人类在体细胞周期核心机制多样性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:将正常的胃、肠及口腔黏膜上皮组织制备成高质量的单细胞悬液,可供流式细胞仪检测;并建立人类在体细胞的细胞增殖周期研究模型。
     方法:应用不同浓度的胃蛋白酶和Dispase尝试去除胃、肠、口腔粘液和分离获得粘膜层后,再使用机械剪碎法制备成单细胞悬液并用滤网过滤细胞;另外部分标本采用棉签直接刮取正常人群的口腔黏膜上皮细胞,并用滤网过滤之。然后用流式DNA直方图来验证获得的单细胞的各周期比例,进一步采用Ki67/DNA双参数法检测细胞的增殖能力。对照组是单用机械剪碎法和单用酶消化法以及人类外周血淋巴细胞。
     结果:我们发现0.05-0.1%的胃蛋白酶浓度和1.2-2.4 u/ml的Dispase浓度能够较好的去除胃、肠、口腔粘液而获得粘膜层,然后剪碎并吹打,制备成胃、肠、口腔粘膜上皮细胞的单细胞悬液;用棉签刮取的口腔黏膜上皮组织滤过之后直接成为单细胞悬液,显微镜下观察发现细胞形态较完整,细胞数量大于1×106,细胞存活率大于90%,从而都能够采用流式技术进行单细胞分析。流式DNA含量法检测胃、肠、口腔黏膜上皮细胞G1期约占80%-82%,S期约占11%-12%, Ki67/DNA双参数法检测胃、肠、口腔黏膜上皮组织的增殖率分别为11.67%、27.79%、23.48%,均低于体外培养的淋巴细胞。
     结论:利用胃蛋白酶和Dispase能够去除胃、肠、口腔粘液,较容易获得高质量的胃、肠、口腔粘膜上皮细胞的单细胞悬液,样本完全适合FCM分析,结果满意。胃、肠、口腔粘膜上皮细胞具有明显的细胞分裂周期,适合成为人类在体细胞的细胞增殖周期研究模型。
     目的:以胃、肠和口腔黏膜上皮细胞为研究对象,研究人类正常在体细胞的细胞周期核心调控因子的表达情况。
     方法:采用Western blot分析各种细胞周期调控因子Cyclins (A, B1, D1, E), CDKs (CDK1,2,4,6)、CKIs (P27, P21, P19, P16)和Rb的表达;并与正常人外周血淋巴细胞(PBL)和体内骨髓单个核细胞(MNC)作为对比分析。
     结果:Western blot分析结果显示:口腔黏膜上皮细胞(OME)中cyclin D1明显表达,cyclin A、cyclin B1和cyclin E无表达或微弱表达;胃、肠黏膜上皮细胞(GME和IME)中cyclin A、cyclin B1、cyclin D3和cyclin E均无表达或微弱表达。口腔黏膜上皮细胞中CDK2、CDK4和CDK6明显表达,而CDK1无表达或微弱表达;胃肠黏膜上皮细胞中CDK2明显表达,并且胃黏膜上皮细胞中CDK2的表达比肠黏膜上皮细胞的表达要低,而CDK1、CDK4和CDK6无表达或微弱表达。口腔黏膜上皮细胞中p19、p21和p27明显表达,而p16无表达或微弱表达;胃肠黏膜上皮细胞中p19明显表达,而p16、p21和p27无表达或微弱表达。胃、肠、口腔黏膜上皮细胞中Rb无表达或微弱表达。
     结论:细胞周期调控因子体内细胞与体外培养细胞中的表达以及体内细胞与细胞之间的表达并不完成相同,提示人类在体细胞周期核心机制可能存在多样性。
     目的:探讨人类在体细胞(胃、肠、口腔黏膜上皮细胞)的细胞周期核心调控机制,即Cyclins时相性起伏及CDKs序列激活规律。
     方法:Cyclins时相性表达规律:Post-sorting Western blot(分选后蛋白电泳技术)检测四种Cyclins在细胞周期不同时相中的表达。CDKs序列激活规律:Post-sorting Western blot(分选后免疫共沉淀技术)分析Cyclins和CDKs的相互结合规律。阳性对照采用正常人外周血PHA刺激培养的淋巴细胞(PBL)和体内骨髓单个核细胞(MNC)。
     结果:Cyclins时相性表达规律:体内OME的表达规律是:Cyclin D1在G1早期合成,S期和G2/M期开始下降;Cyclin E、Cyclin A和Cyclin B1无表达或在G1期有微弱表达。体内GME和IME的表达规律是:Cyclin D1、Cyclin E、Cyclin A和CyclinB1无表达或在G1期有微弱表达。CDKs序列激活规律:在OME中,在G1、S.G2/M期,Cyclin D1均与CDK2、CDK4、CDK6结合;在G1期,cyclin D1/CDK4/CDK6结合最多;在G2/M期,cyclin D1/CDK2结合最多。在GME和IME中,在G1、S、G2/M期,Cyclin D1、CyclinE、Cyclin A和Cyclin B1均与CDK2仅有微量的结合。
     结论:人类在体增殖细胞的细胞周期核心调控机制——Cyclins周期时相性起伏及CDKs序列激活规律,在体内细胞与细胞之间以及体内细胞与体外细胞之间均存在重要的差别,人类在体细胞的细胞周期核心机制存在多样性。
Objective:Making high-qualified single cell suspensions out of normal gastic mucous epithelia (GME), intestinal mucous epithelia (IME) and oral mucous epithelia (OME) in order to be smoothly detected by flow cytometry (FCM) and building up a model for studying human in vivo cell-cycle regulatory mechanism.
     Methods:We used pepsin and Dispase at different concentrations to remove gastic mucus,intestinal mucus and oral mucus and separated mucous membranes, then cut them to pieces, blew gently and finally filtered them to make single cell suspensions; used cotton bud to scrape out normal people's OME and filter them. Next we used DNA content method of FCM to detect the cell proportion at every phase and furtherly used Ki67/DNA double parameter method to detect cell proliferation ability. Taking scissoring alone and digesting alone and PBL as control.
     Results:We made use of 0.05-0.1% pepsin and 1.2-2.4 u/ml Dispase to remove mucus successfually from the GME, IME and OME and obtained mucous membranes, then cut them to pieces and blew repeatedly to make high-qualified single cell suspensions; We also made high-qualitied single cell suspensions by scraping and filtering OME. At last we obtained a lot of intact cells, cell quantity>1×106and cell survival rate>90% and the cells can be detected successfually by FCM. The rates of GME, IME and OME were 80%-82% at G1 phase and 11%-12% at S phase. The proliferating rates of GME, IME and OME were 11.67%,27.79% and 23.48% respectively by the Ki67/DNA double parameter method and were lower than those of PBL.
     Conclusions:We made use of pepsin and Dispase to produce high-qualified single cell suspensions out of GME, IME and OME which were much fit for analysis on FCM and got satisfied results and they have an evident cell division cycle and are competent for a model of studying human in vivo cell-cycle regulatory mechanism.
     Objective:Study on the expression of cell cycle regulators of human in vivo cells taking gastric mucous epithelia (GME).. intestinal mucous epithelia (IME) and oral mucous epithelia (OME) for examples.
     Methods:We applied Western blot to detect the expression of cell cycle regulators like Cyclins (A, B1, D1, E), CDKs (CDK1,2,4,6), CKIs (P27, P21, P19, P16) and Rb taking PBL and MNC as positive control.
     Results:There existed obvious cyclin Dl expression but no or faint cyclin A, cyclin B1 and cyclin E expression in the OME; and there were no or faint cyclin Dl, cyclin A, cyclin B1 and cyclin E expression in the GME and IME. There existed obvious CDK2, CDK4 and CDK6 expression but no or faint CDK1 expression in the OME; and there were obvious CDK2 expression and no or faint CDK1, CDK4 and CDK6 expression in the GME and IME, and CDK2 expression in GME was lower than those in IME. There were obvious p19, p21 and p27 expression but no or faint p16 expression in the OME; and there existed obvious p19 expression but no or faint p16, p21 and p27 expression in the GME and IME. There were no or faint Rb expression in the OME, GME and IME.
     Conclusions:The significant various expression of core cell cycle regulators between the in-vivo cells and the cultured cells and between the in-vivo cells and another in-vivo cells reveals the diversity of human in-vivo core cell-cycle mechanism.
     Objective:To study on human in-vivo cell-cycle core mechanism-cyclins schedule and CDKs activation taking GME, IME and OME for examples.
     Methods:Cyclins schedule:we used post-sorting western blot to dectect at which phase the expression of four cyclins were. CDKs activation:we used post-sorting immuno-precipitation to detect how the four cyclins were associated with the four CDKs. Taking PBL and MNC as positive control.
     Results:Cyclins expression schedule:In the OME, cyclin E, cyclin A and cyclin B1 are not expressed or only a little; cyclin D1 are expressed distinctly during all the cycle phases. From G1 early phase, S phase to G2/M phase, cyclin D1 expression decrease gradually in the OME. In the GME and IME, cyclin D1, cyclin E, cyclin A and cyclin B1 are not expressed or only a little. CDKs scheduled activation:In the G1, S and G2/M phases of the OME, cyclin D1 can combine with CDK2, CDK4 and CDK6; in G1 phase, cyclin D1 mainly combine with CDK4/CDK6, and in G2/M phase mainly with CDK2. In the G1, S and G2/M phases of the GME and IME, only a weak association existed between CDK2 and Cyclin D1, Cyclin E, cyclin A or cyclin B1.
     Conclusions:The significant diversity existed between the in-vivo cells and the cultured cells and between the in-vivo cells and another in-vivo cells about human in-vivo cell-cycle core mechanism, namely cyclins schedule and CDKs activation, which revealed the diversity of human in-vivo cell-cycle core mechanism.
引文
1 Jackson PK. The Hunt for cyclin. Cell,134:199-202,2008
    2 Besson A., Dowdy SF., Roberts JM. CDK inhibitors:cell cycle regulators and beyond. Dev. Cell,14:159-169,2008
    3 Branzei D., Foiani M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol.,9:297-308,2008
    4 Orford KW., Scadden DT. Deconstructing stem cell self-renewal:genetic insights into cell-cycle regulation. Nat. Rev. Genet.,9:115-128,2008
    5 Deep G, Agarwall R. New combination therapies with cell-cycle agents. Curr. Opin. Invest. Drug,9:591-604,2008
    6 Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation:several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene.28:2925-2939,2009.
    7 Xie DX, Yao J, Zhang P, Li XL, Feng YD, Wu JH, Tao DD, Hu JB, Gong JP. Are progenitor cells pre-programmed for sequential cell cycles not requiring cyclins D and E and activation of Cdk2? Cell Proliferation,41,265-278,2008
    8 Shen M, Feng Y, Gao C, Tao D, Hu J, Reed E, Li QQ, Gong J. Detection of cyclin B1 expression in G(1)-phase cancer cell lines and cancer tissues by postsorting western blot analysis. Cancer Res.,64:1607-1610,2004.
    9 Darzynkiewicz Z, Gong J, Juan G, Ardelt B, Traganos F. Cytometry of Cyclin Proteins. Cytometry,25:1-13,1996
    1. Visscher DW, Zarbo RJ, Jacobsen G et al. Multiparameter deoxyribouncleic acid and cell cycle analysis of breast carcinomas by flow cytometry. Lab Invest,1990; 62: 370-378.
    2. Engelholm SA, Spang Thomsen M, Brunner M et al. Disaggregation of human solid tumor by combind mechanical and enzymatic methods. Br J Cancer,1985;51:93-98.
    3. Savarese A, Nuti M, Botti C, et al. Sample preparation for bivariate flow cytometric analysis of breast tumor specimens. Anal Quant Cytol Histol,1993,15:195-200.
    4. Torres FX, Mackowiak PG, Brown RD, et al. Comparison of two methods of mechanical disaggregation of scirrhous breast adenocarcinomas for DNA flow cyto metric analysis of whole cells. Am J Clin Pathol,1995,103:8-13.
    5. Watanabe H, Ohtsuka K, Kimura M, et al. Details of an isolation method for hepatic lymphocytes in mice. J Immunol Methods,1992,146:145-154.
    1. Evans,T., Rosenthal,E.T., Youngbloom,J., Distel, D., and Hunt, T.(1983).Cell 33, 389-396.
    2. Pines J. Four-dimensional control of the cell cycle. Nat. Cell. Biol.,1999; 1:3-79.
    3. Zhang P. The cell cycle and development:redundant roles of cell cycle regulators. Curr. Opin. Cell. Biol.,1999; 11:655-662.
    4. Sherr CJ, Roberts JM. CDK inhibitors:positive and negative regulators of G1 phase progression. Genes. Dev.1999;13:1501-1512.
    5. Nurse P. A long twentieth century of the cell cycle and beyond. Cell,2000;100:71-78.
    6. Sherr CJ. The pezcoller Lecture:Cancer cell cycles revisited. Cancer Res.,2000;60: 3689-3695.
    7. Nasmyth K. A prize for proliferation. Cell,2001; 107:689-701.
    8. John PC, Mews M, Moore R. Cyclin/CDK complexes:their involvement in cell cycle progression and mitotic division. Protoplasma,2001;216:119-142.
    9. Bartek J, Lukas J. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett,2001;490:117-122.
    10. Owa T, Yoshino H, Yoshimatsu K, et al. Cell cycle regulation in the G1 phase:a promising target for the development of new chemotherapeutic anticancer agents. Curr. Med. Chem.,2001;8:1487-1503.
    11. Maller J. On the importance of protein phosphorylation in cell cycle control. Mol. Cell. Biochem.,1993; 127:267-281.
    12. Reed SI, Hutchison CJ, MacNeill S. A brief history of the cell cycle. Cell cycle control. IRL press at Oxford University Press. Oxford,1995.
    13. Matsushime H, Ewen ME, Storm DK, et al. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell,1992; 71:323-334.
    14. Meyerson M, Harlow E. Identification of kinase activity for CDK6, a novel cyclin D partner. Mol. Cell. Biol,1994; 14:2077-2086.
    15. DulicV, Lees E, Reed SI. Association of human cyclin E with a periodic G1-S phase protein kinase. Science,1992;257:1958-1961.
    16. Koff A, Giordano A, Desai D, et al. Formation and activation of a cyclin E-CDK2 complex during the G1 phase of the human cell cycle. Science,1992:257,1689-1694.
    17. Lauper N, Beck AR, Carious S, et al. Cyclin E2:a novel CDK2 partner in the late G1 and S phase of the mammalian cell cycle. Oncogene,1998;7:637-643.
    18. Zindy F, Lamas E, Chenivesse X, et al. Cyclin A is required in S phase in normal epithelial cells. Biochem Biophys Res. Commun.,1992;182:1144-1154.
    19. Fan J, Bertino R. Functional role of E2F in cell cycle regulation. Oncogene,1997; 14:1191-1200.
    20. Pagano M, Pepperkok R, Verde F, et al. Cyclin A is required at two points in the human cell cycle. EMBO J,1992;88:1039-1043.
    21. Pines J, Hunter T:Human cyclin A and B are differentially located in the cell and undergo cell cycle dependent nuclear transport. J Cell Biol.,1991;115:1-17.
    22. Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge SJ. The p21 CDK-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell,1993;75:805-816.
    23. WS El-Deiry, Tokino T, Velculescu VE. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817-825.
    24. Peter M. The regulation of cyclin-dependent kinase inhibitors (CKIs). Prog Cell Cycle Res,1997;3:99-108.
    25. Deep G, Agarwall R. New combination therapies with cell-cycle agents. Curr. Opin. Invest. Drug,9:591-604,2008.
    26. Humbert PO, Brumby AM, Quinn LM, et al. New tricks for old dogs:unexpected roles for cell cycle regulators revealed using animal models. Curr Opin Cell Biol, 2004;16:614-622.
    27. Gong J, Traganos F and Darzynkiewicz Z. Simultaneous analysis of cell cycle kinetics at two different DNA ploidy levels based on DNA content and cyclin B measurement. Cancer Res.,1993;53:5069-5099.
    28. Gong J, Traganos F and Darzynkiewicz Z. Expression of cyclin B and E in individual MOLT-4 cells and in stimulated human lymphocytes during their progression through the cell cycle. Int J Oncol.,1993;3:1037-1042.
    29. Gong J, Traganos F and Darzynkiewicz Z. Use of the cyclin E restriction point to map cell arrest in G1 induced by n-butyrate, cycloheximide, staurosporine, lovastatin, mimosine and quercetin. Int J Oncol.,1994;4:803-808.
    30. Gong J, Li X, Traganos F and Darzynkiewicz Z. Expression of G1 and G2 cyclins measured in individual cells by multiparameter flow cytometry:a new tool in the analysis of the cell cycle. Cell Prolif.,1994;27:357-373.
    31. Gong J, Traganos F and Darzynkiewicz Z. Staurosporine blocks cell progression through G1 between the cyclin D and cyclin E restriction points. Cancer Res., 1994;54:3136-3139.
    32. Gong J, Bhatia U, Traganos F and Darzynkiewicz Z. Expression of cyclins A, D2 and D3 in individual normal mitogen stimulated lymphocytes and in MOLT-4 leukemic cells analyzed by multiparameter flow cytometry. Leukemia,1995;9:893-899.
    33. Gong J, Traganos F and Darzynkiewicz Z. Threshould expression of cyclin E but not D-type cyclins characterizes normal and tumor cells entering S phase. Cell Prolif., 1995;28:337-346.
    34. Gong J, Traganos F and Darzynkiewicz Z. Discrimination of G2 and mitotic cells by flow cytometry based on different expression of cyclins A and B1. Exp Cell Res, 1995;220:226-231.
    35. Gong J, Ardelt B, Traganos F and Darzynkiewicz Z. Unscheduled expression of cyclin Bl and cyclin E in several leukemic and solid tumor cell lines. Cancer Res.,1994; 54:4285-4288.
    36. Senderowwicz AM. Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr. Opin. Cell Biol.,2004; 16:670-678.
    37. Kozar K, Ciemerych M A, Rebel V I, et al. Mouse development and cell proliferation in the absence of D-cyclins[J]. Cell,2004,118(4):477-491.
    38. Geng Y, Yu Q, Sicinska E,et al. Cyclin E ablation in the mouse[J]. Cell,2003,114(4): 431-443.
    39. Berthet C, Aleem E, Coppola V, et al. Cdk2 knockout mice are viable[J]. Curr Biol 2003,13(20):1775-1785.
    40. Malumbres M, Sotillo R, Santamaria D, et al. Mammalian cells cycle without the D-type cyclin-dependent kinases CDK4 and CDK6. Cell,2004; 118:493-504.
    41. DX Xie, J Yao, P Zhang, et al. Are progenitor cells pre-programmed for sequential cell cycles not requiring cyclins D and E and activation of CDK2? Cell Prolif.,2008; 41: 265-278.
    1. Murray A, Hunt T (1993) The cell cycle:an introduction. In:Murray A,ed. The cell
    2. cycle:an introduction. New York (USA):Oxford University Press:1-244.
    3. Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503-508.
    4. Nurse P (2000) A long twentieth century of cell cycle and beyond. Cell 100:71-78.
    5. Sherr CJ, and Roberts JM (1999) CDK inhibitors:positive and negative regulators of G1-phase progression. Genes Dev 13:1501-1512.
    6. Gong J, Traganos F and Darzynkiewicz Z. Simultaneous analysis of cell cycle kinetics at two different DNA ploidy levels based on DNA content and cyclin B measurement. Cancer Res.,1993;53:5069-5099.
    7. Gong J, Traganos F and Darzynkiewicz Z. Expression of cyclin B and E in individual MOLT-4 cells and in stimulated human lymphocytes during their progression through the cell cycle. Int J Oncol.,1993;3:1037-1042.
    8. Gong J, Traganos F and Darzynkiewicz Z. Use of the cyclin E restriction point to map cell arrest in G1 induced by n-butyrate, cycloheximide, staurosporine, lovastatin, mimosine and quercetin. Int J Oncol.,1994;4:803-808.
    9. Gong J, Li X, Traganos F and Darzynkiewicz Z. Expression of G1 and G2 cyclins measured in individual cells by multiparameter flow cytometry:a new tool in the analysis of the cell cycle. Cell Prolif.,1994;27:357-373.
    10. Gong J, Traganos F and Darzynkiewicz Z. Staurosporine blocks cell progression through G1 between the cyclin D and cyclin E restriction points. Cancer Res., 1994;54:3136-3139.
    11. Gong J, Bhatia U, Traganos F and Darzynkiewicz Z. Expression of cyclins A, D2 and D3 in individual normal mitogen stimulated lymphocytes and in MOLT-4 leukemic cells analyzed by multiparameter flow cytometry. Leukemia,1995;9:893-899.
    12. Gong J, Traganos F and Darzynkiewicz Z. Threshould expression of cyclin E but not D-type cyclins characterizes normal and tumor cells entering S phase. Cell Prolif., 1995;28:337-346.
    13. Gong J, Traganos F and Darzynkiewicz Z. Discrimination of G2 and mitotic cells by flow cytometry based on different expression of cyclins A and B1. Exp Cell Res, 1995;220:226-231.
    14. Gong J, Ardelt B, Traganos F and Darzynkiewicz Z. Unscheduled expression of cyclin Bl and cyclin E in several leukemic and solid tumor cell lines. Cancer Res.,1994;54:4285-4288.
    15. Senderowwicz AM. Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr. Opin. Cell Biol.,2004; 16:670-678.
    16. Kozar K, Ciemerych M A, Rebel V I, et al. Mouse development and cell proliferation in the absence of D-cyclins[J]. Cell,2004,118(4):477-491.
    17.16. Geng Y, Yu Q, Sicinska E,et al. Cyclin E ablation in the mouse[J]. Cell,2003, 114(4):431-443.
    18.17. Berthet C, Aleem E, Coppola V, et al. Cdk2 knockout mice are viable[J]. Curr Biol 2003,13(20):1775-1785.
    19.18. Malumbres M, Sotillo R, Santamaria D, et al. Mammalian cells cycle without the D-type cyclin-dependent kinases CDK4 and CDK6. Cell,2004; 118:493-504.
    20.19. DX Xie, J Yao, P Zhang, et al. Are progenitor cells pre-programmed for sequential cell cycles not requiring cyclins D and E and activation of CDK2? Cell Prolif.,2008; 41:265-278
    1. Doll R, Peto R. The causes of cancer:quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 1981;66:1191-1380.
    2. Kastan MB,Bartek J. Cell-cycle checkpoints and cancer. Nature 2004;432:316-323.
    3. Hartwell LH, Weinert TA. Checkpoints:controls that ensure the order of cell cycle events. Science 1989;246:629-634.
    4. Baserga R, Wiebel F. The cell cycle of mammalian cells. Int Rev Exp Pathol 1969;7:1-30.
    5. Norbury C, Nurse P. Animal cell cycles and their control. Ann Rev Biochem 1992;61:441-470.
    6. Mcdonald ER, El-Deiry WS. Cell cycle control as a basis for cancer drug development. Int J Oncol 2000; 16:871-886.
    7. Rao PN, Johnson RT. Mammalian cell fusion:studies on the regulation of DNA synthesis and mitosis. Nature 1970;225:159-164.
    8. Murray A. Cell cycle checkpoints. Curr Opin Cell Biol 1994;6:872-876.
    9. Murray AW. Coordinating cell cycle events. Cold Spring Harbor Symposia on Quantitative Biology 1991;56:399-408.
    10. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994;226:1821-1828.
    11. Michalides RJ. Cell cycle regulators:mechanisms and their role in aetiology, prognosis, and treatment of cancer. J Clin Pathol 1999;52:555-568.
    12. Pinto AE, Andre S, Laranjeira C, Soares J. Correlations of cell cycle regulators (p53,p21,pRb and mdm2) and c-erbB-2 with biological markers of proliferation and overall survival in breast cancer. Pathology 2005;37:45-50.
    13. Sherr CJ, Roberts JM. CDK inhibitors:positive and negative regulators of G1-phase progression. Genes Dev 1999;13:1501-1512.
    14. Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J, Lukas J. Rapid destruction of human Cdc25A in response to DNA damage. Science 2000;288: 1425-1429.
    15. Sherr C. Cancer cell cycles. Science 1996;274:1672-1677.
    16. Robles AI, Rodriguez-Puebla ML, Glick AB, Trempus C, Hansen L, Sicinski P, Tennant RW, Weinberg RA, Yuspa SH, Conti CJ. Reduced skin tumor development in cyclin D1-deficient mice highlights the oncogenic ras pathway in vivo. Genes Dev 1998; 12:2469-2474.
    17. Sherr CJ. G1 phase progression:cycling on cue. Cell 1994;79:551-555.
    18. Krude T, Jackman M, Pines J,Laskey R. Cyclin/CDK-dependent initiation of DNA replication in a human cell-free system. Cell 1997;88:109-119.
    19. Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P. Cyclin E ablation in the mouse. Cell 2003; 114: 431-443.
    20. Di Leonardo A, Linke SP, Clarkin K, Wahl GM. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 1994;8:2540-2551.
    21. Gartel AL, Serfas MS, Tyner AL. p21-negative regulator of the cell cycle. Proc Soc Exp Biol Med 1996;213:138-149.
    22. Pellegata NS, Antoniono RJ, Redpath JL, Stanbridge EJ. DNA damage and p53-mediated cell cycle arrest:a reevaluation. Proc Natl Acad Sci USA 1996;93: 15209-15214.
    23. Fotedar R, Fitzgerald P, Rousselle T, Cannella D, Doree M, Messier H, Fotedar A. p21 contains independent binding sites for cyclin and cdk2:both sites are required to inhibit cdk2 kinase activity. Oncogene 1996;12:2155-2164.
    24. Porter DZ, Zhang N, Danes C, Mcgahren MJ, Harwell RM, Faruk S, Keyomarsi K. Tumor-specific proteolytic processing of cyclin E generates hyperactive lower-molecular-weight forms. Mol Cell Biol 2001;21:6254-6269.
    25. Spruck CH, Won KA, Reed SI. Deregulated cyclin E induces chromosome instability. Nature 1999;401:297-300.
    26. Akli S, Zheng PJ, Multani AS, Wingate HF, Pathak S, Zhang N, Tucker SL, Chang S, Keyomarsi K. Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21,p27, and antiestrogens in breast cancer. Cancer Res 2004;64:3198-3208.
    27. Bortner DM, Rosenberg MP. Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol Cell Biol 1997; 17:453-459.
    28. Sui L, Dong Y, Ohno M, Sugimoto K, Tai Y, Hando T, Tokuda M. Implication of malignancy and prognosis of p27(kipl), Cyclin E, and Cdk2 expression in epithelial ovarian tumors. Gynecol Oncol 2001;83:56-63.
    29. Jang SJ, Park YW, Park MH, Lee JD, Lee YY, Jung TJ, Kim IS, Choi IY, Ki M, Choi BY, Ahn MJ. Expression of cell-cycle regulators, cyclin E and p21WAF1/CIP1, potential prognostic markers for gastric cancer. Eur J Surg Oncol 1999;25:157-163.
    30. Del Pizzo JJ, Borkowski A, Jacobs SC, Kyprianou N. Loss of cell cycle regulators p27(Kipl) and cyclin E in transitional cell carcinoma of the bladder correlates with tumor grade and patient survival.Am J Pathol 1999;155:1129-1136.
    31. Fukuse T, Hirata T, Naiki H, Hitomi S, Wada H. Prognostic significance of cyclin E overexpression in resected non-small cell lung cancer. Cancer Res 2000;60:242-244.
    32. Pines J, Hunter T. Human cyclin A is adenovirus ElA-associated protein p60 and behaves differently from cyclin B. Nature 1990;346:760-763.
    33. Erlandsson F, Linnman C, Ekholm S, Bengtsson E, Zetterberg A. A detailed analysis of cyclin A accumulation at the G1/S border in normal and transformed cells. Exp Cell Res 2000;259:86-95.
    34. Sobczak-Thepot J, Harper F, Florentin Y, Zindy F, Brechot C, Puvion E. Localization of cyclin A at the sites of cellular DNA replication. Exp Cell Res 1993;206:43-48.
    35. Cardoso MC, Leonhardt H, Nadal-Ginard B. Reversal of terminal differentiation and control of DNA replication:cyclin A and Cdk2 specifically localize at subnuclear sites of DNA replication. Cell 1993;74:979-992.
    36. Bukholm IR, Husdal A, Nesland JM, Langerod A, Bukholm G Overexpression of cyclin A overrides the effect of p53 alterations in breast cancer patients with long follow-up time. Breast Cancer Res Treat 2003;80:199-206.
    37. Pines J. and Hunter T. Isolation of a human cyclin cDNA:evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 1989;58:833-846.
    38. Nurse P. Universal control mechanism regulating cell cycle timing of M-phase. Nature 1990;344:503-508.
    39. Maller J.L. Mitotic control. Curr. Opin.Cell Biol.1991;3:269-275.
    40. Dessev G., Iovcheva-Dessev C., Bischoff J.R., Beach D. and Goldman R. A complex containing p34cdc2 and cyclin B phosphorylated the nuclear lamin and disassembles nuclei of clam oocytes in vitro. J. Cell Biol.1991;112:523-533.
    41. Eggert M., Radomski N., Linder D., Tripier D., Traub P. and Jost E. Identification of novel phosphorylation sites in murine A-type lamins. Eur. J. Biochem. 1993;213:659-671.
    42. Peter M., Nakagawa J., Doree M., Labbe J.C. and Nigg E.A. Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell 1990;60:791-801.
    43. Endl E. and Gerdes J. Posttranslational modifications of the KI-67 protein coincide with two major checkpoints during mitosis. J. Cell Physiol.2000; 182:371-380.
    44. Ookata K., Hisanaga S., Bulinski J.C., Murofushi H., Aizawa H., Itoh T.J. et al. Cyclin B interaction with microtubule-associated protein 4 (MAP-4) targets p34cdc2 kinase to microtubules and is a potential regulator of M phase microtubule dynamics J. Cell Biol 1995;128:849-862.
    45. Macaulay C., Meier W. and Forbes D.J. Differential mitotic phosphorylation of proteins of the nuclear pore complex. J. Biol. Chem.1995;270:254-262.
    46. Keryer G, Celati C. and Klotz C.. In isolated human centrosomes, the associated kinases phosphorylate a specific subset of centrosomal proteins Biol Cell 1995;84: 155-165.
    47. Blangy A., Lane H. A., D'Herin P., Parker M., Kress M. and Nigg E.A.. Phosphorylation of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 1995;83:1159-1169.
    48. Long J.J., Leresche A., Kriwacki R.W. and Gottesfeld J. M.. Repression of TFIIH transcriptional activity and TFIIH-associated cdk7 kinase activity at mitosis. Mol. Cell Biol.1998;18:1467-1476.
    49. Papst P.J., Sugiyyama H., Nagasawa M., Lucas J.J., Maller J.L. and Terda N. Cdc2-cyclin B phosphorylates p70 S6 kinase on Ser411 at mitosis. J. Biol. Chem. 1998;273:15077-15084.
    50. Hendrickson M., Madine M., Dalton S. and Gautier J. Phosphorylation of MCM4 by cdc2 protein kinase inhibits the activity of minichromosome maintenance complex. Proc. Natl. Acad. Sci.USA 1996;93:12223-12228.
    51. Kotani S., Tanaka H., Yasuda H. and Todokoro K. Regulation of APC activity by phosphorylation and regulatory factors. J Cell Biol.1999;146:791-800.
    52. Morgan DO. Cyclin-dependent kinases:engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 1997; 13:261-291.
    53. Murray AW. Recycling the cell cycle:cyclins revisited. Cell 2004; 116:221-234.
    54. Elledge SJ. Cell cycle checkpoints:preventing an identity crisis. Science 1996;274:1664-1672.
    55. Sears RC, Nevins JR. Signaling networks that link cell proliferation and cell fate. J Biol Chem 2002;277:11617-11620.
    56. Stevaux O, Dyson NJ. A revised picture of the E2F transcriptional network an RB function. Curr Opin Cell Biol 2002;14:684-691.
    57. Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ. P57KIP2, a structurally distinct member of the p21CIPl Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 1995;9:650-662.
    58. Lee MH, Reynisdottir I, Massague J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and distribution. Genes Dev 1995;9:639-649.
    59. Harper JW,Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S, Bai C, Connell-Crowley L, Swindell E, Fox MP, Wei N. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 1995;6:387-400.
    60. Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 1995; 15:2672-2681.
    61.El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, Wiman KG, Mercer WE, Kastan MB, Kohn KW, Elledge SJ, Kinzler KW, Vogelstein B. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994;54:1169-1174.
    62. Duliv V, Kaufmann WK, Wilson SJ, Tlsty TD,Lees E, Harper JW, Elledge SJ, Reed SI. P53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 1994;76:1013-1023.
    63. Hengst L, Reed SI. Translational control of p27Kip1 accumulation during the cell cycle. Science 1996;271:1861-1864.
    64. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995;269:682-685.
    65. Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-CDK protein kinase activity, is related to p21. Cell 1994;78:67-74.
    66. Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 1999;39:295-312.
    67. Massague J. G1 cell-cycle control and cancer. Nature 2004;432:298-306.
    68. Hunter T, Pines J. Cyclins and cancer II:Cyclin D and CDK inhibitors come of age. Cell 1994;79:573-582.
    69. Liu Y, Martindale JL, Gorospe M, Holbrook NJ. Regulation of p21WAF1/CIP1 expression through mitogen-activated protein kinase signaling pathway. Cancer Res 1996;56:31-35.
    70. Blagosklonny MV, Prabhu NS, El-Deiry WS. Defects in p21WAF1/CIP1, Rb, and c-myc signaling in phorbol ester-resistant cancer cells. Cancer Res 1997;57:320-325.
    71. Grana X, Reddy EP. Cell cycle control in mammalian cells:role in cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995;11:211-219.
    72.Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001;410:842-847.
    73. Wahl GM, Carr AM. The evaluation of diverse biological response to DNA damage: insights from yeast and p53. Nature Cell Biol 2001;3:E277-E286.
    74. Furnari FB, Huang HJ, Cavenee WK. The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells. Cancer Res.,1998;58(2):5002-5008.
    75. Michael D, Oren M. The p53 and mdm2 families in cancer. Curr Opin Genet Dev 2002;12:53-59.
    76. Vousden KH, Lu X. Live or let die:the cell's response to p53. Nat Rev Cancer 2002;2:594-694.
    77. Falck J,Petrini JH, Williams BR, Lukas J, Bartek J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 2002;30:290-294.
    78. Lim DS, Kim ST, Xu B,Master RS, Lin J, Petrini JH, Kastan MB. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 2000;404:613-617.
    79. Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, Gerbino E, Song MH, Zdzienicka MZ, Gatti RA, Shay JW, Ziv Y, Shiloh Y, Lee EY. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 2000;405:473-477.
    80. Pichierri P, Rosselli F. The DNA crosslink induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 2004;23:1178-1187.
    81. Xu B, Kim S-T, Lim D-S, Kastan MB. Two molecularly distinct G2/M checkpoints are induced by ionizing radiation. Mol Cell Biol 2002;22:1049-1059.
    82. Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2002;36:617-656.
    83. Taylor WR, Stark GR. Regulation of G2/M transition by p53. Oncogene 2001; 20:1803-1815.
    84. Zhou BB, Bartek J. Targeting the checkpoint kinases:chemosensitization versus chemoprotection. Nature Rev Cancer 2004;4:216-255.
    85. Senderowicz AM. Novel small molecule cyclin-dependent kinases modulators in human clinical trials. Cancer Biol Ther 2003;2:S84-S85.
    86. De Azevedo Wf Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH. Structural basis ofr specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci USA 1996;93:2735-2740.
    87. Senderowicz AM, Headlee D, Stinson SF, Lush RM, Kalil N, Villalba L, et al. Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J Clin Oncol 1998;16:2986-2999.
    88. Tan AR, Headlee D, Messmann R, Sausville EA, Arbuck SG, Murgo AJ, et al. Phase I clinical and pharmacokinetic study of flavopiridol administered as a daily 1-hour infusion in patients with advanced neoplasms. J Clin Oncol 2002;20:4074-4082.
    89. Thomas JP, Tutsch KD, Cleary JF, bailey HH, Arzoomanian R, Alberti D, et al. Phase I clinical and pharmacokinetic trial of the cyclin-dependent kinase inhibitor flavopiridol. Cancer Chemother Pharmacol 2002;50:465-472.
    90. Messmann RA Ullmann CD, Lahusen T, Kalehua A, Wasfy J, Melillo G, et al. Flavopiridol-related proinflammatory syndrome is associated with induction of interleukin-6. Clin Cancer Res 2003;9:562-570.
    91.Takahashi I, Kobayashi E, Asano K, Yoshida M, Nakano H. UCN-01, a selective inhibitor of protein kinase C from streptomyces. J Antibiot (Tokyo) 1987;40: 1782-1784.
    92. Facchinetti MM, De Siervi A, Toskos D, Senderowicz AM. UCN-01-induced cell cycle arrest requires the transcriptional induction of p21(wafl/cipl) by activation of mitogen-activated protein/extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway. Cancer Res 2004;64:3629-3637.
    93. McClue SJ, Blake D, Clarke R, et al. In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202(R-roscovitine). Int J Cancer 2002; 102: 463-468.
    94. Whittaker SR, Walton MI, Garrett MD, Workman P. The cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of Cyclin D1, and activates the mitogen-activated protein kinase pathway. Cancer Res 2004;64:262-272.
    95. Laurence V, Faivre S, Vera K, et al. Preliminary results of an ongoing phase I and pharmacokinetic study of CYC202, a novel oral cyclin-dependent kinases inhibitor, in patients with advanced maligmancies. Eur J Cancer 2002;38:S49.
    96. Owa T, Yoshino H, Okauchi T, et al. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J Med Chem 1999;42:3789-3799.
    97. Ozawa Y, Sugi NH, Nagasu T, et al. E7070, a novel sulphomamide agent with potent antitumor activity in vitro and in vivo. Eur J Cancer 2001;38:2275-2282.
    1. Baserga R, Wiebel F. The cell cycle of mammalian cells. Int Rev Exp Pathol 1969;7:1-30.
    2. Norbury C, Nurse P. Animal cell cycles and their control. Ann Rev Biochem 1992;61:441-470.
    3. Paulovich A, Toczyski D, Hartwell L. When checkpoints fail. Cell 1997;88:315-321.
    4. Morgan DO. Cyclin-dependent kinases:engines, clocks and microprocessors. Annu Rev Cell Dev Biol 1997; 13:261-291.
    5. Senderowicz AM. Small-molecule cyclin-dependent kinase modulators. Oncogene 2003;22:6609-6620.
    6. Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy and cancer. Oncogene 2004;23:2016-2027.
    7. Lew DJ, Burke DJ. The spindle assembly and spindle position checkpoints. Annu Rev Genet 2003;37:251-282.
    8. Chan GK, Yen TJ. The mitotic checkpoint:a signaling pathway that allows a single unattached kinetochore to inhibit mitotic exit. Prog Cell Cycle Res 2003;5:431-439.
    9. Kops GJPL, Foltz DR, Cleveland DW. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci USA 2004; 101:8699-8704.
    10. Meraldi P, Honda R, Nigg EA. Aurora kinase link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev 2004;14:29-36.
    11. Jiang Y, Zhang Y, Lees E, Seghezzi W. Aurora overexpression overrides the mitotic spindle checkpoint triggered by nocodazole, a microtubule destabilizer. Oncogene 2003; 22:8293-8301.
    12. Harringtong EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, Graham JA, Demur C, Hercend T, Diu-Hercend A, et al. VX-680, a potent and selective small molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo.2004; 10:262-267.
    13. Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, Van Meel J, Rieder CL, Peters JM. The small molecule hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 2003; 161:281-294.
    14. Ditchfield C, Johnson VL, Tighe A, Ellston R, Haworth C, Johnson T, Mortlock A, Keen N, Taylor SS. Aurora B couples Chromosome alignment with anaphase by targeting BubRl, Mad2 and Cenp-E to kinetochores. J Cell Biol 2003;161:267-280.
    15. Vousden KH, Lu X. Live or let die:the cell's response to p53. Nat Rev Cancer 2002;2:594-604.
    16. Kawabe T. G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 2004;3:513-519.
    17. Reed JC. Apoptosis-based therapies. Nat Rev Drug Discov 2002;1:111-121
    18. Senderowicz AM. Novel small molecule cyclin-dependent kinases modulators in human clinical trials. Cancer Biol Ther 2003;2:S84-S85.
    19. De Azevedo Wf Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH. Structural basis ofr specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci USA 1996;93:2735-2740.
    20. Chao SH, Fujinaga K, Marion JE, Taube R, Sausville EA, Senderowicz AM, Peterlin BM, Price DH. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol
    Chem 2000;275:28345-28348.
    21. Senderowicz AM, Headlee D, Stinson SF, Lush RM, Kalil N, Villalba L, et al. Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J Clin Oncol 1998; 16:2986-2999.
    22. Tan AR, Headlee D, Messmann R, Sausville EA, Arbuck SG, Murgo AJ, et al. Phase I clinical and pharmacokinetic study of flavopiridol administered as a daily 1-hour infusion in patients with advanced neoplasms. J Clin Oncol 2002;20:4074-4082.
    23. Thomas JP, Tutsch KD, Cleary JF, bailey HH, Arzoomanian R, Alberti D, et al. Phase I clinical and pharmacokinetic trial of the cyclin-dependent kinase inhibitor flavopiridol. Cancer Chemother Pharmacol 2002;50:465-472.
    24. Messmann RA Ullmann CD, Lahusen T, Kalehua A, Wasfy J, Melillo G, et al. Flavopiridol-related proinflammatory syndrome is associated with induction of interleukin-6. Clin Cancer Res 2003;9:562-570.
    25. Takahashi I, Kobayashi E, Asano K, Yoshida M, Nakano H. UCN-01, a selective inhibitor of protein kinase C from streptomyces. J Antibiot (Tokyo) 1987;40: 1782-1784.
    26. Facchinetti MM, De Siervi A, Toskos D, Senderowicz AM. UCN-01-induced cell cycle arrest requires the transcriptional induction of p21(wafl/cipl) by activation of mitogen-activated protein/extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway. Cancer Res 2004;64:3629-3637.
    27. Sato S, Fujita N, Tsuruo T. Interference with PDK1-Akt survival signaling pathway by UCN-01(7-hydroxystaurosporine). Oncogene 2002;21:1727-1738.
    28. Patel V, Lahusen T, Leethanakul C, Igishi T, Kremer M, Quintanilla-Martinez L, Ensley JF, Sausville EA, Gutkind JS, Senderowicz AM. Antitumor activity of UCN-01 in carcinomas of the head and neck is associated with altered expression of cyclin D3 and p27(kip1). Clin Cancer Res 2002;8:3549-3560.
    29. Kitada S, Zapata JM, Andreeff M, Reed JC. Protein kinase inhibitors flavopiridol and 7-hydroxystaurosporine down-regulated antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood 2000;96:393-397.
    30. Sausville EA, Arbuck SG, Messmann R, Headlee D, Bauer KS, Lush RM, Murgo A, Figg WD, Lahusen T, Jaken S et al. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 2001;19:2319-2333.
    31. Fuse E, Tanii H, Kurata N, Kobayashi H, Shimada Y, Tamura T, Sasaki Y, Tanigawara Y, Lush RD, Headlee D et al. Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human al-acid glycoprotein. Cancer Res 1998;58:3248-3253.
    32. Tamura T, Sasaki Y, Minami H, Fujii H, Ito K, Igarashi T, Kamiya Y, Kurata T, Ohtsu T, Onozawa Y et al. Phase I study of UCN-01 by 3-hour infusion. In Proceedings of the American Society of Clinical Oncology; Atlanta GA:1999:159.
    33. Dees E, O'Reilly S, Figg W, Elza-Brown K, Aylesworth C, Carducci M, Byrd J, Grever M, Donehower R. A phase I and pharmacologic study of UCN-01, a protein kinase C inhibitor. In Proc. American Society of Clinical Oncology; New Orleans;2000.
    34. McClue SJ, Blake D, Clarke R, et al. In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202(R-roscovitine). Int J Cancer 2002;102:463-468.
    35. Whittaker SR, Walton MI, Garrett MD, Workman P. The cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of Cyclin D1, and activates the mitogen-activated protein kinase pathway. Cancer Res 2004;64:262-272.
    36. Laurence V, Faivre S, Vera K, et al. Preliminary results of an ongoing phase I and pharmacokinetic study of CYC202, a novel oral cyclin-dependent kinases inhibitor, in patients with advanced maligmancies. Eur J Cancer 2002;38:S49.
    37. Kim KS, Kimball SD, Misra RN, Rawlins DB, Hunt JT, Xiao HY, Lu S, Qian L, Han WC, Shan W et al. Discovery of aminothiazole inhibitors of cyclin-dependent kinase 2: synthesis, X-ray crystallographic analysis, and biological activities. J Med Chem 2002; 45:3905-3927.
    38. Misra RN, Xiao HY, Kim KS, Lu S, Han WC, Barbosa SA, Hunt JT, Rawlins DB, Shan W, Ahmed SZ et al. N-(cycloalkylamino) acyl-2-aminothiazole inhibitors of cyclin-dependent kinase 2 N-[5-[[[5-(l,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-piperidinecarboxamide(BMS-387032), a highly efficacious and selective antitumor agent. J Med Chem 2004;47:1719-1728.
    39. Shaprio GI. Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol. Clin Cancer Res 2004; 10:4270-4275.
    40. Mitsiades CS, Mitsiades N, Koutsilieris M. The Akt pathway:molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 2004;4:235-256.
    41. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, HeiM W, Berlin J, Barton A, Griffing S, Holmgren E, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335-2342.
    42. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344:783-792.
    43. Mayer RJ. Two steps forward in the treatment of colorectal cancer. N Engl J Med 2004;350:2406-2408.
    44. Daneshmand M, Parolin DA, Hirte HW, Major P, Goss G, Stewart D, Batist G, Miller WHJr, Matthews S, Seymour L, et al. A pharmacodynamic stduy of the epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in metastatic colorectal cancer patients. Clin Cancer Res 2003;9:2457-2464.
    45. Sawyers CL. Imatinib GIST keeps finding new indications:successful treatment of dermatofibrosarcoma protuberans by targeted inhibition of the platelet-derived growth factor receptor. J Clin Oncol 2002;20:3568-3569.
    46. Ruiter GA, Zerp SF, Bartelink H, Van Blitterswijk WJ, Verheij M. Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs 2003;14:167-173.
    47. Bachelder RE, Wendt MA, Fujita N, Tsuruo T, Mercurio AM. The sleavage of Akt/protein kinase B by death receptor signaling is an important event in detachment-induced apoptosis. J Biol Chem 2001;276:34702-34707.
    48. Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004;23:2838-2849.
    49. Tamm I, Dorken B, Hartmann G. Antisense therapy in oncology:new hope for an old idea? Lancet 2001;358:489-497.
    50. Richly H, Kupsch P, Passage K, Grubert M, Hilger RA, Kredtke S, Voliotis D, Scheulen ME, Seeber S, Strumberg D. A phase I clinical and pharmacokinetic study of the Raf kinase inhibitor BAY 43-9006 administered in combination with doxorubicin in
    patients with solid tumors. Int J Clin Pharmacol Ther 2003;41:620-621.
    51. Allen LF, Sebolt-Leopold J, Meyer MB. CI-1040(PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Smin Oncol 2003;30:105-116.
    52. Adams J. Proteasome inhibitors as new anticancer drugs. Curr Opin Oncol 2002;14:628-634.
    53. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003;348:2609-2617.
    54. Cory S, Adams JM. The Bcl2 family:regulators of the cellular life-or-death switch. Nat Rev Cancer 2002,2:647-656.
    55. Tock B, Zwiebel JA, Schoenfeldt M. Clinical trial referral resource. Current clinical trial of G3139. Oncology (Huntingt) 2003;17:1244-1246,1251-1258.
    56. Clayman GL, El-Naggar AK, Lippman SM, Henderson YC, Frederick M, Merritt JA, Zumstein LA, Timmons TM, Liu TJ, Ginsberg L, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol 1998;16:2221-2232.
    57. Feldman ED, Wu PC, Beresneva T, Helsabeck C, Rodriguez M, Bartlett DL, Libutti SK, Pingpank JF, Alexander HR. Treatment of patients with unresectable primary hepatic malignancies using hyperthermic isolated hepatic perfusion. J Gastrointest Surg 2004;8:200-207.
    58. Kircheis R, Wagner E. Technology evaluation:TNFerade GenVe. Curr Opin Mol Ther 2003;5:437-447.
    59. Philip PA, Rea D, Thavasu P, Carmichael J, Stuart NS, Rockett H, Talbot DC, Ganesan T, Pettit GR, Balkwill F, et al. Phase Ⅰ study of bryostatin 1:assessment of interleukin 6 and tumor necrosis factor a induction in vivo. J Natl Cancer Inst 1993;85:1812-1818.
    60. Osborn MT, Chambers TC:Role of the stress-activated/c-Jun NH2-terminal protein kinase pathway in the cellular response to adriamycin and other chemotherapeutic drugs. J Biol Chem 1996;271:30950-30955.
    61. Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 2003;35:25-31.
    62. Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P. CDK2 knockout mice are viable. Curr Biol 2003; 13:1775-1785.
    63. Tetsu O, McCormick F. Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 2003;3:233-245.
    64. Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P. Cyclin E ablation in the mouse. Cell 2003; 114:431-443.
    65. Meyerson M, Enders GH, Wu CL, Su LK, Gorka C, Nelson C, Harlow E, Tsai LH. A family of human cdc2-related protein kinases. EMBO J 1992; 11:2909-2917.
    66. Lockshin RA, Zakeri Z. Caspase-independent cell death? Oncogene 2004;23: 2766-2773.
    67. Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 2004;18:1272-1282.
    68. Nelson DA, White E. Exploiting different ways to die. Genes Dev 2004;18:1223-1226.
    69. Brown JM, Wilson G Apoptosis genes and resistance to cancer therapy:what does the experimental and clinical data tell us? Cancer Biol Ther 2003;2:477-490.
    70. Bain J, McLauchlan H, Elliott M, Cohen P. The specificities of protein kinase inhibitors: an update. Biochem J 2003;371:199-204.
    71. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129-2139.
    72. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al. EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy. Science 2004;304:1497-1500.
    73. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, Nishiwaki Y, Vansteenkiste J, Kudoh S, Rischin D, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 2003;21:2237-2246.
    74. Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter pahse Ⅱ study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004;22:77-85.
    75. Strumberg D, Voliotis D, Moeller JG, Hilger RA, Richly H, Kredtke S, Beling C, Scheulen ME, Seeber s. Results of phase I pharmacokinetic and pharmacodynamic studies of the Raf kinase inhibitor BAY 43-9006 in patients with solid tumors. Int J Clin Pharmacol Ther 2002;40:580-581.
    76. Cripps MC, Figueredo AT, Oza AM, Taylor MJ, Fields AL, Holmlund JT, Mclntosh LW, Geary RS, Eisenhauer EA. Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer. Clin Cancer Res 2002;8:2188-2192.
    77. Chi KN, Gleave ME, Klasa R, Murray N, Bryce C, Lopes de Menezes DE, D'Aloisio S, Tolcher AW. A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin Cancer Res 2001;7:3920-3927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700