纳米Ni/Fe及超声辅助纳米Ni/Fe对水中氯代有机物脱氯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用液相化学还原法制备了纳米Fe及纳米Ni/Fe双金属合金粉末,通过TEM、AAS、BET-N_2、XRD和XPS等表征手段,测定了纳米Fe和纳米Ni/Fe颗粒的形状和大小,Ni/Fe中Ni、Fe等组分含量,BET比表面积及其物相结构(晶体结构),表面组成及表面电子能态。
     本文研究内容:1)采用所制备的纳米Ni/Fe双金属微粒对水中具有代表性的小分子氯代脂肪烃三氯乙烯(TCE)和氯酚类如4-氯酚(4-CP),2,4-二氯酚(2,4-DCP)及常规下难以生物降解的五氯酚(PCP)等进行了催化还原脱氯研究;2)为了克服在反应过程中Ni/Fe双金属表面生成氢氧化物覆盖的弱点,引用了超声波技术加以辅助;3)利用超声辐照对上述氯代有机物进行单纯超声空化降解。
     上述实验考察了纳米Ni/Fe中Ni含量、纳米Ni/Fe的投加量、初始pH值、反应温度、反应物初始浓度、超声波输出功率等因素对处理效果和反应速率的影响,并通过中间产物和最终产物分析,研究了上述氯代有机物在纳米Ni/Fe双金属作用下催化还原脱氯及在超声空化作用下降解的反应机理。获得了反应过程中各反应物和生成物的浓度变化规律,并计算了准一级表观速率常数和表观反应活化能。
     实验结果表明:
     1.纳米Fe及纳米Ni/Fe颗粒的平均粒径在30 nm左右,通过调节Fe~(2+)和Ni~(2+)的浓度配比,可制备出不同Ni含量的Ni/Fe双金属纳米粒子。Ni含量为5wt%的Ni/Fe纳米颗粒,其BET比表面积为22.8 m~2g~(-1)。XPS结果表明,纳米Ni/Fe表面有一定程度的氧化,其表面Ni浓度高于本体Ni浓度。纳米Fe及纳米Ni/Fe的XRD谱图上只在20约为44.5°处有一极为弥散的宽衍射峰,表明其为非晶态合金结构,此种物相结构具有较高的加氢催化活性和选择性。
     2.纳米Ni/Fe双金属对水中TCE、4-CP、2,4-DCP及PCP均具较好的加氢脱氯效能,在初始pH值为6.5、Ni含量5wt%、Ni/Fe投加量为0.4g/L的条件下,60min内TCE的脱氯率达72%,4-CP在此条件下的脱氯率60min达87%,2,4-DCP的脱氯率为85.6%,PCP的脱氯反应较难,在初始pH值为5.4,Ni含量为10%,Ni/Fe投加量为2.5g/L及超声辅助下,PCP的去除率仅为16.7%。
     3.超声辐照对TCE有较好的降解效果,辐照60min氯离子回收率(与初始浓度有关)达45%,而用所选的超声源对氯酚类物质进行超声辐照却没有明显的降解效果。超声辅助纳米Ni/Fe对TCE处理效果高于二者单独作用处理效果的加和,表明二者具有协同效应。在选定的实验条件下反应30min,单独超声辐照、单独纳米Ni/Fe及二者协同作用下,TCE的脱氯率分别为6%、26%和45%。超声辅助纳米Ni/Fe处理PCP时,二者的协同作用极为显著。产生这种协同效应的原因:由于超声波的空化效应可产生极强烈的冲击波和微射流以及震动和搅拌,可以去除双金属表面形成的钝化层,强化界面间的化学反应和传递过程,促进反应表面的更新和活化,因此可大大提高反应活性。
     4.影响纳米Ni/Fe双金属对上述氯代有机物催化还原脱氯效果的因素有:初始pH值、Ni含量、Ni/Fe投加量及反应温度等。实验结果表明,较低初始pH值、较高Ni含量、较大的Ni/Fe投加量均有利于脱氯反应;在一定温度范围内,相对较高的反应温度有利于脱氯反应的进行;在实验所考察的初始浓度范围内,处理效果与其初始浓度关系较小。4-CP与纳米Ni/Fe反应的表观活化能为21.1kJ/mol,2,4-DCP与纳米Ni/Fe反应的表观活化能为58.2kJ/mol。
     5.超声辐照降解水中TCE反应速率的主要影响因素有:超声波的输出功率、饱和气体的种类、TCE的初始浓度及自由基清除剂等。TCE降解率随初始浓度增加而减小,呈现准一级反应动力学特性;增加超声波输出功率可以明显提高TCE的降解率,在60min内TCE的去除率可达90%以上;空化气体对TCE降解率的影响顺序为Ar>O_2~空气;自由基清除剂的加入对TCE的降解效果稍有影响,表明TCE的超声降解主要是在空化泡内以及空化泡的气-液界面内的高温热解,同时在超声降解TCE过程中也可能伴随着自由基氧化作用。
     6.超声辅助纳米Ni/Fe双金属处理PCP的主要影响因素有:初始pH值、Ni含量、镍/铁投加量、超声波输出功率等。结果表明,纳米Ni/Fe双金属粒子对PCP具有很好的脱氯效果,在最佳条件下,反应30 min内脱氯率达46%,当有超声波辅助时,PCP的脱氯率在相同反应时间内可高达96%。初始pH值对脱氯效果有非常显著的影响,当从酸性变为中性时,脱氯率显著降低。此外,较高的Ni含量、较大的Ni/Fe投加量及较大的超声波输出功率均有利于PCP的脱氯反应。
     7.利用GC/FID和GC/MS分析了TCE脱氯产物,结果表明,在纳米Ni/Fe的作用下,TCE的脱氯产物为乙烷、丁烷和丁烯等,没有检测到氯代中间产物,可推测该反应是发生在双金属表面的加氢脱氯。超声辐照处理TCE时,除氯离子以外没能检测到任何其他降解产物,可认为其彻底矿化了。由HPLC和GC/MS对氯代酚类脱氯产物的检测结果表明:4-CP的脱氯产物只有苯酚和氯离子,脱氯过程中没有生成其他氯代产物。2,4-DCP的脱氯中间产物有2-CP和4-CP,且在反应过程中,两种单氯酚的量一直很小,表明中间产物没有发生积累;实验过程中检测到PCP的各种脱氯中间产物,但在反应的最初阶段即有苯酚生成,表明2,4-DCP和PCP在Ni/Fe双金属表面既发生逐级脱氯又发生两个或以上的氯原子同时脱去,反应的最终产物只有苯酚和氯离子。
The Ni/Fe bimetallic particles have been prepared using sodium borohydride (NaBH_4) in laboratory as the reductant to reduce Ni~(2+) and Fe~(2+) in aqueous solution sinultaeously. The shape, diameter, content of Ni and Fe, BET surface area and crystal structure of the particles have been characterized by TEM, XRD, BET and XPS.
     The research of this paper involves:
     (1)Study on the catalytic reductive dechlorination of trichloroethene, 4-chlorophenol, 2,4-dichlorophenol and pentachlorophenol using laboratory-prepared Ni/Fe nanoscale bimetallic particles. Trichloroethene, a typical volatile chlorinated organic compounds (COCs), chlorophenols, soluble and relatively difficult to dechlorinate, and pentachlorophenol, has been used extensively throughout the world as wood preservative and general biocide, and was listed in the priority pollutants the US EPA; (2) To overcome the foible of the hydroxides covered layer on the surface of Ni/Fe bimetallic particles during reaction process, the technigue of coupled ultrasound was employed; (3) Ultrasound was used for ultrasonic dechlorination of the COCs only.
     The factors that influence the dechlorination efficicncy, such as initial pH value, nickel content in the Ni/Fe particles, metal to solution ratio, initial concentration of the COCs, reaction temperature and output power of ultrasonic irradiation have been investigated. The mechanisms of Ni/Fe bimetallic nanoparticles for catalytic reduction dechlorination of COCs and ultrasonic irradiation COCs have been deduced through the results from GC/MS and HPLC analysis. The pseudo-first order apparent rate constant and apparent activation energy have been calculated from the concentration variation of reacts and products.
     The results are as following:
     1. The particles were proved to be nanoscale spherical with an average diameter of about 30 nm. The Ni/Fe bimetallic particles with various nickel contents can be synthesized through adjusting the concentration ratio of Ni~(2+) and Fe~(2+) in aqueous solution. The Ni/Fe bimetallic nanoparticles with nickel content 5 wt% has a BET surface area of 22.8 m~2/g. XPS results indicate that the particles surface have been oxided at a certain extent, and its surface concentration of nickel is higher than its total concentration in the Ni/Fe particles. The XRD patterns of the fresh Fe, Ni/Fe nanoparticles and those have been irradiated by ultrasound under acid conditon for 40 min show the only one broad peak around 2θ= 44.5°, indicating that Ni, Fe and B species form amorphous alloy. It is belived that such amorphous alloy structure is favorable for both the activity and selectivity, and even the sulfur resistance in many hydrogenation reactions owing to the stronger synergistic effect between active sites, the more highly unsaturated active sites, and the more homogeneous distribution of these active sites.
     2. The nanoscale Ni/Fe bimetallic particles exhibit high reactivity for trichloroethylene, 4-chlorophenol, 2,4-dichlorophenol and phentachlorophenol dechlorination. Dechlorination efficiencies of trichloroethylene, 4-chlorophenol, 2,4-dichlorophenol is above 70%, 87% and 86%, respectively, in 60 min at initial pH value 6.5, nickel content of 5 wt% and Ni/Fe metal to solution ratio of 0.4 g/L. However, pentachlorophenol is hardly to dechlorinate at above conditions, the dechlorination efficiency of pentachlorophenol is only to 17% in the same period under the condition of initial pH value 5.4, nickel content of 10 wt%, Ni/Fe metal to solution ratio of 2.5 g/L and assistance of ultrasound.
     3. The results also indicate that ultrasonic irradiation is very effective for the degradation of trichloroethylene, the recovery of chloride reaches 45% within 60 min (relation to the initial trichloroethylene concentration). However, the degradation efficiencies are scarcely any for the chlorophenols at the same conditions. The dechlorination efficiency of trichloroethylene by using ultrasonic irradiation combined with nanoscale bimetallic Ni/Fe particles is higher than the sum of Ni/Fe particles and ultrasound individually. The dechlorination efficiencies of trichloroethylene in the presence of ultrasonic irradiation only, bimetallic Ni/Fe nanoparticles only, and both ultrasonic irradiation and bimetallic nanoparticles is about 6%, 26% and 45% accordingly. This resoults indicate that synergic effect occurred when Ni/Fe nanoscale particles and ultrasonic irradiation present simultaneously. This synergic effect is dramatically for dechlorination of pentachlorophenol. The enhancement is attributed to the continuous cleaning and activation of the particles surface by the combined chemical and physical effects of acoustic cavitiation.
     4. The factors that influence the dechlorination efficicncy of COCs using nanoscale Ni/Fe bimetallic particles include: initial pH value, nickel content in Ni/Fe bimetal, the mass concentration of nanoscale Ni/Fe particles in the reaction mixture and reaction temperature. Lower initial pH value, higher nickel content, higher bimetal to solution ratio and higher reaction temperature favored the dechlorination reaction. No dependence is found between reaction rate and initial concentration of the above COCs. The apparent activation energies of 4-chlorophenol and 2,4-dichlorophenol reaction with nanoscale Ni/Fe particles is 21.1kJ/mol and 58.2 kJ/mol, respectively.
     5. The factors that influence the degradation of trichloroethylene in aqueous solution using ultrasonic irradiation include: the output power of ultrasound, the kind of cavitating gases, initial concentration of trichloroethylene and the presence of radical scavenger. The degradation efficiency of trichloroethylene decreases with the increase of initial concentration of trichloroethylene in the pseudo-first order kinetics. With increasing ultrasonic power, the degradation efficiency is enhanced obviously, and the degradation rate reaches over 90% within 60 min. The effect of selected cavitating gases on the degradation efficiency is in order Ar > O_2~Air. The presence of radical scavenger has a little effect on the degradation efficiency wich indicates that ultrasonic degradation of trichloroethylene occurs predominantly both at the bobbles and the liquid-gas interfaces of bubbles where it undergoes high-temperature combustion. Moreover, the results suggest that radical oxidation could appear during the process of ultrasonic degradation of TCE.
     6. The factors that influence the dechlorination efficiency of pentachlorophenol by Ni/Fe bimetallic nanoscale particles with the assistance of ultrasound as below: initial pH value, nickel content in the Ni/Fe particles, the mass concentration of nanoscale Ni/Fe particles in the reaction mixture and output power of ultrasonic irradiation. The results indicate that Ni/Fe nanoscale bimetallic particles are very effective for the dechlorination of pentachlorophenol. Dechlorination efficiency is 46% in 30 min under the optimal condition without assistance of ultrasound, whereas it increase to 96% when ultrasonic irradiation is used. Initial pH value shows apparent effect on the dechlorination. As the pH varies from acidic condition to neutral condition, the dechlorination efficiency decreases dramatically. In addition, the dechlorination efficiency is improved with the increase of Ni/Fe ratio, nickel content in Ni/Fe particles and ultrasonic output power.
     7. The reaction products of trichloroethylene with Ni/Fe nanoparticles has been determined by using GC/FID and GC/MS. The results indicate that the dechlorinted products of trichloroethylene include ethane, butane and butene. No chlorinated intermediate and final products were found. It can be concluded that the dechlorination of trichloroethylene occurs when adsorbed on the surface of Ni/Fe bimetallic nanopartices, and the hydrogenation of trichloroethylene simultaneity. There is no other degradation products except chlorine when trichloroethylene treated by ultrasonic irradiation, which indicate that trichloroethylene has been mineralized. The dechlorination products of chlorophenols determined by HPLC and GC/MS are as following: phenol and chlorine for 4-chlorophenol, no other species have been found; phenol and less 2-chlorophenol, 4-chlorophenol for 2,4-dichlorophenol during the reaction process, which indicate that most of the dechlorinted intermediates do not turn into solution but maitained on the surface of Ni/Fe particles to dechlorinate sequentially; and for pentachlorophenol, less chlorinated phenols including tetrachlorophenol, trichlorophenol, dichlorophenol, monochlorophenol are formed during the initial reaction,and phenol is determined as sole product in the end of reaction.
引文
[1]Karel Verschueren.Handbook of environmental data on organic chemicals.VAN NOSTRAND REINHOLD,1983.
    [2]Tutem E,Apak R,et al,Adsorptive removal of chlorophenols from water by Bituminous shale,Water Res.,1998,32:2315-2324
    [3]许昭怡,张全兴,陈金龙.大孔树脂吸附法在含酚废水处理中的应用[J].上海环境科学,2000,9:429-431
    [4]陈金龙,许昭怡,赵玉明等.树脂吸附法处理五氯酚钠废水[J].离子交换与吸附,1996,12(2):129-135
    [5]Dvorak B L Lawler D F,Selection among physical/chemical processes for removing synthetic organics from water,Water Environ.Res.,1993,65:827-838
    [6]陈也奔译,新的净化技术-利用硅酮聚合物去除水溶液中的有机污染物,国外环境科学技术,1994,75:34-43
    [7]Kim Broholm et al.,Different abilities of eight mixed cultures of methane-oxidixing bacteria to degrade TCE,Water Res.,1993,27:215-244
    [8]Sanjoy K.Bhattacharya,Qiang Yuan,Peikang Jin.Removal of pentachlorophenol from wastewater by combined anaerobic-aerobic treatment.Journal of Hazardous Materials,1996,49:143-154
    [9]李小明,杨朝晖,李海英等.固定化厌氧微生物处理含五氯酚废水[J].湖南大学学报(自然科学版),2001,28(2):95-99,106
    [10]李群,赵华,张业录等.白腐菌去除氯代酚动力学研究[J].城市环境与城市生态,2001,14(2):7-9
    [11]徐向阳,祁华宝,王其于.厌氧颗粒污泥还原脱氯与降解五氯酚(PCP)的研究[J].浙江大学学报(农业与生命科学版),2001,27(2):145-150
    [12]徐向阳,屠明,俞秀娥等.厌氧颗粒污泥降解五氯酚活性的研究[J].应用与环境生物学报,1996,2(4):398-404
    [13]Oturan M A,Oturan N L,et al.,Production of hydroyl radicals by electrochemically assisted Fenton's reagent:Application to the mineralization of an organic micropollutant,pentachlorophenol,Journal of Electroanalytical Chemistry,2001,507:96-102
    [14]Larson R A,Weber E J.Reaction mechanisms in environmental organic chemistry[J].USA:Lewis publishers,1994:402-404
    [15]Shen Y S,Ku Y,Lee K C.The effect of light absorbed on the decomposition of chlorophenols by ultraviolet radiation combined with hydrogen peroxide[J].Water Res,1995,29(3):907-910
    [16]薛向东,金奇庭.TiO_2光降解水中污染物的研究进展,中国给水排水,2001,17(6):26-29
    [17]李学德,岳永德,花日茂等.二氯苯酚的光催化降解研究[J].农业环境保护,2002,21(2):156-158,168
    [18]Liu Yumin,Schwartz J,Cavallaro C L,Catalytic dechlorination of polychlorinated biphenyls,Environ.Sci.Technol.,1995,29:836-840
    [19]赵毅,多氯联苯催化转移氢化脱氯的研究,环境化学,1994,13:328-330
    [20]Guy G,Werner A,et al.,Corrinoid-mediated reduction of tetrachloroethylene,trichloroethylene,and trichlorofluoroethylene in homogeneous aqueous solution:reaction kinetics and mechanisms,Environ.Sci.Technol.,1997,31:253-260
    [21]周红艺,汪大翚,周明华等,金属铁还原脱氯处理有机氯化物的研究进展,环境污染治理技术 与设备,2001,2:14-20
    [22]Suslick K S,Hammerton D A,Cline R E,Sonochemical hot spot,J.Am.Soc.,1986,108(18):5641-5642.
    [23]Misik V,Miyoshi N,Riesz P,EPR Spin-Trapping Study of the Sonolysis of H_2O/D_2O Mixtures:Probing the Temperatures of Cavitation Regons,J.Phys.Chem.,1995,99:3605-3611.
    [24]Wu J-M,Huang H-S,Liveng C D,Ultrasonic destruction of chlorinated compounds in aqueous solution,Environmental Progress,1992,11(3):195-201
    [25]Hua I,Hoffmann M R,Kinetics and mechanism of the sonolytic degradation of CCl_4:intermediates and byproducts,Environ.Sci.Technol.,1996,30:864-871
    [26]Cheung H M,Bhatnagar A,Jansen G,Sonochemical destruction of chlorinate hydrocarbons in dilute aqueous solution,Environ.Sci.Technol.,1991,25:1510-1512
    [27]Kruus P,Burk R C,Entezari M H,et al.,Sonication of aqueous solutions of chlorobenzene,Ultrasonics Sonochemistry,1997,4(3):229-233
    [28]Jiang Y,Petrier C,Waite T D,Kinetics and mechanisms of ultrasonic degradation of volatile chlorinated aromatics in aqueous solutions,Ultrasonics Sonochemistry,2002,9(6):317-323
    [29]陈伟,范瑾初等,超声—过氧化氢技术降解水中4-氯酚,中国给水排水,2001,16:
    [30]Petrier C,Micolle M,Merlin G,et al.,Characteristics of pentachlorophenate degradation in aqueous solution by means of ultrasound,Environ.Sci.Technol.,1992,26:1639-1642
    [31]Gondrexon N,Renaudin V,Petrier C,Degradation of pentachlorophenol aqueous solutions using a continuous flow ultrasonic reactor:experimental performance and modeling,Ultrasonics Sonochemistry,1999,5:125-131
    [32]David B,Lhote M,Faure V,Ultrasonic and photochemical degradation of chlorpropham and 3-chloroaniline in aqueous solution,Wat.Res.,1998,32:2451-2461
    [33]Petrier C,Francony A,Ultrasonic waste-water treatment:incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation,Ultrasonics Sonochemistry,1997,4:295-300
    [34]Drijvers D,De Baets R,De Visscher A,et al.,Sonolysis of trichloroethylene in aqueous solution:volatile organic intermediates,Ultrasonics Sonochemistry,1996,3(2):S83-90
    [35]Petrier C,Francony A.Incidence of wave-frequency on the reaction rates during ultrasonic wastewater treatment[J],Wat.Sci Technol,1997,35(4):175-180
    [36]Hua I,Hochemer R H,Hoffmann M R,et al.Sonochemical degradation of p-nitrophenol in a parallel-plate near-field acoustical processor[J].Environ Sci Technol,1995,29:2790-2796
    [37]Sivakumar M,Pandit A B.Ultrasound dnhanced degradation of Rhodamine B:optimization with power density[J],Ultrasonic Sonochemistry,2001,8:233-240.
    [38]Schramm J D and Hua I,Ultrasonic Irradiation of Dichlorvos:Decomposition mechanism[J],Wat Res,2001,35(3):665-674.
    [39]Entezari M H,Kruus P,Effect of frequency on sonochemical reactions Ⅱ:Temperature and intensity effects[J],Ultrasonics Sonochemistry,1996,3:19-24.
    [40]Gaddam K,Cheung H M.Effects of pressure,temperature,and pH on the sonochemical destruction of 1,1,1-trichloroethane in dilute aqueous solution[J].Ultrasonics Sonochemistry,2001,8:103-109.
    [41]Ku Y,Chen K Y,Lee K C.Ultrasonic destruction of 2-chlorophenol in aqueous solution[J],Wat.Res.,1997,31(4):929-935
    [42]Gillham R W,Hannesin S F O',Eehanced degradation of halogenated aliphatics by zero-valent iron[J].Ground Water,1994,32:958
    [43]Bradley R H,Pedro J J,Jerald L S.Reductive dechlorination of carbon tetrachloride with elemental iron[J].J Hazardous Materials,1995,41:205-216
    [44]Lipczynska-Kochany E,Harms S,Milburn R.Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds[J].Chemosphere,1994,29(7):1477-1489
    [45]Arnold W A,Roberts A L.Parthways and kinetics of chlorinated ethylene and chlorinated acethlene reaction with Fe(0)particles[J].Environ Sci Technol,2000,34(9):1794-1805
    [46]Lampron K J,Chiu P C,Cha D K.Reductive dehalogenation of chlorinated ethenes with elemental iron:the role of microorganisms[J].Water Research,2001,35(13):3077-3084
    [47]Orth W S,Gillham R W.Dechlorination of trichloroethene in aqueous solution using Fe~0[J].Environ Sci Technol,1996,30:66-71
    [48]Chen J L,Al-Abed S R,Ryan J A,et al.Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J].Journal of Hazardous Materials,2001,B83:243-254
    [49]Yak H K,Lang Q Y,Wai C M.Relative resistance of positional isomers of polychlorinated biphenyls toward reductive dechlorination by zerovalent iron in subcritical water[J].Environ Sci Technol,2000,34(13):2792-2798.
    [50]Sayles G D,You G R,Wang M X,et al.DDT,DDD and DDE dechlorination by zero-valent iron.Environ Sci Technol,1997,31(12):3448-3454
    [51]Monson S J,Ma Li,Cassada D A,et al.Confirmation and method development for dechlorinated atrazine from reductive dehalogenation of atrazine with FeO[J].Analytica Chimica Acta,1998,373:153-160
    [52]Dombek T,Dolan E,Schultz J,et al.Rapid reductive dechlorintion of atrazine by zero-valent iron under acidic conditions[J].Environmental Pollution,2001,111:21-27
    [53]Matheson L J,Tratnyek P G Reductive dehalogenation of chlorinated methanes by iron metal[J].Environ.Sci.&Technol.,1994,28(12):2045-2053.
    [54]Muftidian R,Fernando Q,Korte M.A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water[J].Wat Res,1995,29:2434-2439
    [55]全燮,刘会娟等.二元金属体系对水中多氯有机物的催化还原脱氯特性[J],中国环境科学,1998,18(4):333-336
    [56]全燮,杨凤林,薛大明等。钯/铁催化还原法对水中三氯乙烯的快速脱氯研究[J].大连理工大学学报,1997,37(1):46-48
    [57]Korte N E,Zutman J L,Schlosser R M,et al.Field application of palladized iron for the dechlorination of trichloroethene[J].Waste Management,2000,20(6):687-694
    [58]何小娟,汤鸣皋,沈照理等.Ni/Fe双金属埘PCE脱氯影响因素研究[J].地球科学—中国地质大学学报,2003,28(3):337-340
    [59]何小娟,汤鸣皋,李旭东等.镍/铁和铜/铁双金属降解四氯乙烯的研究[J].环境化学,2003,22(4):334-339
    [60]Liu Y H,Yang F L,Yue P L,et al.Catalytic dechlorination of chlorophenols in water by pallad/iron[J].Wat Res 2001,35(8):1887-1890
    [61]Graham L,Jovanovic G N.Dechlorination of p-chlorophenol on a Pd/Fe catalyst in a magnetically stabilized fluidized bed:Implications for sludge and liquid remediation[J].Chem Eng Sci,1999.54,3085-3093.
    [62]Jovanovic G N,Plazl P Z,Sakrittichai P,et al.Dechlorination of p-chlorophenol in a microreactor with bimetallic Pd/Fe catalyst[J].Ind Eng Chem Res,2005,44:5099-5106
    [63]Kim Y,Carraway E R.Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons[J].Environ Sci Technol,2000,34(10):2014-2017.
    [64]Grittini C,Malcomson M,Fernando Q,et al.Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system[J].Environ Sci Technol,1995,29:2898-2900
    [65]Doyle J G,Miles T,Parker E,et al.Quantification of total polychlorinated biphenyl by dechlorination to biphenyl by Pd/Fe and Pd/Mg bimetallic particles[J].Microchemical Journal,1998,60:290-295
    [66]Engelmann M D,Hutcheson R,Henschied K,et al.Simultaneous determination of total polychlorinated biphenyl and dichlorodiphenyltrichloroethane(DDT)by dechlorination with Fe/Pd and Mg/Pd bimetallic particles and flame ionization detection gas chlromatography[J].Microchemical Journal,2003,74:19-25
    [67]Engelmann M D,Doyle J G,Cheng I F.The complete dechlorination of DDT by magnesium/palladium bimetallic particles[J].Chemosphere,2001,43:195-198
    [68]Mallat T,Bodnar Z,Petro J.Reduction by dissolving bimetals[J].Tetrahedron,1991,47(3):441-446
    [69]Choe S,Lee S H,Chang Y Y,et al.Rapid reductive destruction of hazardous organic compounds by nanoscale Fe~0[J].Chemosphere,2001,42:367-372
    [70]Lien H L,Zhang W X.Nanoscale iron particles for complete reduction of chlorinated ethenes[J].Colloids and Surfaces,2001,191:97-105
    [71]Elliott D W,Zhang W X.Field assessment of nanoscale bimetallic particles croundwater treatment[J].Environ Sci Technol,2001,35:4922-4926
    [72]Su C,Puls R W Kinetics of tricholroethene reduction by zerovalent iron and tin:pretreatment efect,apparent activation energy,and intermediate products[J].Environ.Sci.&Technol,1999,33(1):163-168.
    [73]Deng B,Burris D R and Campbell T J.Reductive of vinyl chloride in metallic iron-water systems.Env.Sci.&Technol.1999,33(15):2651-2656.
    [74]Gotpagar J,Grulde E,Bhatacharyya D.Reductive dehalogenation of trichloroethylene us zero-valent iron[J].Environmental Progress.1997,16(2):137-143.
    [75]Deng B,Burris D R and Campbell T J.Reductive of vinyl chloride in metallic iron-water systems.Env.Sci.&Technol.1999,33(15):2651-2656.
    [76]Yak H K,Lang Q and Wai C M.Relative resistance of positional isomers of polychlorinated biphenyls toward reductive dechlorination by zerovalent iron in subcritical water[J].Environ Sci Technol,2000,34(13):2792-2798
    [77]Kim Y -H.PhD.Dissertation,Texas A&M University,Colege Station,TX,1999.
    [78]Kim Y H,Carraway E R.Dechlorination of pentachlorophenol by zero valent iron and modified zero vaent irons.Environ Sci Technol,2000,34:2014-2017
    [79]Xu Y,Zhang W X.Subcolloidal Fe/Ag Particles for Reductive Dehalogenation of Chlorinated Benzenes.Ind.Eng.Chem Res.,2000,39(7):2238-2244.
    [80]Yak H K,Wenclawiak B W,Cheng I F.Reductive dechlorination of polycholrinated biphenyls by zerovalent iron in subcritical water[J].Environ Sci &Technol,1999,33(8):1307-1310.
    [81]Schrier C Q,Reinhard M.Transformation of chlorinated organic compounds by iron and manganese powders on bufered water and in landfill leachate[J].Chemosphere,1994,29(8):1743
    [82]Cipollone M CS Wolfe N L.Meet.- Am Chem Soc.,Div.Environ.Chem,1995,35:812(Abstr.)
    [83]Eykholt G凡Davenport D T.Dechlorination of the chloroacetanilide herbicides alachlor and metolachlor by iron metal[J].Environ Sci Technol,1998,32(10):1482.
    [84]Chuang F W,Larson R A,Wessman M S.Zero-valent iron-promoted dechlorination of polychlorinated biphenyls[J].Environ Sci Technol,1995,29(9):2460.
    [85]Muftikian R,Fernando Q,Korte N.A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water.Water Res,1995,29(10):2434.
    [86]Wei J -J,Xu X -H,Liu Y.Kinetics and mechanism of dechlorination of o-chlorophenol by nanoscale Pd/Fe[J].Chemical Research in Chinese Universities,2004,20(1):73-76
    [87]Wei J -J,Xu X -H,Wang D -Y.Catalytic dechlroination of o-chlorophenol by nanoscale Pd/Fe[J].J Environ Sci,2004,16(4):621-623
    [88]徐新华,刘永,卫建军等.纳米级Pd/Fe双金属体系对水中2,4-二氯苯酚脱氯的催化作用[J].催化学报,2004,25(2):138-142
    [89]Hung H -M,Hoffmenn M R.Kinetics and mechanism of the enhanced reductive degradation of CCl_4by elemental iron in the presence of ultrasound.Environ.Sci.Technol.,1998,32:3011-3016
    [90]张选军,戴友芝等,纳米铁协同超声降解氯苯的研究,环境污染治理技术与设备,2004,5(8): 32-34
    [91]Wang C -B,Zhang W -X.Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J].Environ Sci Technol,1997,31(7):2154-2156.
    [92]徐新华,卫建车,汗大翚.Pd/Fe及纳米Pd/Fe对氯酚的脱氯研究[J].中国环境科学,2004,24(1):76-80
    [93]Feng J,Lim T -T.Pathway and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles:comparison with commercial micro-scale Fe and Zn[J].Chemosphere,2005,59(9):1267-1277.
    [94]黄园英,刘菲,汤鸣皋,沈照理.纳米级Ni/Fe颗粒降解四氯化碳批实验研究[J].山东农业大学学报(自然科学版),2004,35(4):565-568
    [95]Schrick B,Blough J L,Jones A D,Mallouk T E.Hydrodechlorination of trichoroethylene to hydrocarbons using bimetallic Ni-Fe nanoparticles[J].Chem Mater 2002,14(12):5140-5147
    [96]Yamashita,H.,Yoshikama,M.,Funabiki,T.,Yoshida,S.,Catalysis by amorphous metal alloys.J.Chem.Soc.Faraday Trans.I.1985,81,2485-2493.
    [97]戴道生.非晶态物理学[M].北京.电子工业出版社.1989:695
    [98]Liu Y-Q,Choi H,Dionysiou D,Lowry G V,Trichloroethene hydrodechlorintion in water by highly disordered monometallic nanoiron[J].Chem Mat 2005,17:5315-5322.
    [99]Chen Y.Chemical Preparation and Characterization of metal-metallic ultrafine amorphous alloy particles[J].J.Catal Today,1998 44:3-16
    [100]Molnar A,Smith G V,Bartok M.New catalytic materials from amorphous metal alloys[J].J Adv Catal,1989,36:329-381
    [101]Li H -X,Luo H -S,Zhuang L,Dai W -L,Qiao M -H.Liquid phase hydrogenation of furfural to furfuryl alcohol over the Fe-promoted Ni-B amorphous alloy catalysts[J],J Molecular Catalysis A:Chemical,2003,203:267-275
    [102]Song H,Carraway E R,Reduction of chlorinated ethanes by nanosized zero-valent iron:kinetics,pathways,and effects of reaction conditions[J].Environ Sci Technl,2005,39(16):6237-6245
    [103]田景君,邢文卫.分析化学[M].北京:化学工业出版社,1979.
    [104]Lowry G V and Reinhard M,Hydrodenhalogenation of 1- to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas[J].Environ Sci Technl,1999,33(11):1905-1910
    [105]Liu Y -Q,Majetich S A,Tilton R D et al.,TCE dechlorination rates,pathways,and efficiency of nanocale iron particles with different properties[J].Environ Sci Technl,2005,39(5):1338-1345
    [106]Hoffmann M R,Hua I,Hochemer R.Application of ultrasonic irradiation for the degradation of chemical contaminants in water[J].Ultrasonic Sonochemistry,1996,3(3):S163-S172.
    [107]Adewuyi Y G.Sonochemistry:environmental science and engineering applications[J].Ind Eng Chem Res,2001,40(22):4681-4715.
    [108]Kang J W,Hung H M,Lin A,Hoffmann M R.Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation:the role of O_3,H_2O_2,frequency,and power density[J].Environ Sci Technol,1999,33(18):3199 -3205.
    [109]Peirier C,Francony A.Ultrasonic waste-water treatment:incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation[J].Ultrasonics Sonochemistry,1997,4(4):295-300.
    [110]Francony A,Pettier C.Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies:20 kHz and 500 kHz[J].Ultrasonics Sonochemistry,1996,3(2):S77-82.
    [111]Hua I,Hochemer R H,Hoffmann M R.Sonolytic hydrolysis of p-Nitrophenyl acetate:the role of supercritical water[J].J Phys Chem,1995,99(8):2335-2342.
    [112]Tauber A,Schuchmann H P,Sonntag C.Sonolysis of aqueous 4-nitrophenol at low and high pH[J].Ultrasonics Sonochenistry,2000,7(1):45-52.
    [113]Entezari M H,Kruus P,Otaon R.The effect of frequency on sonochemical reactions Ⅲ:dissociation of carbon disulfide[J].Ultrasonics Sonochemistry,1997,4(1):49-54.
    [114]徐新华,金剑,卫建军等.纳米Pb/Fe双金属对2,4-二氯酚的脱氯机理及动力学[J].环境科学学报,2004,24(4):561-567
    [115]Larry K,William T.ES&T Special Report:Priority pollutants:I-a perspective view[J].Environ.Sci.Technol.,1979,13:416-423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700