and dispersed particles, the collision frequencies and granular temperature as a function of particle concentration are obtained. The granular temperature of dispersed particles increases, reaches a maxima, then decreases with the increase of particle concentration, while particle in cluster the granular temperature decreases with the increase of particle concentration. For both dispersed particles and particles in cluster, the collisional frequency increases with the increase of particle concentration. Simulated collisional frequencies are lower than the computational results based on the kinetic theory of granular flow. Comparing to the motion of dispersed particles, the cluster of particles has more fluctuating energy. The particle clustering will increase the residence time of particles in the riser.
     The transient combustion 1-dimensional model for spherical cloud of particles is proposed. Ignition and combustion of coal cloud under quiescent condition have been studied, at the same time the effects of structural and ambient conditional parameters of particles on ignition and combustion are analyzed. When the group number G is less than 60, the heterogeneous ignition occurs earlier than the homogeneous ignition, whereas when the group number G is larger than 60, the homogeneous ignition occurs earlier than the heterogeneous ignition. The ignition delay decreases, and then increases with the increase of the particle number density. The homogenous ignition time delay decreases as the ambient gas temperature increases, but the burning rate is no significant difference. Richer oxygen decreases the ignition time delays, at the same time increases the combustion rate.
     The combustion model for cluster of char particles is introduced to characterize the combustion process of gas through the cluster. The effect of cluster porosity, inlet gas velocity, inlet gas temperature and active energy on char particle cluster combustion is analyzed. Particles located in different position of the cluster have the different mass loss rate of char. Particles located in the front of the cluster facing the incoming gas have the high gas temperature and O2 content. With the increase of cluster porosity, inlet gas temperature and velocity and the decrease of active energy, the mass loss rate of char due to combustion of carbon particle cluster is increased. The axial distributions of NO and N2O in carbon particle cluster is predicted. Simulation shows that the carbon particle cluster can reduce the emission of NO and N2O in effect. The dynamics of gas flowing in particle cluster and isolated particle are analyzed. The ratio of resistance coefficient of particle cluster and isolated particle is predicted. Results indicate that the dynamic force of an isolated particle is higher than any individual particle in cluster. The ratio of resistance coefficient of particle cluster and isolated particle is close to unity with the increase of cluster porosity. The movement of the moving particle is calculated by means of the dynamic mesh model of adaptively sampled distance fields. As the particle is moving toward the cluster, the gas dynamic forces between particles in the cluster and gases are reduced since the gas flux passing through the cluster is altered. Simulated results indicate that the reduction of the resistance between gas and cluster is due to particle clustering.
     A mathematical model coupling hydrodynamics with chemical reactions is proposed for predicting sulphur retentions emissions by the calcium oxide particle cluster. The effect of cluster porosity, inlet gas temperature and velocity on being captured SO2 by the CaO particle in the cluster is analyzed. With the increase of cluster porosity and inlet gas velocity, the SO2 captured by CaO particle cluster is increased. The specific surface area of CaO particle is related to operation temperature. When the temperature is less than 1253K, the specific surface is reduced with the increase of temperature, but SO2 capture rate is increased with the increase of gas temperature. Hence, SO2 capture rate is reduced with the increase of gas temperature. For the isolated particle, the captured SO2 is more than any individual particle in the cluster. The effect of CaO cluster on NO emissions is analyzed. The emissions of NO can be reduced by particle clustering.
     Heat and mass transfer of air to naphthalene particle cluster in a circulating fluidized bed (CFB) is investigated via computational fluid dynamic (CFD) approach. Distributions of naphthalene vapor concentration and velocity in the spherical cluster are numerically predicted. The heat and mass transfer coefficient of an isolated particle in the stream are predicted and compared with calculations by empirical formulas. The computed results indicate that the heat and mass transfer of air to particles in the cluster is reduced due to the particle clustering and increments of particle size and temperature. Influences of the porosity of the cluster, inlet gas velocity and temperature on heat and mass transfer of air to the cluster are analyzed. The heat and mass transfer coefficients of gas to cluster increase with the increase of porosity of the cluster and inlet air velocity, but decrease with the particle diameter and the number of particles in the cluster. The down-moving cluster gives higher heat and mass transfer than that of the upward moving cluster. The reduction of heat and mass transfer of gas-particle is due to particle clustering. The computed Nusselt number and Sherwood numbers are compared with the estimated values from empirical equations reported in literature.
引文
1金涌,祝京旭,汪展文,俞芷青.流态化工程原理.清华大学出版社, 2001:1~5
    2 J. Adanez, P, Gayfin, F. Garcia-Labiano, L. F. de Diego. Axial Voidage Profiles in Fast Fluidized Beds. Powder Technol. 1994, 81: 259~268
    3 J. Yerushalmi, Cankurt N. T., D. Geldart, B. Liss. Flow Regimes in Vertical Gas-Solids Contact Systems. AIChE Symp. Ser., 1978, 74: 1~3
    4 D. Geldart. Types of Gas Fluidization. Powder Technology. 1973, 7(5): 285~292
    5 W. C. Yang. Modification and Re-interpretation of Geldart's classification of powders. Powder Technology. 2007, 171: 69~74
    6 C. Guenther, R. Breault. Wavelet Analysis to Characterize Cluster Dynamics in a Circulating Fluidized Bed. Powder Technology. 2007, 173: 163~173
    7 S. Karimipour, R. Zarghami, N. Mostoufi, R. Sotudeh-Gharebagh. Evaluation of Heat Transfer Coefficient in Gas-Solid Fluidized Beds Using Cluster-based Approach. Powder Technology. 2007, 172: 19~26
    8 E. Helland, H. Bournot, R. Occelli, L. Tadrist. Drag Reduction and Cluster Formation in a Circulating Fluidized Bed. Chemical Engineering Science. 2007, 62: 148~158
    9 R. W. Breault, C. Ludlow, P. C. Yue. Cluster Particle Number and Granular Temperature for Cork Particles at the Wall in the Riser of a CFB. Powder Technology. 2005, 149: 68~77
    10 C. M. H. Brereton, J. R. Grace. Microstructural Aspects of the Behaviour of Circulating Fluidized Beds. Chem. Eng. Sci. 1993, 48: 2565~2572
    11 M. J. Rhodes, M. Sollaart, X. S. Wang. Flow Structure in a Fast Fluid Bed. Powder Technol. 1998, 99: 194~200
    12 A. S. Issangya, J. R. Grace, D. R. Bai, J. X. Zhu. Further Measurements of Flow Dynamics in a High-Density Circulating Fluidized Bed Riser. Powder Technol. 2000, 111: 104~113
    13 A. Johanesson, F. Johansson, F. Niklasson, L. E. Amand. Dynamics of furnaceprocesses in a CFB boiler. Chemical Engineering Science. 2007, 62: 550~560
    14 D. Pallares, F. Johnsson. Macroscopic Modelling of Fluid Dynamics in Large-scale Circulating Fluidized Beds. Progress in Energy and Combustion Science. 2006, 32: 539~569
    15 E. U. Hartge, C. Klett, J. Werther. Dynamic Simulation of the Particle Size Distribution in a Circulating Fluidized Bed Combustor. Chemical Engineering Science. 2007, 62: 281~293
    16 Z. W. Wang, D. R. Bai, Y. Jin. Hydrodynamics of Cocurrent Down Flow Circulating Fluidized Bed ( CDCFB ). Powder Technology, 1992, 70: 271~275
    17 P. Lehner, K. E. Wirth. Characterization of the Flow Pattern in a Downer Reactor. Chemical Engineering Science. 1999, 54: 5471~5483
    18 X. Lu, S. Li, L. Du, J. Yao, W. Lin, H. Li. Flow Structures in the Downer Circulation Fluidized Bed. Chemical Engineering Journal. 2005, 112: 23~31
    19 Y. Cheng, Y. Guo, F. Wei, Y. Jin, W. Lin. Modeling the Hydrodynamics of Downer Reactors Based on Kinetic Theory. Chemical Engineering Science. 1999, 54: 2019~2027
    20 P. Schlichthaerle, J. Werther. Solids Mixing in the Bottom Zone of a Circulating Fluidized Bed. Powder Technol. 2001, 120: 21~33
    21 S. Malcus, G. Chaplin, T. Pugsley. The Hydrodynamics of the High-Density Bottom Zone in a CFB Riser Analyzed by Means of Electrical Capacitance Tomography (ECT). Chem. Eng. Sci. 2000, 55: 4129~4138
    22 Y. Li, M. Kwauk. The Dynamics of Fast Fluidization. Fluidization, (eds. by J. R. Grace, and J. M. Matsen), Plenum Press, New York, 1980, 537~544
    23 M. G. Schnitzlein, H. Weinstein. Flow Characterization in High Velocity Fluidization Using Pressure Fluctuations. Chem. Eng. Sci. 1988, 43: 2605~2614
    24 D. Bai, Y. Jin, Z. Q. Yu. Flow Regimes in Circulating Fluidized Beds. Chem. Eng. Technol. 1993, 16: 307~313
    25 M. L. Mastellone, U. Arena. The Effect of Particle Size and Density on Solids Distribution along the Riser of a Circulating Fluidized Bed. Chem. Eng. Sci. 1999, 54: 5383~5391
    26 T. Pugsley, D. Lapointe, B. Hirschberg, J. Werther. Exit Effects in Circulating Fluidized Bed Risers, Can. J. Chem. Eng. 1997, 75: 1001~1010
    27 M. Horio, H. Kuroki. Three-Dimensional Flow Visualization of Dilutely Dispersed Solids in Bubbling and Circulating Fluidized Bed. Chem. Eng. Sci. 1994, 49: 2413~2421
    28 K. Nakamura, C. E. Capes. Vertical Pneumatic Conveying: A Theoretical Study of Uniform and Annular Particle Flow Models. Can. J. of Chem. Eng. 1973, 51: 39~46
    29 F. Wei, H. F. Lin, Y. Cheng. Profiles of Particle Velocity and Solids Fraction in a High Density Riser. Powder Technol., 1998, 100: 183~189
    30 B. Herb, S. Dou, K. Tuzla, J. C. Chen. Solid Mass Flux in Circulating Fluidized Beds. Powder Technol. 1992, 70: 197~205
    31 W. Zhang, Y. Tung, J. E. Johnsson. Radial Voidage Profiles in Fast Fluidized Beds of Different Diameters. Chem. Eng. Sci. 1991, 46: 3045~3052
    32 Y. L. Yang, Y. Jin, Z. Q. Yu, Z. W. Wang. Investigation on Slip Velocity Distributions in the Riser of Dilute Circulating Fluidized Bed. Powder Technol. 1992, 73: 67~73
    33 A. Lodes, O. Mierka. The Velocity Field in a Vertical Gas-Solid Suspension Flow. Int. J. of Multiphase Flow. 1990, 16: 201~209
    34 P. J. Jiang, H. T. Bi, R. H. Jean, L. S. Fan. Baffle Effects on Performance of Catalytic Circulating Fluidized Bed Reactor. AIChEJ. 1991, 37: 1392~1400
    35 J. Wang, X. Zhao, Y. Wang, X. Xing, J. Zhang, G. Yue. Thermal Boundary Layer in CFB Boiler Riser. China Particuology. 2006, 4: 131~135
    36 L. Huilin, Z. Yunhua, S. Zhiheng, J. Ding, J. Jiying. Numerical Simulations of Gas-solid Flow in Tapered Risers. Powder Technology. 2006, 169: 89~98
    37 J. Yerushalmi, N.T. Cankurt, D. Geldart, B. Liss. Flow Regimes in Vertical Gas-solid Contact Systems. AIChE Symp. Ser. 1976, 74: 1~13
    38 H. Hatano, S. Matsuda, H. Takeuchi, A. T. Pyatenko, K. Tsuchiya. Local Interactive Patterns of Dispersed and Swarm Particles in a Circulating Fluidized-Bed Riser. Ind. Eng. Chem. Res. 1996, 35: 4360~4365
    39 E. Van den Moortel, R. Azario, L. S. Tadrist. Experimental Analysis of the Gas-particle Flow in a Circulating Fluidized Bed Using a Phase Doppler Particle Analyzer. Chem. Eng. Sci. 1998, 53: 1883~1899
    40 P. D. Noymer, L. R. Glicksman. Cluster Motion and Particle-Convective Heat Transfer at the Wall of a Circulating Fluidized Bed. Int. J. Heat Mass Transfer.1998, 41: 147~158
    41 A. K. Sharma, K. Tuzla, J. Matsen, J. C. Chen. Parametric Effects of Particle Size and Gas Velocity on Cluster Characteristics in Fast Fluidized Beds. Powder Technol. 2000, 111: 114~122
    42 S. V. Manyele, J. H. Parssinen, J. X. Zhu. Characterizing Particle Aggregates in a High-Density and High-Flux CFB Riser. Chemical Engineering Journal. 2002, 88: 151~161
    43石惠娴,骆仲泱,王勤辉,岑可法.循环流化床内颗粒团属性的可视化研究.中国动力工程学报. 2005, 25: 60~64
    44 J. Li, C. L. Chen, Z. D. Zhang, J. Yuan, A. Nemet, F. N. Fett. The EMMS Model-its Application, Development and Updated Concepts. Chemical Engineering Science. 1999, 54: 5409~5425
    45 J. H. Li, Compromise and Resolution-Exploring the Multi-scale Nature of Gas-Solid Fluidization. Powder Technology. 2000, 111: 50~59
    46 J. H. Li, M. Kwauk. Particle-fluid Two-phase Flow: The Energy-minimization Multi-scale Method. Beijing: Metallurgical Industry Press, 1994
    47李洪钟.聚焦结构、界面与多尺度问题,开辟化学工程的新里程.过程工程学报, 2006, 6: 991~996
    48 N. Yang, W. Wang, W. Ge, J. Li. Modeling of Meso-Scale Structures in Particle-Fluid Systems: The EMMS/CFD Approach. China Particuology. 2005, 3: 78~79
    49 H. Y. Qi, F. Li., B. Xi, C. F. You. Modeling of Drag with the Eulerian Approach and EMMS Theory for Heterogeneous Dense Gas-Solid Two-Phase Flow. Chemical Engineering Science. 2007, 62: 1670~1681
    50肖海涛,祁海鹰,由长福,徐旭常.一个气固两相流动阻力的新模型.化工学报. 2003, 54: 311~315
    51 C. H. Soong, K. Tuzla, J. C. Chen. Experimental Determination of Clusters Size and Velocity in Circulating Fluidized Beds. in: J.F. Large, C. Laguerie (Eds.), Fluidization VIII, Engineering Foundation, New York, 1995, pp. 219~227
    52 M. Lints, L. R. Glicksman. The Structure of Particle Clusters Near the Wall of a Circulating Fluidized Bed. AIChE Symp. Ser. 1993, 296: 35~47
    53 A. T. Harris, J. F. Davidson, R.B. Thorpe. The Prediction of Particle ClusterProperties in the Near Wall Region of a Vertical Riser. Powder Technol. 2002, 127: 128~143
    54 M. J. Rhodes, H. Mineo, T. Hirama. Particle Motion at the Wall of Circulating Fluidized Bed. Powder Technol. 1992, 70: 207~214
    55 K. S. Lim, J. Zhou, C. Finlay, J. R. Grace, C. J. Lim, C. M. H. Brereton. Cluster Descending Velocity at the Wall of Circulating Fluidized Bed Risers, in: M. Kwauk, J. Li (Eds.), Circulating Fluidized Bed Technology V, 1995, pp. 218~223
    56 D. Subbarao. Cluster and Lean Phase Behaviour. Powder Technol. 1986, 46: 101~107
    57 W. Gu. Diameters of Catalyst Clusters in FCC. AIChE Symp. Ser. 1999, 95 (321): 42~ 47
    58 B. Zou, H. Li, Y. Xia, X. Ma. Cluster Structure in a Circulating Fluidized Bed. Powder Technol. 1994, 78: 173~178
    59 R. L. Wu, J. R. Grace, C. J. Lim. A Model for Heat Transfer in Circulating Fluidized Beds. Chem. Eng. Sci. 1990, 45 (12): 3389~3398
    60 G. Xu, K. Kato. Hydrodynamic Equivalent Diameter for Clusters in Heterogeneous Gas-solid Flow. Chemical Engineering Science. 1999, 54: 1837~1847
    61刘向军,徐旭常.稠密气固两相流中颗粒密集效应的研究与应用.燃烧科学与技术. 2004, 10: 120~124
    62刘春嵘,郭印诚.基于拟颗粒的气固两相曳力模型研究.工程热物理学报.2005, 26: 253~256
    63 G. D. Cody, J. John, D. Goldfarb. Dependence of Particle Fluctuation Velocity on Gas Flow and Particle Diameter in Gas Fluidized Beds for Monodispersed Spheres in the Geldart B and A Fluidization Regimes. Powder Technology. 2008, 182: 146~170
    64 Y. P. Tsuo, D. Gidaspow. Computer of Flow Patterns in Circulating Fluidized Beds. AICHE. J. 1990, 36(6): 885~896
    65 G. Sun, J. R. Grace. The Effect of Particle Size Distribution on the Performance of a Catalytic Fluidized Bed Reactor. Chem. Eng. Sci. 1990, (45):2187~2194
    66 C. G. Luben, da S. R. Cesar, N. H. Aparecido, M. F. Eduardo. Cluster Identification and Characterization in the Riser of a Circulating Fluidized Bedfrom Numerical Simulation Results. Applied Mathematical Modelling. 2008, 32: 327~340
    67 R. Hong, Z. Ren, J. Ding, M. Kawaji, H. Li, Bubble Dynamics in a Two-Dimensional Gas-Solid Fluidized Bed. China Particuology, 2007, 5: 284~294
    68 K. Zhang, S. Brandani, J. Bi, J. Jiang. CFD Simulation of Fluidization Quality in the Three-dimensional Fluidized Bed. Progress in Natural Science. 2008, 18: 729~733
    69 Z. X. Zeng, L. X. Zhou. A Two-Scale Second-Order Moment Particle Turbulence Model and Simulation of Dense Gas-Particle Flows in a Riser. Powder Technology. 2006, 162: 27~32
    70 J. Ding, D. Gidaspow. A Bubbling Fluidization Model Using Kinetic Theory Granular Flow. AICHE. J. 1990, 36(4): 523~538
    71 J. L. Sinclair, R. Jackson, Gas-Particle Flow in a Vertical Pipe with Particle-Particle Interaction. AICHE. J. 1989, (35): 1473~1486
    72 S. Dasgupta, R. Jackson, S. Sundaresan. Turbulent Gas-Particle Flow in Vertical Risers. AICHE. J. 1994, 40: 215~223
    73 J. D. Wilde, G. B. Marin, G. J. Heyderickx. The Effects of Abrupt T-outlets in a Riser: 3D Simulation Using the Kinetic Theory of Granular Flow. Chem. Eng. Sci. 2003, 58: 877~885
    74 J. Wang, W. Ge, J. Li. Eulerian Simulation of Heterogeneous Gas-Solid Flows in CFB Risers: EMMS-Based Sub-grid Scale Model with a Revised Cluster Description. Chemical Engineering Science. 2008, 63: 1553~1571
    75 H. S. Tan, M. J .V. Goldschmidt, R. Boerefijn, M. J. Hounslow, A. D. Salman, J. A. M. Kuipers. Building Population Balance Model for Fluidized Bed Melt Granulation: Lessons from Kinetic Theory of Granular Flow. Powder Technology. 2004, 142: 103~109
    76向文国,徐祥,肖云汉.循环流化床上升段流体动力特性数值模拟.东南大学学报. 2005, 35: 752~756
    77汤颜菲,王嘉骏,冯连芳,顾雪萍.提升管内气固流动行为的数值模拟.化学反应工程与工艺. 2006, 22: 445~449
    78 W. Wang, J. H. Li. Simulation of Gas–Solid Two-Phase Flow by a Multi-Scale CFD Approach—Extension of the EMMS Model to the Sub-Grid Level.Chemical Engineering Science. 2007, 62: 208~231
    79 Y. Ning, W. Wei, G. Wei, W. Linna, L. Jinghai. Simulation of Heterogeneous Structure in a Circulating Fluidized-Bed Riser by Combining the Two-Fluid Model with the EMMS Approach. Industrial and Engineering Chemistry Research. 2004, 43: 5548~5561
    80 W. Junwu, G. Wei, L. Jinhai. Eulerian Simulation of Heterogeneous Gas-Solid Flows in CFB Risers: EMMS-Based Sub-Grid Scale Model with a Revised Cluster Description. Chemical Engineering Science. 2008, 63: 1553~1571
    81 V. Jiradilok, D. Gidaspow, R. W. Breault. Computation of Gas and Solid Dispersion Coefficients in Turbulent Risers and Bubbling Beds. Chemical Engineering Science. 2007, 62: 3397~3409
    82 L. Yu, J. Lu, X. Zhang, S. Zhang. Numerical Simulation of the Bubbling Fluidized Bed Coal Gasification by the Kinetic Theory of Granular Flow (KTGF). Fuel. 2007, 86: 722~734
    83王小芳,金保升,钟文琪.基于欧拉多相流模型的流化床煤气化过程三维数值模拟.东南大学学报. 2008, 38: 454~460
    84 J. Gao, J. Chang, C. Xu, X. Lan, Y. Yang. CFD Simulation of Gas Solid Flow in FCC Strippers. Chemical Engineering Science. 2008, 63: 1827~1841
    85 J. Cao, Z. Cheng, Y. Fang, H. Jing, J. Huang, Y. Wang. Simulation and Experimental Studies on Fluidization Properties in a Pressurized Jetting Fluidized Bed. Powder Technology. 2008, 183: 127~132
    86 W. Zhong, M. Zhang, B. Jin, Z. Yuan. Flow Behaviors of a Large Spout-Fluid Bed at High Pressure and Temperature by 3D Simulation with Kinetic Theory of Granular Flow. Powder Technology. 2007, 175: 90~103
    87 Y. Tusji. Multi-Scale Modeling of Dense Phase Gas-Particle Flow. Chemical Engineering Science. 2007. 62: 3410~3418
    88 H. P. Zhu, Z. Y. Zhou, R. Y. Yang, A. B. Yu. Discrete Particle Simulation of Particulate Systems: Theoretical Developments. Chemical Engineering Science. 2007, 62: 3378~3396
    89 B. P. B. Hoomans, J. A. M. Kuipers, W. J. Briels. Discrete Particle Simulation of Bubble and Slug Formation in a Two-Dimensional Gas-Fluidized Bed. Chem. Eng. Sci. 1996, 51: 99~108
    90周浩生,陆继东,钱诗智.宽筛分流化床气-固两相流动结构的离散颗粒模型.燃烧科学与技术. 1998, 5(3): 270~275
    91刘安源,刘石,姜凡.鼓炮流化床流动特性的欧拉-离散单元方法模拟.燃烧科学与技术.2003,9(2): 148~152
    92刘敏,张会强,郭印诚.稠密气固流动中格子-确定性轨道模型.清华大学学报. 2003, 43(2): 246~249
    93欧阳洁,李静海.模拟气固两相非均匀结构的颗粒运动分解轨道模型.中国科学(B). 1999, 29(1): 29~38
    94欧阳洁,李静海.确定性颗粒轨道模型在流化床模拟中的研究进展.化工学报, 2004, 55(10): 1581~1592
    95 C. Wu, J. Zhan. Numerical Prediction of Particle Mixing Behavior in a Fluidized Bed. Journal of Hydrodynamics. 2007, 19: 335~341
    96 A. Cundall, O. D. L. Strack. A Discrete Numerical Models for Granular Assembles. Geotechnique. 1979, 29: 47~65
    97 Y. Tsuji, T. Kawaguchi, T. Tanaka. Discrete Particle Simulation of Two-Dimensional Fluidized Bed. Powder Technology. 1993, 77: 79~87
    98 B. H. Xu, A. B. Yu. Numerical Simulation of the Gas-Solid Flow in a Fluidized Bed by Combining Discrete Particle Method with Computational Fluid Dynamics. Chem. Eng. Sci. 1997, 52: 2785~2809
    99 N. Gui, J. R. Fan, K. Luo. DEM-LES Study of 3-D Bubbling Fluidized Bed with Immersed Tubes. Chemical Engineering Science. 2008, 63: 3654~3663
    100吴锦坤,罗坤,胡桂林,樊建人,岑可法.鼓泡流化床流动特性的直接颗粒模拟.浙江大学学报. 2007,41: 504~508
    101 F. Tian, M. Zhang, H. Fan, M. Gu, L. Wang, Y. Qi. Numerical Study on Microscopic Mixing Characteristics in Fluidized Beds via DEM. Fuel Processing Technology. 2007, 88: 187~198
    102田凤国,章明川,齐永锋,顾明言,张健,范浩杰.流化床轴径向混合特性的数值研究.中国电机工程学报. 2006, 26: 119~124
    103袁竹林.流化床中颗粒流化运动的直接数值模拟.燃烧科学与技术. 2001, 7(2): 120~124
    104尹斌,章明川,吴江,宋玉宝. L型定向风帽流化床中气-固流动的离散元素法模拟及可视化研究.中国机电工程学报. 2003, 23: 183~190
    105亢力强,郭烈锦.风沙跃移中颗粒冲击起动的数值模拟.自然科学进展. 2005, 15: 252~256
    106陆继东,任合斌,黄来,李卫杰.流化床内煤燃烧的传热过程DEM数值模拟.华中科技大学学报.2006,34: 96~99
    107 H. Zhou, G. Flamant, D. Gauthier. Modelling of the Turbulent Gas-Particle Flow Structure in a Two-Dimensional Circulating Fluidized Bed Riser. Chemical Engineering Science. 2007, 62: 269~280
    108 E. Helland, H. Bournot, R. Occelli, L. Tadrist. Drag Reduction and Cluster Formation in a Circulating Fluidized Bed. Chemical Engineering Science. 2007, 62: 148~158
    109 J. Li, J. A. M. Kuipers. Effect of Competition between Particle–Particle and Gas–Particle Interactions on Flow Patterns in Dense Gas-Fluidized Beds. Chem. Eng. Sci. 2007, 62: 3429~3442
    110张勇,金保升,钟文琪.基于颗粒尺度DEM直接数值模拟的喷动流化床颗粒运动特性.东南大学学报. 2008, 38: 110~115
    111谢灼利,黎明,张政.离散单元法数值研究水平管中密相栓流气力输送.高校化学工程学报. 2006, 20: 186~191
    112赵永志,程易,金涌.提升管与下行床颗粒团聚行为的离散颗粒模拟.化工学报. 2007, 58: 44~53
    113赵永志,程易,丁宇龙,金涌.下行床气粒流动行为的Eulerian-Lagrangian模拟.化工学报. 2007, 58: 1163~1171
    114 M. Sommerfeld, G. Zivkovic. Recent Advances in the Numerical Simulation of Pneumatic Conveying through Pipe System. Computational Methods in Applied Science. 1992: 201~212
    115樊建人,姚军.气固两相流中颗粒-颗粒随机碰撞新模型.工程热物理学报. 2001, 22 (5): 629~632
    116 G. A. Bird. Molecular Gas Dynamics. Oxford. Clarrendon Press. 1976
    117 S. Yonemura, T. Tanaka, Y. Tsuji. Cluster Formation in Gas-Solid Flow Predicted by the DSMC Method. ASME. FEM. 1993, 166: 303~309
    118 T. Tanaka, S. Yonemura, K. Kiribayshi, Y. Tsuji. Cluster Formation and Particle-Induced Instability in Gas-Solid Flows Predicted by the DSMC Method. Int. J. JSME (B). 1996, 39: 239~245
    119 Y. Tsuji, T. Tanaka, S. Yonemura. Cluster Patterns in Circulating Fluidized Beds Predicted by Numerical Simulation (Discrete Particle Model versus Two-Fluid Model). Powder Technology. 1998, 95: 254~264
    120张槛,由长福,徐旭常.循环床内气固两相流动稠密颗粒相间碰撞的数值模拟.工程热物理学报. 1998, 19(2): 256~260
    121 S. Yuu, H. Nishikawa. Numerical Simulation of Air and Particle Motions in Group-B Particle Turbulent Fluidized Bed. Powder Technology. 2001, 118: 32~44
    122袁竹林,马明.稀疏气固两相流动中颗粒分离特性的数值模拟.燃烧科学与技术. 2001, 7(4): 235~238
    123李满枝,王洪涛.循环流化床的DSMC模拟.琼州大学学报. 2005, 12:22~25
    124刘欢鹏. DSMC-LES方法研究循环流化床内颗粒团聚物的流动特性.哈尔滨工业大学博士论文. 2006
    125 T. Umekage, T. Iaaba, S. Yuu. Numerical Simulation of Air and Particles Motions in Circulating Fluidized Bed Using Hard Sphere Model, DSMC Method and LES Model and Experimental Verification. Kagaku Kogaku Ronbunshu. 2007, 33: 6~15
    126 L. M. Zou, Y. C. Guo, C. K. Chanb. Cluster-Based Drag Coefficient Model for Simulating Gas–Solid Flow in a Fast-Fluidized Bed. Chemical Engineering Science. 2008, 63: 1052~1061
    127彭正标,袁竹林.基于蒙特卡罗法的脱硫塔内气固流动数值模拟.中国电机工程学报, 2008, 28: 6~14
    128陈伟芳,张志成,吴其芬.稀薄气体条件下Rayleigh-Benard系统稳定性的DSMC仿真研究.空气动力学学报. 2002, 20: 211~216
    129赵海波,柳朝晖,郑楚光,陈胤密,章骥.气固两相流中颗粒碰撞的Monte-Carlo数值模拟.计算力学学报.2005, 22: 299~304
    130吕章德,王绍民.热辐射计内稀薄气体流动的蒙特卡罗模拟.空气动力学学报. 2004 , 22: 447~451
    131陈茂林,毛根旺,杨涓,夏广庆.自由分子流微电热推力器流动模拟与性能预示.中国空间科学技术. 2008, 4: 66~71
    132 J. Smagorinsky. General Circulation Experiments with the Primitive Equation. J. Chem. Phys. 1963, 91: 99~164
    133 D. Gidaspow. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description. Academic Press, San Diego. 1994
    134 C. Crowe, M. Sommerfeld, Y. Tsuji. Multiphase Flows with Droplets andParticles. CRC Press, Boca Raton. 1997
    135 Y. D. Jun, W. Tabako. Numerical Simulation of a Dilute Particulate Flow over Tube Banks. J. Fluids Eng. 1994, 116: 770~777
    136 S. V.帕坦卡.传热与流体流动的数值计算.科学出版社. 1980: 132~139
    137 G. Afsin, E. Nurdil. Two-Dimensional Coal Combustion Modeling of CFB. International Journal of Thermal Sciences. 2008, 47: 157~174
    138 J. Andareas, J. Filip, N. Fredrik, A. Lars-Erik. Dynamics of Furnace Processes in a CFB Boiler. Chemical Engineering Science. 2007, 62: 550~560
    139骆仲泱,吴学成,王勤辉,高琼,方梦祥,岑可法.循环流化床中颗粒旋转特性.化工学报. 2005, 56: 1869~1874
    140 H. Johnsson, K. Johnsson. Measurements of Local Solids Volume Fraction in Fluidized Bed Boilers. Powder Technol. 2001, 115: 13~26
    141 D. Gidaspow, L. Huilin, Equation of state and radial distribution function of FCC particles in a CFB. A.I.Ch.E. J., 1998, 44: 279~291.
    142 N. F. Carnahan, K. E. Starling, Equation of state for nonattracting rigid spheres. J. Chemical Physics, 1969, 51: 635~655.
    143 R. A. Bagnold, Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. Royal Society of London, 1954, A225: 49~55.
    144 D. Ma, G. Ahmadi, An equation of state for dense rigid sphere gases. J. Chemical Physics, 1986, 84: 3449~3456.
    145 V. Murat, A. T. Atimtay. Combustion of Olive Cake and Coal in a Bubbling Fluidized Bed with Secondary Air Injection. Fuel. 2007, 86: 1430~1438
    146 L. Feihu, Z. Jianping, F. Xiaoru, S. Guanghong. Characterization of Fly Ashes from Circulating Fluidized Bed Combustion (CFBC) Boilers Cofiring Coal and Petroleum Coke. Energy and Fuels. 2006, 20: 1411~1417
    147 L. Peng, W. Zhifeng, B. Jicheng. Process Characteristics Investigation of Simulated Circulating Fluidized Bed Combustion Combined with Coal Pyrolysis. Fuel Processing Technology. 2007, 88: 23~28
    148刘向军,赵燕,徐旭常.循环流化床内煤粉颗粒团燃烧行为理论分析.中国电机工程学报.2006, 26: 30~34
    149秦裕琨,李争起,孙锐,孙绍增,吴少华.风包粉煤粉燃烧原理及实验研究.中国电机工程学报.2000, 20: 59~62
    150 H. H. Chiu, T. M. Liu. Group Combustion of Liquid Droplets. Combustion Science and Technology. 1977, 17: 127~142
    151 K. Annamalai, W. Ryan. Interactive Processes in Gasification and Combustion - II. Isolated Carbon, Coal and Porous Char Particles. Progress in Energy and Combustion Science. 1993, 19: 383~446
    152盛昌栋,袁建伟,徐明厚,马毓义.受辐射加热的煤粉颗粒群着火模型.燃烧科学与技术. 1996, 2: 38~45
    153姚强,周俊虎,徐建华,曹欣玉,岑可法.煤粉群非稳态统一着火模型.浙江大学学报. 1996, 30: 446~454
    154 X. Y. Du, C. Gopalakrishnan, K. Annamalai. Ignition and Combustion of Coal Particle Stream. Fuel. 1995, 74: 487~494
    155 K. Annamalai, S. C. Ramalingam. Group Combustion of Char/Carbon Particles. Combustion and Flame. 1987, 70: 307~332
    156 S. W. Baek. Ignition of Particle Suspension in Slab Geometry. Combustion and Flame. 1990, 81: 366~377
    157 A. B. Ayling, I. W. Smith. Measured Temperatures of Burning Pulverized-Fuel Particles and the Nature of Primary Reaction Product. Combustion and Flame. 1972, 18: 173~184
    158 M. Saito, M. Sadakata, M. Sato, T. Soutome, H. Murata. Combustion Rates of Pulverized Coal Particles in High-Temperature/High-Oxygen Concentration Atmosphere. Combustion and Flame. 1991, 87: 1~12
    159 Y. Changfu, X. Xuchang. Utilization of Ventilation Air Methane as a Supplementary Fuel at a Circulating Fluidized Bed Combustion Boiler. Environmental Science and Technology. 2008, 42: 2590~2593
    160 B. B. Rokhman. A Circulating Fluidized-Bed Furnace for Combusting Anthracite Culm and the Thermal-Contact Pyrolysis of Coal. Thermal Engineering. 2007, 54: 716~721
    161罗海华,张世红,陈汉平,刘德昌,杨海平.循环流化床锅炉飞灰残碳燃烧特性的实验研究.煤炭转化. 2008, 31: 61~65
    162 R. Deng, H. Liu, F. Wei, Y. Jin. Axial flow structure at the varying superficial gas velocity in a downer reactor. Chemical Engineering Journal, 2004, 99: 5~14
    163刘新华,高士秋,李静海.循环流化床中颗粒团聚物性质的PDPA测量.化工学报.2004, 55: 555~561
    164漆小波,曾涛,黄卫星,祝京旭,石炎福.循环流化床提升管中团聚物颗粒浓度的实验研究.四川大学学报.2005, 37: 46~50
    165王勤辉,高琼,石惠娴,吴学成,骆仲泱,岑可法.循环流化床中的颗粒团形成、结构及其运动.浙江大学学报. 2006, 40: 118~122
    166吴昊,刘春嵘,郭印诚.气粒并流上行流动中颗粒团特性的实验研究.工程热物理学报.2006, 27: 197~200
    167 L. D. Smoot, P. J. Smith. Coal Combustion and Gasification. New York: Plenum Press. 1985
    168 S. Kulasekaran, T. M. Linjewile, K. Pradeep, P. K. Agarwal. Mathematical Modeling of Fluidized Bed Combustion: Simultaneous Combustion of Char and Combustible Gases. Fuel. 1999, 78: 403~417
    169 J. Cooper, W. L. H. Hallett. A Numerical Model for Packed-Bed Combustion of Char Particles. Chem. Eng. Sci. 2000, 55: 4451~4460
    170 G. G. De Soete, E. Croiset, J. R. Richard. Heterogeneous Formation of Nitrous Oxide from Char Bound Nitrogen. Combustion and Flame. 1999, 117: 140~154
    171 G. F. Krammer, A. F. Sarofim. Reaction of Char Nitrogen during Fluidized Bed Coal Combustion-Influence of Nitric Oxide and Oxygen on Nitrous Oxide. Combustion and Flame. 1994, 97: 118~124
    172 L. K. Chan, A. F. Sarofim, J. M. Beer. Kinetics of NO-Carbon Reaction at Fluidized Bed Combustion Conditions. Combustion and Flame. 1983, 52: 37~44
    173 J. C. Moran, L. R. Glicksman. Experimental and Numerical Studies on the Gas Flow Surrounding a Single Cluster Applied to a Circulating Fluidized Bed. Chemical Engineering Science. 2003, 58: 1879~1886
    174 R. Beetstra, M. A. van der Hoef, J. A. M. Kuipers. A lattice-Boltzmann Simulation Study of the Drag Coefficient of Clusters of Spheres. Computers & Fluids. 2006, 35: 966~970
    175 P. L. George, H. Borouchaki, P. Laug. An Efficient Algorithm for 3D Adaptive Meshing. Adv. Eng. Software. 2002, 33: 377~385
    176 A. Onur, G. Yusuf, S. Nevin. Modeling of NOx Emissions From Fluidized Bed Combustion of High Volatile Lignites. Combustion Science and Technology. 2007, 179: 227~247
    177 L. Hao, F. Bo, L. Jidong, Z. Chuguang. Coal Property Effects on N2O and NOx Formation from Circulating Fluidized Bed Combustion of Coal. Chemical Engineering Communications. 2005, 192: 1482~1489
    178 S. Tadaaki, T. Masanon. Emissions of NOx and N2O during Co-Combustion of Dried Sewage Sludge with Coal in a Circulating Fluidized Bed Combustor. Fuel. 2007, 86: 2308~2315
    179侯祥松,杨石,吕俊复,张海,岳光溪. CFB锅炉循环灰对NO和N2O排放影响的实验研究.清华大学学报. 2007, 47: 1995~1998
    180段伦博,陈晓平,梁财,李英杰,李庆钊,赵长遂.以煤焦混合物为燃料的循环流化床锅炉SO2排放特性.化工学报. 2008, 59: 728~734
    181 P. C. Saraiva, J. L. T. Azevedo, M. G. Carvalho. Mathematical Simulation of a Circulating Fluidized Bed Combustor. Combustion Science and Technology. 1993, 93: 223~234
    182 S. K. Mahuli, R. Agnihotri, R. Jadhav, S. Chauk, L-S. Fan. Combined Calcination, Sintering and Sulfation Model for CaCO3-SO2 Reaction. AIChE J. 1999, 45: 367~382
    183 B. Grubor, V. Manovic, S. Oka. An Experimental and Modeling Study of the Contribution of Coal Ash to SO2 Capture in Fluidized Bed Combustion. Chemical Engineering Journal. 2003, 96: 157~169
    184吕清刚,雍玉梅,那永洁,包绍麟,孙运凯,贺军,矫维红,高鸣.循环流化床燃煤锅炉的SO2和NOx排放的试验和数值计算.中国电机工程学报. 2005, 25: 142~146
    185 S. K. Mahuli, R. Agnihotr, R. Jadhav, S. Chauk, L.-S. Fan. Combined Calcination, Sintering and Sulfation Model for CaCO3–SO2 Reaction. AIChE J. 1999, 45: 367~382
    186王世昌,徐旭常,姚强.水蒸气对CaO颗粒脱硫反应转化率的影响.燃烧科学与技术. 2005, 11: 36~40
    187由长福,祁海鹰,徐旭常,凌晓聪,马千里.生石灰颗粒中温脱硫过程的数值计算.工程热物理学报. 2002, 23: 764~766
    188 S. Kiil, S. K. Bhatia, K. Dam Johansen. Modelling of Catalytic Oxidation of NH3 and Reduction of NO on Limestone during Sulphur Capture. Chemical Engineering Science. 1996, 51(4): 587~601
    189李金晶,李燕,刘树清,岳光溪,李政.裤衩腿结构循环流化床锅炉床料不平衡现象的数值模拟.动力工程. 2008, 28: 28~32
    190张春霞,张宇,魏小林,盛宏至,田文栋.内旋流流化床内颗粒运动规律的试验与数值研究.燃烧科学与技术. 2007, 13: 157~162
    191石惠娴.循环流化床环核结构速度分布PIV测试.水动力学研究与进展. 2006, 21: 8~12
    192马志刚,方梦祥,王勤辉,骆仲泱,岑可法.二次风对矩形流化床锅炉磨损特性的影响.燃烧科学与技术. 2008, 14: 227~232
    193杨建华,杨海瑞,岳光溪.循环流化床二次风射流穿透规律的试验研究.动力工程. 2008, 28: 509~513
    194陈继辉,卢啸风,刘汉周,刘佳.循环流化床二次风射程的数值模拟和实验.动力工程. 2007, 27: 895~898
    195许用权,李永星,杨冬,陈听宽.循环流化床锅炉冷渣器内气固两相流场的数值模拟.西安交通大学学报. 2005, 39: 472~475
    196蒲舸,张力,辛明道. CFBC旋风分离器气固两相流数值模拟与优化.工程热物理学报. 2006, 27: 268~270
    197周力行,曾卓雄,张健.颗粒增强湍流的新模型和气粒流动的湍流变动.工程热物理学报. 2007, 28: 879~881
    198容易,张会强,王希麟.气固两相圆湍射流流动的大涡模拟.清华大学学报. 2007. 47: 240~243
    199刘春嵘,郭印诚,王希麟.竖直槽道中稠密气粒两相流动的瞬态结构.工程热物理学报. 2006, 27: 622~624
    200贺铸,柳朝晖,陈胜,翁磊,郑楚光.各向同性湍流中颗粒弥散的直接数值模拟.化工学报. 2006, 57: 300~306
    201贺铸,柳朝晖,陈胜,刘亚明,郑楚光.颗粒惯性对气固两相各向同性湍流中温度统计特性的影响.中国科学E辑, 2006,36: 39~50
    202荆有印,齐永霞,赵全表,齐晓唯,王保生.水平浓淡煤粉燃烧器内气固两相流的数值模拟.中国动力工程学报. 2005, 25: 65~67
    203周力行.离散型湍流多相流动的研究进展和需求.力学进展. 2008. 38: 610~621
    204程乐鸣,王勤辉,施正伦,方梦祥,骆仲泱,倪明江,岑可法.大型循环流化床锅炉中的传热.动力工程. 2006, 26: 305~310
    205蒋建平,张强,郭亚军,张鸿雁.循环流化床内气粒两相传热的萘升华模拟实验研究.动力工程. 2004, 24: 393~396
    206刘安源,刘石.流化床内单个颗粒传热特性的模拟.工程热物理学报. 2006, 27: 835~737
    207陆继东,任合斌,黄来,李卫杰.流化床内煤燃烧的传热过程DEM数值模拟.华中科技大学学报. 2006, 34: 96~99
    208 W. E. Ranz, Jr. W. R Marshall. Evaporation from Drops. Chemical Engineering Progress, 1952, 48: 141~146
    209 P. Basu, P. K. Halder. Mass Transfer from a Coarse Particle to a Fast Bed of Fine Solids. American Institute of Chemical Engineering Symposium Series, 1988. 84, 58~67.
    210程乐鸣,王勤辉,施正伦,方梦祥,骆仲泱,倪明江,岑可法.大型循环流化床锅炉中的传热.动力工程. 2006, 26: 305~310
    211 W. Dong, W. Wang, J. Li. A Multiscale Mass Transfer Model for Gas-solid Riser Flows: Part 1-Sub-grid Model and Simple Tests. Chemical Engineering Science. 2008, 63: 2798~2810
    212王琳娜,李静海.非均匀气固两相系统中多尺度传质模型.化工学报, 2001, 52: 708~714
    213 H. H. Sogin. Sublimation Disks to Air Streams Flowing Normal to Their Surfaces. Journal of Heat Transfer, 1958, 80: 61~69
    214 S. Whitaker. Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles. AIChE J. 1972, 18: 361~371
    215 N. Frosling. The Evaporation of Falling Drops. Gerlands Beitrae zur Geophysik, 1938, 52: 170~216
    216 P. N. Rowe, K. T. Claxton, J. B. Lewis. Heat and Mass Transfer from a Single Sphere in an Extensive Flowing Fluid. Transactions of the Institution of Chem. Eng. 1965, 43: 14~31
    217 D. J. Gunn. Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds. Int. J. Heat Mass Transfer. 1978, 21: 467~476
    218 R. D. La Nauze, K. Jung. Mass transfer relationships in fluidized-bed combustors. Chemical Engineering Communications. 1986, 43: 275~286
    219 R. Zevenhoven, M. Jarvinen. Particle/turbulence interactions, mass transfer and gas/solid chemistry in a CFBC riser. Journal of Applied Sciences Research. 2001. 67: 107~124.
    220 D. Subbarao. A model for gas to particle mass transfer in risers. 2005 AIChE Annual Meeting and Fall Showcase, Cincinnati, USA, Conference Proceedings, 2005, 2889~2896.
    221 R. W. Breault. A review of gas-solid dispersion and mass transfer coefficient correlations in circulating fluidized beds. Powder Technology. 2006 163: 9~17
    222 R. H.Venderbosch, W. Prins, W. P. M. van Swaaij. Mass transfer and influence of the local catalyst activity on the conversion in a riser reactor. Canadian Journal of Chemical Engineering. 1999, 77: 262~274

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700