Y家族DNA聚合酶对化学致癌物MNNG应答的转录调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单功能烷化剂N-甲基-N'-硝基-N-亚硝基胍(MNNG)是一种在实验室中普遍使用的模式化学诱变剂和致癌剂,用于研究环境中广泛存在的N-亚硝胺类化学物质的致突变致癌机制。MNNG能与DNA及蛋白质等生物大分子形成加合物,引起突变和其它损伤。本实验室长期致力于MNNG等环境化学污染物引起细胞损伤机制的研究,并对MNNG等诱发非定标性突变以及细胞遗传不稳定的机制提出了以下假设:致突变致癌物经由DNA损伤和非DNA损伤途径诱发一系列信号转导通路的激活,引起相关基因表达发生改变,包括DNA聚合酶表达谱改变,致使DNA复制保真度下降,最终可导致非定标性突变和细胞遗传不稳定的形成。为深入探讨MNNG引起DNA复制保真度下降的机制,我们对具有低复制保真度特点、参与跨DNA损伤合成的Y家族聚合酶Polη、Polι和Polκ的启动子及其对MNNG应答的转录调控机制进行了研究。
     主要研究方法和结果:
     a.应用生物信息学软件结合进化足迹法对POLH、POLI和POLK启动子及其转录因子结合位点进行预测,并对它们共同的转录因子和可能的信号通路进行分析,推测E2F和STAT等相关信号通路可能在POLH、POLI和POLK的转录调控中起一定作用。
     应用报告基因技术分析POLH、POLI和POLK启动子截短体的转录活性,对三个聚合酶的最小启动子区、转录激活区和抑制区进行了定位。
     b.定量RT-PCR和/或免疫印迹试验检测发现10μM MNNG可以引起POLH、POLI和POLK转录上调。应用突变、报告基因和转录表达分析等技术发现:(1)过表达IRF1上调Polη表达;将POLH启动子区-898位或-590位IRF1结合位点突变后,过表达IRF1不能引起其转录上调,也抑制了MNNG引起的POLH启动子的活性增加,说明IRF1与-898位和-590位结合,参与调控MNNG诱导的POLH的转录上调。(2)MNNG引起POL1的转录激活,Sp1在MNNG诱导POLI的转录调控中起一定作用。(3)MNNG可能通过多个转录因子的协同作用调节POLK的表达,而起主要调控作用的转录因子有待于进一步研究。
     c.为了研究调控基因表达的“转录因子组”,我们初步建立了DNA pulldown-质谱检测方法,为下一步研究基因的转录调控机制提供有力的工具。
     主要结论:(1)首次系统研究了Y家族DNA聚合酶POLH和POLI启动子的活性,发现POLH和POLI启动子上的多个反应元件参与基因的转录调控,有的是正向调控,有的则是负向调控;(2)首次证明了IRF1和Sp1分别参与了MNNG诱导的POLH和POLI的转录激活调控;(3)初步建立的DNA pulldown-质谱检测方法可用于鉴定与基因启动子序列结合的多个转录因子。
     本课题的研究有助于进一步阐明Y家族聚合酶在DNA损伤应答过程中的转录调控机制,为探索化学致突变致癌物的作用机制及干预的新途径提供了新的实验依据。
The alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is widely used in research laboratory as a model carcinogen in studying the mechanisms of N-nitroso alkylating agent-induced mutagenesis and carcinogenesis. It can generate adducts with DNA and proteins, which cause mutation and other damages. Our laboratory has been long studying the mechanisms of cellular damages induced by environmental chemical pollutants such as MNNG. Based on our previous findings, we hypothesize that the carcinogens can trigger a series of cellular signal transduction via DNA damage and non-DNA damage pathways, which alter the expression of related responsive genes, including DNA polymerases with low replication fidelity. The abnormal regulation of the low-fidelity DNA polymerases may ultimately lead to DNA non-targeted mutation and cellular hereditary instability. In this study, we have investigated the transcriptional regulation of the low-fedelity Y-family DNA polymerase Polη, Polι, and Polκ, which carry out translesion DNA synthesis, under the treatment of MNNG, in the hope to further elucidate the molecular mechanisms of chemical mutagenesis and carcinogenesis.
     Main methods and results:
     a. Using bioinformatics softwares and phylogenetic footprinting analysis, we predicted the promoters and related transcription factor binding sites of POLH, POLI and POLK. Further analysis to find the potential common transcription factor binding sites in three promoters and related signalling pathways suggests that some transcription factors (e.g. E2F and STAT) may play a role in co-regulation of Y-family DNA polymerase.
     A series of deletion constructs of the promoters of POLH, POLI, and POLK and reporter gene assays were employed to investigate the transcriptional activities to locate the positive or negative regulation regions in the promoters.
     b. Quantitative real time RT-PCR and/or western blot analyses revealed that the expression of POLH, POLI, and POLK was up-regulated in human amnion FL cells treated by 10μM MNNG. Further investigations with reporter gene assays, mutation and transcriptional analysis demonstrated: (1) Overexpression of IRF1 increased the expression of Polη. When the IRF1 binding sites located in -898 or -590 relative to the transcription start position of POLH was mutated, overexpression of IRF1 did not enhance the transcriptional activities of POLH promoter. The mutation of IRF1 binding sites in the POLH promoter inhibited the up-regulation of POLH induced by MNNG as well. These results indicate that IRF1 could participate in the up-reguation of POLH in response to MNNG treatment through binding to -898 and -590 sites of the promoter. (2) MNNG transactivated POLI expression, and the transcription factor Sp1 could play an important role in the regulation of POLI expression induced by MNNG (3) Many transcription factors could involve in the transactivation of POLK induced by MNNG, but the key transcription factors need further exploration.
     c. A DNA pulldown-mass spectrometry assay was established to study many transcription factors that bind to the promoter sequence of one gene.
     Main conclusions: (1) This is the first systemical study of the transcriptional activity of human POLH and POLI promoter, and the positive and negative regulatory elements located in the promoter regions were analyzed. (2) It is the first finding that IRF1 and Sp1 involve in the transactivation of POLH and POLI induced by MNNG, respectively. (3) The established DNA pulldown-coupling mass spectrometry method could be useful for deepening the understanding of the complicated mechanisms of transcriptional regulation in the future.
     Taken together, our findings can help to elucidate the molecular mechanisms of the transcriptional regulation of Y-family DNA polymerase in response to DNA damages, and provide new insights into the mechanisms of mutagenesis and carcinogenesis induced by environmental chemical compounds.
引文
1 A. Heyman, Y. Barak, J. Caspi, D. B. Wilson, A. Altman, E. A. Bayer and O. Shoseyov. Multiple display of catalytic modules on a protein scaffold: nano-fabrication of enzyme particles. J Biotechnol. 2007. 131(4): 433-9.
    
    2 S. C. Shuck, E. A. Short and J. J. Turchi. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res. 2008. 18(1): 64-72.
    
    3 A. J. Rattray and J. N. Strathern. Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu Rev Genet. 2003. 37(31 -66.
    
    4 U. Kintscher, S. Wakino, S. Kim, S. M. Jackson, E. Fleck, W. A. Hsueh and R. E. Law. Doxazosin inhibits retinoblastoma protein phosphorylation and G(1)->S transition in human coronary smooth muscle cells. Arterioscler Thromb Vasc Biol. 2000.20(5): 1216-24.
    
    5 C. Yang, E. Bolotin, T. Jiang, F. M. Sladek and E. Martinez. Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene. 2007. 389(1): 52-65.
    
    6 M. Wang, T. R. Devereux, H. G. Vikis, S. D. McCulloch, W. Holliday, C. Anna, Y. Wang, K. Bebenek, T. A. Kunkel, K. Guan and M. You. Pol iota is a candidate for the mouse pulmonary adenoma resistance 2 locus, a major modifier of chemically induced lung neoplasia. Cancer Res. 2004. 64(6): 1924-31.
    
    7 G. L. Gallia, E. M. Johnson and K. Khalili. Puralpha: a multifunctional single-stranded DNA- and RNA-binding protein. Nucleic Acids Res. 2000. 28(17): 3197-205.
    
    8 L. V. Gening, A. V. Makarova, A. M. Malashenko and V. Z. Tarantul. A false note of DNA polymerase iota in the choir of genome caretakers in mammals. Biochemistry (Mosc). 2006. 71(2): 155-9.
    
    9 S. Avkin, M. Goldsmith, S. Velasco-Miguel, N. Geacintov, E. C. Friedberg and Z. Livneh. Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymerase kappa. J Biol Chem. 2004. 279(51): 53298-305.
    
    10 L. B. Meira, D. L. Cheo, A. M. Reis, N. Claij, D. K. Burns, H. te Riele and E. C. Friedberg. Mice defective in the mismatch repair gene Msh2 show increased predisposition to UVB radiation-induced skin cancer. DNA Repair (Amst). 2002. 1(11): 929-34.
    11 B. S. Plosky and R. Woodgate. Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases. Curr Opin Genet Dev. 2004. 14(2): 113-9.
    12 S. H. Kim and W. M. Michael. Regulated proteolysis of DNA polymerase eta during the DNA-damage response in C. elegans. Mol Cell. 2008. 32(6): 757-66.
    13 R. Pabla, D. Rozario and W. Siede. Regulation of Saccharomyces cerevisiae DNA polymerase eta transcript and protein. Radiat Environ Biophys. 2008. 47(1): 157-68.
    14 T. B. Petta, S. Nakajima, A. Zlatanou, E. Despras, S. Couve-Privat, A. Ishchenko, A. Sarasin, A. Yasui and P. Kannouche. Human DNA polymerase iota protects cells against oxidative stress. Embo J. 2008. 27(21): 2883-95.
    15 M. R. Albertella, C. M. Green, A. R. Lehmann and M. J. O'Connor. A role for polymerase eta in the cellular tolerance to cisplatin-induced damage. Cancer Res. 2005. 65(21): 9799-806.
    16 S. Kosugi and Y. Ohashi. Interaction of the Arabidopsis E2F and DP proteins confers their concomitant nuclear translocation and transactivation. Plant Physiol. 2002. 128(3): 833-43.
    17 A. Tissier, P. Kannouche, M. P. Reck, A. R. Lehmann, R. P. Fuchs and A. Cordonnier. Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REV1 protein. DNA Repair (Amst). 2004. 3(11): 1503-14.
    18 X. Lu, J. Guo and T. C. Hsieh. PC-SPES inhibits cell proliferation by modulating p21, cyclins D, E and B and multiple cell cycle-related genes in prostate cancer cells. Cell Cycle. 2003. 2(1): 59-63.
    19 J. Yang, Z. Chen, Y. Liu, R. J. Hickey and L. H. Malkas. Altered DNA polymerase iota expression in breast cancer cells leads to a reduction in DNA replication fidelity and a higher rate of mutagenesis. Cancer Res. 2004. 64(16): 5597-607.
    20 K. Ohashi, K. Oshima, M. Tachikawa, N. Morikawa, Y. Hashimoto, M. Ito, H. Mori, T. Kuribayashi and A. G. Terasaki. Chicken gizzard filamin, retina filamin and cgABP260 are respectively, smooth muscle-, non-muscle- and pan-muscle-type isoforms: distribution and localization in muscles. Cell Motil Cytoskeleton. 2005. 61(4): 214-25.
    21 D. M. Kokkinakis, X. Liu, S. Chada, M. M. Ahmed, M. M. Shareef, U. K. Singha, S. Yang and J. Luo. Modulation of gene expression in human central nervous system tumors under methionine deprivation-induced stress. Cancer Res. 2004. 64(20): 7513-25.
    22 M. Yuasa, C. Masutani, T. Eki and F. Hanaoka. Genomic structure, chromosomal localization and identification of mutations in the xeroderma pigmentosum variant (XPV) gene. Oncogene. 2000. 19(41): 4721-8.
    23 G. Liu and X. Chen. DNA polymerase eta, the product of the xeroderma pigmentosum variant gene and a target of p53, modulates the DNA damage checkpoint and p53 activation. Mol Cell Biol. 2006. 26(4): 1398-413.
    24 F. Lemee, C. Bavoux, M. J. Pillaire, A. Bieth, C. R. Machado, S. D. Pena, R. Guimbaud, J. Selves, J. S. Hoffmann and C. Cazaux. Characterization of promoter regulatory elements involved in downexpression of the DNA polymerase kappa in colorectal cancer. Oncogene. 2007. 26(23): 3387-94.
    25 G. H. Koenderink, Z. Dogic, F. Nakamura, P. M. Bendix, F. C. Mackintosh, J. H. Hartwig, T. P. Stossel and D. A. Weitz. Liquids and Structural Glasses Special Feature: An active biopolymer network controlled by molecular motors. Proc Natl Acad Sci U S A. 2009.
    26 P. V. Subbaiah, D. Sircar, R. S. Lankalapalli and R. Bittman. Effect of double bond geometry in sphingosine base on the antioxidant function of sphingomyelin. Arch Biochem Biophys. 2009. 481(1): 72-9.
    27 P. Knekt, R. Jarvinen, J. Dich and T. Hakulinen. Risk of colorectal and other gastro-intestinal cancers after exposure to nitrate, nitrite and N-nitroso compounds: a follow-up study. Int J Cancer. 1999. 80(6): 852-6.
    28 N. G. Jaspers, A. Raams, M. J. Kelner, J. M. Ng, Y. M. Yamashita, S. Takeda, T. C. McMorris and J. H. Hoeijmakers. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair (Amst). 2002. 1(12): 1027-38.
    29 S. Narayan and A. S. Jaiswal. Activation of adenomatous polyposis coli (APC) gene expression by the DNA-alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine requires p53. J Biol Chem. 1997. 272(49): 30619-22.
    31 X.Zhang,Y.Yu and X.Chen.Evidence for nontargeted mutagenesis in a monkey kidney cell line and analysis of its sequence specificity using a shuttle-vector plasmid.Mutat Res.1994.323(3):105-12.
    32 孙雪敏,余应年,张小山,陈星若.MNNG所致哺乳类细胞非定标性突变的时相分析.中国药理学与毒理学杂志.1996.10(77-78.
    33 X.Zhang,Y.Yu and X.Chen.The use of a shuttle plasmid to study nontargeted mutagenesis and its sequence specificity.Chin Med Sci J.1995.10(1):20-4.
    34 冯朝晖,余应年,陈星若.甲基硝基亚硝基胍诱发的遗传不稳定vero细胞DNA体外复制的保真度.中国药理学与毒理学杂志.1998.12(2):144-148.
    35 冯朝晖,余应年,陈星若.甲基硝基亚硝基胍诱发的遗传不稳定细胞DNA聚合酶βmRNA表达水平研究.中国病理生理杂志.1999.15(8):699-702.
    36 Y.Zhang,F.Yuan,X.Wu,J.S.Taylor and Z.Wang.Response of human DNA polymerase iota to DNA lesions.Nucleic Acids Res.2001.29(4):928-35.
    37 F.Zhu and M.Zhang.DNA polymerase zeta:new insight into eukaryotic mutagenesis and mammalian embryonic development.World J Gastroenterol.2003.9(6):1165-9.
    38 罗月球,杨军,余应年.用反义核酸技术研究POLκ(基因对细胞遗传稳定性的影响.浙江大学学报:医学版.2003.32(5):398-402.
    39 Y.Shen,M.Xia,J.Zhang,L.Xu,J.Yang,A.Chen,F.Miao,S.Ferrone and W.Xie.IRF-1 and p65 mediate upregulation of constitutive HLA-A antigen expression by hepatocellular carcinoma cells.Mol Immunol.2009.46(10):2045-53.
    40 J.Malaterre,T.Mantamadiotis,S.Dworkin,S.Lightowler,Q.Yang,M.I.Ransome,A.M.Turnley,N.R.Nichols,N.R.Emambokus,J.Frampton and R.G.Ramsay.c-Myb is required for neural progenitor cell proliferation and maintenance of the neural stem cell niche in adult brain.Stem Cells.2008.26(1):173-81.
    41 D.A.Tagle,B.F.Koop,M.Goodman,J.L.Slightom,D.L.Hess and R.T.Jones.Embryonic epsilon and gamma globin genes of a prosimian primate(Galago crassicaudatus).Nucleotide and amino acid sequences,developmental regulation and phylogenetic footprints.J Mol Biol.1988.203(2):439-55.
    42 K.E.Knudsen,A.F.Fribourg,M.W.Strobeck,J.M.Blanchard and E.S.Knudsen.Cyclin A is a functional target of retinoblastoma tumor suppressor protein-mediated cell cycle arrest. J Biol Chem. 1999. 274(39): 27632-41.
    43 H. P. Deigner, R. Claus, G. A. Bonaterra, C. Gehrke, N. Bibak, M. Blaess, M. Cantz, J. Metz and R. Kinscherf. Ceramide induces aSMase expression: implications for oxLDL-induced apoptosis. Faseb J. 2001. 15(3): 807-14.
    44 R. V. Davuluri, I. Grosse and M. Q. Zhang. Computational identification of promoters and first exons in the human genome. Nat Genet. 2001. 29(4): 412-7.
    45 D. S. Prestridge. Predicting Pol II promoter sequences using transcription factor binding sites. J Mol Biol. 1995. 249(5): 923-32.
    46 Y. F. Zhang, S. Jeffery, S. A. Burchill, P. A. Berry, J. C. Kaski and N. D. Carter. Truncated human endothelin receptor A produced by alternative splicing and its expression in melanoma. Br J Cancer. 1998. 78(9): 1141-6.
    47 M. G. Reese. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem. 2001. 26(1): 51-6.
    48 J. You and R. C. Bird. Selective induction of cell cycle regulatory genes cdk1 (p34cdc2), cyclins A/B, and the tumor suppressor gene Rb in transformed cells by okadaic acid. J Cell Physiol. 1995. 164(2): 424-33.
    49 F. Larsen, G. Gundersen, R. Lopez and H. Prydz. CpG islands as gene markers in the human genome. Genomics. 1992. 13(4): 1095-107.
    50 M. Gardiner-Garden and M. Frommer. CpG islands in vertebrate genomes. J Mol Biol. 1987. 196(2): 261-82.
    51 O. Ziv, N. Geacintov, S. Nakajima, A. Yasui and Z. Livneh. DNA polymerase {zeta} cooperates with polymerases {kappa} and {iota} in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients. Proc Natl Acad Sci U S A. 2009.
    52 J. I. Akagi, C. Masutani, Y. Kataoka, T. Kan, E. Ohashi, T. Mori, H. Ohmori and F. Hanaoka. Interaction with DNA polymerase eta is required for nuclear accumulation of REV1 and suppression of spontaneous mutations in human cells. DNA Repair (Amst). 2009. 8(5): 585-599.
    53 R. Betous, L. Rey, G. Wang, M. J. Pillaire, N. Puget, J. Selves, D. S. Biard, K. Shin-ya, K. M. Vasquez, C. Cazaux and J. S. Hoffmann. Role of TLS DNA polymerases eta and kappa in processing naturally occurring structured DNA in human cells. Mol Carcinog. 2009. 48(4): 369-78.
    54 N. Acharya, L. Haracska, S. Prakash and L. Prakash. Complex formation of yeast Revl with DNA polymerase eta. Mol Cell Biol. 2007. 27(23): 8401-8.
    55 M. Yasui, N. Suzuki, Y. R. Laxmi and S. Shibutani. Translesion synthesis past tamoxifen-derived DNA adducts by human DNA polymerases eta and kappa. Biochemistry. 2006. 45(39): 12167-74.
    56 A. Tissier, J. P. McDonald, E. G. Frank and R. Woodgate. poliota, a remarkably error-prone human DNA polymerase. Genes Dev. 2000. 14(13): 1642-50.
    57 P. Kannouche, A. R. Fernandez de Henestrosa, B. Coull, A. E. Vidal, C. Gray, D. Zicha, R. Woodgate and A. R. Lehmann. Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. Embo J. 2002. 21(22): 6246-56.
    58 Q. Gueranger, A. Stary, S. Aoufouchi, A. Faili, A. Sarasin, C. A. Reynaud and J. C. Weill. Role of DNA polymerases eta, iota and zeta in UV resistance and UV-induced mutagenesis in a human cell line. DNA Repair (Amst). 2008.
    59 E. Berezikov, V. Guryev, R. H. Plasterk and E. Cuppen. CONREAL: conserved regulatory elements anchored alignment algorithm for identification of transcription factor binding sites by phylogenetic footprinting. Genome Res. 2004. 14(1): 170-8.
    60 E. Berezikov, V. Guryev and E. Cuppen. CONREAL web server: identification and visualization of conserved transcription factor binding sites. Nucleic Acids Res. 2005. 33(Web Server issue): W447-50.
    61 V. Gotea and I. Ovcharenko. DiRE: identifying distant regulatory elements of co-expressed genes. Nucleic Acids Res. 2008. 36(Web Server issue): W133-9.
    62 C. N. Mayhew, L. M. Perkin, X. Zhang, J. Sage, T. Jacks and E. S. Knudsen. Discrete signaling pathways participate in RB-dependent responses to chemotherapeutic agents. Oncogene. 2004. 23(23): 4107-20.
    63 G. Dennis, Jr., B. T. Sherman, D. A. Hosack, J. Yang, W. Gao, H. C. Lane and R. A. Lempicki. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003. 4(5): P3.
    64 L. J. Kong, J. T. Chang, A. H. Bild and J. R. Nevins. Compensation and specificity of function within the E2F family. Oncogene. 2007. 26(3): 321-7.
    65 M. J. Wu, Z. Y. Gu and W. Sun. Effects of hydrostatic pressure on cytoskeleton and BMP-2, TGF-beta, SOX-9 production in rat temporomandibular synovial fibroblasts. Osteoarthritis Cartilage. 2008. 16(1): 41-7.
    66 D. G. Johnson, J. K. Schwarz, W. D. Cress and J. R. Nevins. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature. 1993. 365(6444): 349-52.
    67 J. Lukas, B. O. Petersen, K. Holm, J. Bartek and K. Helin. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol Cell Biol. 1996. 16(3): 1047-57.
    68 G. M. Popowicz, R. Muller, A. A. Noegel, M. Schleicher, R. Huber and T. A. Holak. Molecular structure of the rod domain of dictyostelium filamin. J Mol Biol. 2004. 342(5): 1637-46.
    69 R. Verona, K. Moberg, S. Estes, M. Starz, J. P. Vernon and J. A. Lees. E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol Cell Biol. 1997. 17(12): 7268-82.
    70 G. J. Lindeman, L. Dagnino, S. Gaubatz, Y. Xu, R. T. Bronson, H. B. Warren and D. M. Livingston. A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting. Genes Dev. 1998. 12(8): 1092-8.
    71 P. O. Humbert, C. Rogers, S. Ganiatsas, R. L. Landsberg, J. M. Trimarchi, S. Dandapani, C. Brugnara, S. Erdman, M. Schrenzel, R. T. Bronson and J. A. Lees. E2F4 is essential for normal erythrocyte maturation and neonatal viability. Mol Cell. 2000. 6(2): 281-91.
    72 S. Gaubatz, J. G. Wood and D. M. Livingston. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6. Proc Natl Acad Sci U S A. 1998. 95(16): 9190-5.
    73 R. E. Rempel, M. T. Saenz-Robles, R. Storms, S. Morham, S. Ishida, A. Engel, L. Jakoi, M. F. Melhem, J. M. Pipas, C. Smith and J. R. Nevins. Loss of E2F4 activity leads to abnormal development of multiple cellular lineages. Mol Cell. 2000. 6(2): 293-306.
    74 C. Attwooll, E. Lazzerini Denchi and K. Helin. The E2F family: specific functions and overlapping interests. Embo J. 2004. 23(24): 4709-16.
    75 C. Sardet, M. Vidal, D. Cobrinik, Y. Geng, C. Onufryk, A. Chen and R. A. Weinberg. E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc Natl Acad Sci U SA. 1995. 92(6): 2403-7.
    76 E. Parrini, A. Ramazzotti, W. B. Dobyns, D. Mei, F. Moro, P. Veggiotti, C. Marini, E. H. Brilstra, B. Dalla Bernardina, L. Goodwin, A. Bodell, M. C. Jones, M. Nangeroni, S. Palmeri, E. Said, J. W. Sander, P. Striano, Y. Takahashi, L. Van Maldergem, G. Leonardi, M. Wright, C. A. Walsh and R. Guerrini. Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain. 2006. 129(Pt 7): 1892-906.
    77 T. Farkas, K. Hansen, K. Holm, J. Lukas and J. Bartek. Distinct phosphorylation events regulate p130- and p107-mediated repression of E2F-4. J Biol Chem. 2002. 277(30): 26741-52.
    78 D. Plesca, M. E. Crosby, D. Gupta and A. Almasan. E2F4 function in G2: maintaining G2-arrest to prevent mitotic entry with damaged DNA. Cell Cycle. 2007.6(10): 1147-52.
    79 M. E. Crosby and A. Almasan. Opposing roles of E2Fs in cell proliferation and death. Cancer Biol Ther. 2004. 3(12): 1208-11.
    80 E. L. DuPree, S. Mazumder and A. Almasan. Genotoxic stress induces expression of E2F4, leading to its association with p130 in prostate carcinoma cells. Cancer Res. 2004. 64(13): 4390-3.
    81 S. Polager and D. Ginsberg. E2F mediates sustained G2 arrest and down-regulation of Stathmin and AIM-1 expression in response to genotoxic stress. J Biol Chem. 2003. 278(3): 1443-9.
    82 L. Bagella, A. Sun, T. Tonini, G. Abbadessa, G. Cottone, M. G. Paggi, A. De Luca, P. P. Claudio and A. Giordano. A small molecule based on the pRb2/p130 spacer domain leads to inhibition of cdk2 activity, cell cycle arrest and tumor growth reduction in vivo. Oncogene. 2007. 26(13): 1829-39.
    83 Y. Huang, T. Ishiko, S. Nakada, T. Utsugisawa, T. Kato and Z. M. Yuan. Role for E2F in DNA damage-induced entry of cells into S phase. Cancer Res. 1997. 57(17): 3640-3.
    84 C. Blattner, A. Sparks and D. Lane. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol Cell Biol. 1999. 19(5): 3704-13.
    85 R. D. Meng, P. Phillips and W. S. El-Deiry. p53-independent increase in E2F-1 expression enhances the cytotoxic effects of etoposide and of adriamycin. Int J Oncol. 1999. 14(1): 5-14.
    86 W. C. Lin, F. T. Lin and J. R. Nevins. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 2001. 15(14): 1833-44.
    87 C. Stevens, L. Smith and N. B. La Thangue. Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol. 2003. 5(5): 401-9.
    88 M. Urist, T. Tanaka, M. V. Poyurovsky and C. Prives. p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev. 2004. 18(24): 3041-54.
    89 M. A. Martinez-Balbas, U. M. Bauer, S. J. Nielsen, A. Brehm and T. Kouzarides. Regulation of E2F1 activity by acetylation. Embo J. 2000. 19(4): 662-71.
    90 L. Galbiati, R. Mendoza-Maldonado, M. I. Gutierrez and M. Giacca. Regulation of E2F-1 after DNA damage by p300-mediated acetylation and ubiquitination. Cell Cycle. 2005. 4(7): 930-9.
    91 A. Ianari, R. Gallo, M. Palma, E. Alesse and A. Gulino. Specific role for p300/CREB-binding protein-associated factor activity in E2F1 stabilization in response to DNA damage. J Biol Chem. 2004. 279(29): 30830-5.
    92 J. Stanelle and B. M. Putzer. E2F1-induced apoptosis: turning killers into therapeutics. Trends Mol Med. 2006. 12(4): 177-85.
    93 K. H. Vousden and X. Lu. Live or let die: the cell's response to p53. Nat Rev Cancer. 2002. 2(8): 594-604.
    94 J. K. Hsieh, D. Yap, D. J. O'Connor, V. Fogal, L. Fallis, F. Chan, S. Zhong and X. Lu. Novel function of the cyclin A binding site of E2F in regulating p53-induced apoptosis in response to DNA damage. Mol Cell Biol. 2002. 22(1): 78-93.
    95 T. R. Berton, D. L. Mitchell, R. Guo and D. G. Johnson. Regulation of epidermal apoptosis and DNA repair by E2F1 in response to ultraviolet B radiation. Oncogene. 2005. 24(15): 2449-60.
    96 J. P. McDonald, V. Rapic-Otrin, J. A. Epstein, B. C. Broughton, X. Wang, A. R. Lehmann, D. J. Wolgemuth and R. Woodgate. Novel human and mouse homologs of Saccharomyces cerevisiae DNA polymerase eta. Genomics. 1999. 60(1): 20-30.
    97 A. R. Hartman and J. M. Ford. BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet. 2002. 32(1): 180-4.
    98 S. Polager, Y. Kalma, E. Berkovich and D. Ginsberg. E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene. 2002. 21(3): 437-46.
    99 M. Colombani, N. Laurent, M. Le Merrer, A. L. Delezoide, C. Thauvin-Robinet, F. Huet, P. Sagot, S. Couvreur, T. Rousseau, S. P. Robertson and L. Faivre. A new osteochondrodysplasia with severe osteopenia, preaxial polydactyly, clefting and dysmorphic features resembling filamin-related disorders. Prenat Diagn. 2006. 26(12): 1151-5.
    100 R. Takimoto, T. K. MacLachlan, D. T. Dicker, Y. Niitsu, T. Mori and W. S. el-Deiry. BRCA1 transcriptionally regulates damaged DNA binding protein (DDB2) in the DNA repair response following UV-irradiation. Cancer Biol Ther. 2002. 1(2): 177-86.
    101 A. F. Nichols, T. Itoh, F. Zolezzi, S. Hutsell and S. Linn. Basal transcriptional regulation of human damage-specific DNA-binding protein genes DDB1 and DDB2 by Spl, E2F, N-myc and NF1 elements. Nucleic Acids Res. 2003. 31(2): 562-9.
    102 S. Hayes, P. Shiyanov, X. Chen and P. Raychaudhuri. DDB, a putative DNA repair protein, can function as a transcriptional partner of E2F1. Mol Cell Biol. 1998. 18(1): 240-9.
    103 R. S. Maser, O. K. Mirzoeva, J. Wells, H. Olivares, B. R. Williams, R. A. Zinkel, P. J. Farnham and J. H. Petrini. Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol Cell Biol. 2001. 21(17): 6006-16.
    104 M. Motallebipour, S. Enroth, T. Punga, A. Ameur, C. Koch, I. Dunham, J. Komorowski, J. Ericsson and C. Wadelius. Novel genes in cell cycle control and lipid metabolism with dynamically regulated binding sites for sterol regulatory element-binding protein 1 and RNA polymerase II in HepG2 cells detected by chromatin immunoprecipitation with microarray detection. Febs J. 2009. 276(7): 1878-90.
    105 Y. Furukawa, N. Nishimura, M. Satoh, H. Endo, S. Iwase, H. Yamada, M. Matsuda, Y. Kano and M. Nakamura. Apaf-1 is a mediator of E2F-1-induced apoptosis. J Biol Chem. 2002. 277(42): 39760-8.
    106 R. Kalb, K. Neveling, I. Nanda, D. Schindler and H. Hoehn. Fanconi anemia: causes and consequences of genetic instability. Genome Dyn. 2006. 1(218-42.
    107 J. E. Darnell, Jr. STATs and gene regulation. Science. 1997. 277(5332): 1630-5.
    108 E. Klipper, T. Gilboa, N. Levy, T. Kisliouk, K. Spanel-Borowski and R. Meidan. Characterization of endothelin-1 and nitric oxide generating systems in corpus luteum-derived endothelial cells. Reproduction. 2004. 128(4): 463-73.
    109 C. Y. Feng, S. C. Johnson, T. S. Hori, M. Rise, J. R. Hall, A. K. Gamperl, S. Hubert, J. Kimball, S. Bowman and M. L. Rise. Identification and analysis of differentially expressed genes in immune tissues of Atlantic cod stimulated with formalin-killed, atypical Aeromonas salmonicida. Physiol Genomics. 2009. 37(3): 149-63.
    110 J. F. Bromberg. Activation of STAT proteins and growth control. Bioessays. 2001. 23(2): 161-9.
    111 C. Maziere, F. Dantin, F. Dubois, R. Santus and J. Maziere. Biphasic effect of UVA radiation on STATl activity and tyrosine phosphorylation in cultured human keratinocytes. Free Radic Biol Med. 2000. 28(9): 1430-7.
    112 P. Kovarik, M. Mangold, K. Ramsauer, H. Heidari, R. Steinborn, A. Zotter, D. E. Levy, M. Muller and T. Decker. Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. Embo J. 2001. 20(1-2): 91-100.
    113 P. A. Townsend, M. S. Cragg, S. M. Davidson, J. McCormick, S. Barry, K. M. Lawrence, R. A. Knight, M. Hubank, P. L. Chen, D. S. Latchman and A. Stephanou. STAT-1 facilitates the ATM activated checkpoint pathway following DNA damage. J Cell Sci. 2005. 118(Pt 8): 1629-39.
    114 W. K. Kim, H. J. Cho, S. I. Ryu, H. R. Hwang, D. H. Kim, H. Y. Ryu, J. W. Chung, T. Y. Kim, B. C. Park, K. H. Bae, Y. Ko and S. C. Lee. Comparative proteomic analysis of peripheral blood mononuclear cells from atopic dermatitis patients and healthy donors. BMB Rep. 2008. 41(8): 597-603.
    115 P. Cejka, L. Stojic, N. Mojas, A. M. Russell, K. Heinimann, E. Cannavo, M. di Pietro, G. Marra and J. Jiricny. Methylation-induced G(2)/M arrest requires a full complement of the mismatch repair protein hMLH1. Embo J. 2003. 22(9): 2245-54.
    116 J. Pamment, E. Ramsay, M. Kelleher, D. Dornan and K. L. Ball. Regulation of the IRF-1 tumour modifier during the response to genotoxic stress involves an ATM-dependent signalling pathway. Oncogene. 2002. 21(51): 7776-85.
    117 S. Sheahan, C. O. Bellamy, D. R. Dunbar, D. J. Harrison and S. Prost. Deficiency of G1 regulators P53, P21Cipl and/or pRb decreases hepatocyte sensitivity to TGFbeta cell cycle arrest. BMC Cancer. 2007. 7(215.
    118 M. Frontini, M. Vijayakumar, A. Garvin and N. Clarke. A ChIP-chip approach reveals a novel role for transcription factor IRF1 in the DNA damage response. Nucleic Acids Res. 2009.
    119 Y. Levkovitz, K. J. O'Donovan and J. M. Baraban. Blockade of NGF-induced neurite outgrowth by a dominant-negative inhibitor of the egr family of transcription regulatory factors. J Neurosci. 2001. 21(1): 45-52.
    120 G. Mercier, N. Turque and M. Schumacher. Early activation of transcription factor expression in Schwann cells by progesterone. Brain Res Mol Brain Res. 2001.97(2): 137-48.
    121 K. Watanabe, S. Tateishi, M. Kawasuji, T. Tsurimoto, H. Inoue and M. Yamaizumi. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. Embo J. 2004. 23(19): 3886-96.
    122 B. Zhao, Z. Xie, H. Shen and Z. Wang. Role of DNA polymerase eta in the bypass of abasic sites in yeast cells. Nucleic Acids Res. 2004. 32(13): 3984-94.
    123 M. Safford, S. Collins, M. A. Lutz, A. Allen, C. T. Huang, J. Kowalski, A. Blackford, M. R. Horton, C. Drake, R. H. Schwartz and J. D. Powell. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol. 2005. 6(5): 472-80.
    124 R. E. Johnson, S. Prakash and L. Prakash. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science. 1999. 283(5404): 1001-4.
    125 S. D. McCulloch, R. J. Kokoska, C. Masutani, S. Iwai, F. Hanaoka and T. A. Kunkel. Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature. 2004. 428(6978): 97-100.
    126 C. Masutani, R. Kusumoto, S. Iwai and F. Hanaoka. Mechanisms of accurate translesion synthesis by human DNA polymerase eta. Embo J. 2000. 19(12): 3100-9.
    127 K. Bebenek and T. A. Kunkel. Family growth: the eukaryotic DNA polymerase revolution. Cell Mol Life Sci. 2002. 59(1): 54-7.
    128 L. Haracska, S. Prakash and L. Prakash. Replication past O(6)-methylguanine by yeast and human DNA polymerase eta. Mol Cell Biol. 2000. 20(21): 8001-7.
    129 C. W. Yung, Y. Okugawa, C. Otsuka, K. Okamoto, S. Arimoto, D. Loakes, K. Negishi and T. Negishi. Influence of neighbouring base sequences on the mutagenesis induced by 7,8-dihydro-8-oxoguanine in yeast. Mutagenesis. 2008. 23(6): 509-13.
    130 T. Matsuda, K. Bebenek, C. Masutani, F. Hanaoka and T. A. Kunkel. Low fidelity DNA synthesis by human DNA polymerase-eta. Nature. 2000. 404(6781): 1011-3.
    131 R. E. Johnson, M. T. Washington, S. Prakash and L. Prakash. Fidelity of human DNA polymerase eta. J Biol Chem. 2000. 275(11): 7447-50.
    132 K. Bebenek, T. Matsuda, C. Masutani, F. Hanaoka and T. A. Kunkel. Proofreading of DNA polymerase eta-dependent replication errors. J Biol Chem. 2001. 276(4): 2317-20.
    133 P. Kannouche, B. C. Broughton, M. Volker, F. Hanaoka, L. H. Mullenders and A. R. Lehmann. Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes Dev. 2001. 15(2): 158-72.
    134 L. Haracska, C. M. Kondratick, I. Unk, S. Prakash and L. Prakash. Interaction with PCNA is essential for yeast DNA polymerase eta function. Mol Cell. 2001. 8(2): 407-15.
    135 L. Haracska, R. E. Johnson, I. Unk, B. Phillips, J. Hurwitz, L. Prakash and S. Prakash. Physical and functional interactions of human DNA polymerase eta with PCNA. Mol Cell Biol. 2001. 21(21): 7199-206.
    136 C. E. Edmunds, L. J. Simpson and J. E. Sale. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol Cell. 2008. 30(4): 519-29.
    137 Y. W. Chen, J. E. Cleaver, Z. Hatahet, R. E. Honkanen, J. Y. Chang, Y. Yen and K. M. Chou. Human DNA polymerase eta activity and translocation is regulated by phosphorylation. Proc Natl Acad Sci U S A. 2008. 105(43): 16578-83.
    138 Y. Margalit, S. Yarns, E. Shapira, Y. Gruenbaum and A. Fainsod. Isolation and characterization of target sequences of the chicken CdxA homeobox gene. Nucleic Acids Res. 1993. 21(21): 4915-22.
    139 M. R. Carpinelli, D. J. Hilton, D. Metcalf, J. L. Antonchuk, C. D. Hyland, S. L. Mifsud, L. Di Rago, A. A. Hilton, T. A. Willson, A. W. Roberts, R. G. Ramsay, N. A. Nicola and W. S. Alexander. Suppressor screen in Mpl-/- mice: c-Myb mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. Proc Natl Acad Sci U S A. 2004. 101(17): 6553-8.
    140 N. Emambokus, A. Vegiopoulos, B. Harman, E. Jenkinson, G. Anderson and J. Frampton. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. Embo J. 2003. 22(17): 4478-88.
    141 J. Malaterre, M. Carpinelli, M. Ernst, W. Alexander, M. Cooke, S. Sutton, S. Dworkin, J. K. Heath, J. Frampton, G. McArthur, H. Clevers, D. Hilton, T. Mantamadiotis and R. G. Ramsay. c-Myb is required for progenitor cell homeostasis in colonic crypts. Proc Natl Acad Sci U S A. 2007. 104(10): 3829-34.
    142 C. A. Fitzpatrick, N. V. Sharkov, G. Ramsay and A. L. Katzen. Drosophila myb exerts opposing effects on S phase, promoting proliferation and suppressing endoreduplication. Development. 2002. 129(19): 4497-507.
    143 M. L. Sandberg, S. E. Sutton, M. T. Pletcher, T. Wiltshire, L. M. Tarantino, J. B. Hogenesch and M. P. Cooke. c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell. 2005. 8(2): 153-66.
    144 M. Joaquin and R. J. Watson. Cell cycle regulation by the B-Myb transcription factor. Cell Mol Life Sci. 2003. 60(11): 2389-401.
    145 J. Sitzmann, K. Noben-Trauth, H. Kamano and K. H. Klempnauer. Expression of B-Myb during mouse embryogenesis. Oncogene. 1996. 12(9): 1889-94.
    146 L. Solovjeva, M. Svetlova, L. Sasina, K. Tanaka, M. Saijo, I. Nazarov, M. Bradbury and N. Tomilin. High mobility of flap endonuclease 1 and DNA polymerase eta associated with replication foci in mammalian S-phase nucleus. Mol Biol Cell. 2005. 16(5): 2518-28.
    147 R. K. Vadlamudi, F. Li, L. Adam, D. Nguyen, Y. Ohta, T. P. Stossel and R. Kumar. Filamin is essential in actin cytoskeletal assembly mediated by p21 -activated kinase 1. Nat Cell Biol. 2002. 4(9): 681-90.
    148 E. Grassilli, P. Salomoni, D. Perrotti, C. Franceschi and B. Calabretta. Resistance to apoptosis in CTLL-2 cells overexpressing B-Myb is associated with B-Myb-dependent bcl-2 induction. Cancer Res. 1999. 59(10): 2451-6.
    149 M. Cervellera, G. Raschella, G. Santilli, B. Tanno, A. Ventura, C. Mancini, C. Sevignani, B. Calabretta and A. Sala. Direct transactivation of the anti-apoptotic gene apolipoprotein J (clusterin) by B-MYB. J Biol Chem. 2000. 275(28): 21055-60.
    150 D. Lang, F. Dohle, M. Terstesse, P. Bangen, C. August, H. G. Pauels and S. Heidenreich. Down-regulation of monocyte apoptosis by phagocytosis of platelets: involvement of a caspase-9, caspase-3, and heat shock protein 70-dependent pathway. J Immunol. 2002. 168(12): 6152-8.
    151 Y. Lin, X. Zhu, F. L. McLntee, H. Xiao, J. Zhang, M. Fu and Y. E. Chen. Interferon regulatory factor-1 mediates PPARgamma-induced apoptosis in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2004. 24(2): 257-63.
    152 C. G. Besirli, T. L. Deckwerth, R. J. Crowder, R. S. Freeman and E. M. Johnson, Jr. Cytosine arabinoside rapidly activates Bax-dependent apoptosis and a delayed Bax-independent death pathway in sympathetic neurons. Cell Death Differ. 2003. 10(9): 1045-58.
    153 D. Ahlbory, H. Appl, D. Lang and K. H. Klempnauer. Disruption of B-myb in DT40 cells reveals novel function for B-Myb in the response to DNA-damage. Oncogene. 2005. 24(48): 7127-34.
    154 N. Dror, M. Alter-Koltunoff, A. Azriel, N. Amariglio, J. Jacob-Hirsch, S. Zeligson, A. Morgenstern, T. Tamura, H. Hauser, G. Rechavi, K. Ozato and B. Z. Levi. Identification of IRF-8 and IRF-1 target genes in activated macrophages. Mol Immunol. 2007. 44(4): 338-46.
    155 F. Sentinelli, S. Romeo, F. Barbetti, A. Berni, E. Filippi, M. Fanelli, M. Fallarino and M. G. Baroni. Search for genetic variants in the p66Shc longevity gene by PCR-single strand conformational polymorphism in patients with early-onset cardiovascular disease. BMC Genet. 2006. 7(14.
    156 M. Tsugita, Y. Iwasaki, M. Nishiyama, T. Taguchi, M. Shinahara, Y. Taniguchi, M. Kambayashi, Y. Terada and K. Hashimoto. Differential regulation of 11beta-hydroxysteroid dehydrogenase type-1 and -2 gene transcription by proinflammatory cytokines in vascular smooth muscle cells. Life Sci. 2008. 83(11-12): 426-32.
    157 V. Kolla, X. Weihua and D. V. Kalvakolanu. Modulation of interferon action by retinoids. Induction of murine STAT1 gene expression by retinoic acid. J Biol Chem. 1997. 272(15): 9742-8.
    158 A. Kroger, M. Koster, K. Schroeder, H. Hauser and P. P. Mueller. Activities of IRF-1. J Interferon Cytokine Res. 2002. 22(1): 5-14.
    159 G. L. Bond, K. M. Hirshfield, T. Kirchhoff, G. Alexe, E. E. Bond, H. Robins, F. Bartel, H. Taubert, P. Wuerl, W. Hait, D. Toppmeyer, K. Offit and A. J. Levine. MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res. 2006. 66(10): 5104-10.
    160 Z. A. Percario, V. Giandomenico, G. Fiorucci, M. V. Chiantore, S. Vannucchi, J. Hiscott, E. Affabris and G. Romeo. Retinoic acid is able to induce interferon regulatory factor 1 in squamous carcinoma cells via a STAT-1 independent signalling pathway. Cell Growth Differ. 1999. 10(4): 263-70.
    161 R. Pine. Convergence of TNFalpha and IFNgamma signalling pathways through synergistic induction of IRF-1/ISGF-2 is mediated by a composite GAS/kappaB promoter element. Nucleic Acids Res. 1997. 25(21): 4346-54.
    162 Y. Ohmori, R. D. Schreiber and T. A. Hamilton. Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappaB. J Biol Chem. 1997. 272(23): 14899-907.
    163 Y. Feng, M. H. Chen, I. P. Moskowitz, A. M. Mendonza, L. Vidali, F. Nakamura, D. J. Kwiatkowski and C. A. Walsh. Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci U S A. 2006. 103(52): 19836-41.
    164 L. Stojic, N. Mojas, P. Cejka, M. Di Pietro, S. Ferrari, G. Marra and J. Jiricny. Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase. Genes Dev. 2004. 18(11): 1331-44.
    165 L. M. Albano, D. R. Bertola, M. F. Barba, M. Valente, S. P. Robertson and C. A. Kim. Phenotypic overlap in Melnick-Needles, serpentine fibula-polycystic kidney and Hajdu-Cheney syndromes: a clinical and molecular study in three patients. Clin Dysmorphol. 2007. 16(1): 27-33.
    166 S. Prost, C. O. Bellamy, D. S. Cunningham and D. J. Harrison. Altered DNA repair and dysregulation of p53 in IRF-1 null hepatocytes. Faseb J. 1998. 12(2): 181-8.
    167 K. Y. Seo, J. Yin, P. Donthamsetti, S. Chandani, C. H. Lee and E. L. Loechler. Amino acid architecture that influences dNTP insertion efficiency in Y-family DNA polymerase V of E. coli. J Mol Biol. 2009. 392(2): 270-82.
    168 A. Dasari, J. N. Bartholomew, D. Volonte and F. Galbiati. Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Res. 2006. 66(22): 10805-14.
    169 M. Yang, S. Y. Kim, S. S. Chang, I. S. Lee and T. Kawamoto. Urinary concentrations of bisphenol A in relation to biomarkers of sensitivity and effect and endocrine-related health effects. Environ Mol Mutagen. 2006. 47(8): 571-8.
    170 M. D'Addario, P. D. Arora and C. A. McCulloch. Role of p38 in stress activation of Spl. Gene. 2006. 379(51-61.
    171 R. Liu, A. Zhou, D. Ren, A. He, X. Hu, W. Zhang, L. Yang, M. Liu, H. Li, J. Zhou, S. Xiang and J. Zhang. Transcription factor specificity protein 1 (SP1) and activating protein 2alpha (AP-2alpha) regulate expression of human KCTDIO gene by binding to proximal region of promoter. Febs J. 2009. 276(4): 1114-24.
    172 S. Prakash, R. E. Johnson and L. Prakash. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem. 2005. 74(317-53.
    173 W. Zhang, D. E. Geiman, J. M. Shields, D. T. Dang, C. S. Mahatan, K. H. Kaestner, J. R. Biggs, A. S. Kraft and V. W. Yang. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21 WAF1/Cip1 promoter. J Biol Chem. 2000. 275(24): 18391-8.
    174 S. Lone, S. A. Townson, S. N. Uljon, R. E. Johnson, A. Brahma, D. T. Nair, S. Prakash, L. Prakash and A. K. Aggarwal. Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass. Mol Cell. 2007. 25(4): 601-14.
    175 J. P. McDonald, A. Tissier, E. G. Frank, S. Iwai, F. Hanaoka and R. Woodgate. DNA polymerase iota and related rad30-like enzymes. Philos Trans R Soc Lond B Biol Sci. 2001. 356(1405): 53-60.
    176 O. A. Barski, V. Z. Papusha, G. R. Kunkel and K. H. Gabbay. Regulation of aldehyde reductase expression by STAF and CHOP. Genomics. 2004. 83(1): 119-29.
    177 N. Zhao, J. Wang, Y. Cui, L. Guo and S. H. Lu. Induction of Gl cell cycle arrest and P15INK4b expression by ECRG1 through interaction with Miz-1. J Cell Biochem. 2004. 92(1): 65-76.
    178 S. Sabbioneda, C. M. Green, M. Bienko, P. Kannouche, I. Dikic and A. R. Lehmann. Ubiquitin-binding motif of human DNA polymerase eta is required for correct localization. Proc Natl Acad Sci U S A. 2009. 106(8): E20; author reply E21.
    179 B. S. Plosky, A. E. Vidal, A. R. Fernandez de Henestrosa, M. P. McLenigan, J. P. McDonald, S. Mead and R. Woodgate. Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin. Embo J. 2006. 25(12): 2847-55.
    180 J. T. Kadonaga, K. R. Carner, F. R. Masiarz and R. Tjian. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 1987. 51(6): 1079-90.
    181 W. S. Dynan and R. Tjian. The promoter-specific transcription factor Spl binds to upstream sequences in the SV40 early promoter. Cell. 1983. 35(1): 79-87.
    182 W. S. Dynan and R. Tjian. Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase II. Cell. 1983. 32(3): 669-80.
    183 D. Gidoni, W. S. Dynan and R. Tjian. Multiple specific contacts between a mammalian transcription factor and its cognate promoters. Nature. 1984. 312(5993): 409-13.
    184 A. J. Courey and R. Tjian. Analysis of Spl in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988. 55(5): 887-98.
    185 A. J. Courey, D. A. Holtzman, S. P. Jackson and R. Tjian. Synergistic activation by the glutamine-rich domains of human transcription factor Spl. Cell. 1989. 59(5): 827-36.
    186 E. Pascal and R. Tjian. Different activation domains of Spl govern formation of multimers and mediate transcriptional synergism. Genes Dev. 1991. 5(9): 1646-56.
    187 L. Sun, K. Zhang, L. Zhou, P. Hohler, E. T. Kool, F. Yuan, Z. Wang and J. S. Taylor. Yeast pol eta holds a cis-syn thymine dimer loosely in the active site during elongation opposite the 3'-T of the dimer, but tightly opposite the 5'-T. Biochemistry. 2003. 42(31): 9431-7.
    188 A. Emili, J. Greenblatt and C. J. Ingles. Species-specific interaction of the glutamine-rich activation domains of Spl with the TATA box-binding protein. Mol Cell Biol. 1994. 14(3): 1582-93.
    189 T. Torigoe, H. Izumi, Y. Yoshida, H. Ishiguchi, T. Okamoto, H. Itoh and K. Kohno. Low pH enhances Spl DNA binding activity and interaction with TBP. Nucleic Acids Res. 2003. 31(15): 4523-30.
    190 T. Hoey, R. O. Weinzierl, G. Gill, J. L. Chen, B. D. Dynlacht and R. Tjian. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell. 1993. 72(2): 247-60.
    191 J. L. Chen, L. D. Attardi, C. P. Verrijzer, K. Yokomori and R. Tjian. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell. 1994. 79(1): 93-105.
    192 G. Gill, E. Pascal, Z. H. Tseng and R. Tjian. A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc Natl Acad Sci U S A. 1994. 91(1): 192-6.
    193 R. O. Weinzierl, B. D. Dynlacht and R. Tjian. Largest subunit of Drosophila transcription factor IID directs assembly of a complex containing TBP and a coactivator. Nature. 1993. 362(6420): 511-7.
    194 C. M. Chiang and R. G. Roeder. Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science. 1995. 267(5197): 531-6.
    195 J. Blau, H. Xiao, S. McCracken, P. O'Hare, J. Greenblatt and D. Bentley. Three functional classes of transcriptional activation domain. Mol Cell Biol. 1996. 16(5): 2044-55.
    196 K. Yankulov, J. Blau, T. Purton, S. Roberts and D. L. Bentley. Transcriptional elongation by RNA polymerase II is stimulated by transactivators. Cell. 1994. 77(5): 749-59.
    197 J. Colgan and J. L. Manley. Cooperation between core promoter elements influences transcriptional activity in vivo. Proc Natl Acad Sci U S A. 1995. 92(6): 1955-9.
    198 Y. Sadovsky, P. Webb, G. Lopez, J. D. Baxter, P. M. Fitzpatrick, E. Gizang-Ginsberg, V. Cavailles, M. G. Parker and P. J. Kushner. Transcriptional activators differ in their responses to overexpression of TATA-box-binding protein. Mol Cell Biol. 1995. 15(3): 1554-63.
    199 B. Choy and M. R. Green. Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature. 1993. 366(6455): 531-6.
    200 T. K. Kundu, V. B. Palhan, Z. Wang, W. An, P. A. Cole and R. G. Roeder. Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol Cell. 2000. 6(3): 551-61.
    201 T. Suzuki, A. Kimura, R. Nagai and M. Horikoshi. Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Spl on and through DNA binding. Genes Cells. 2000. 5(1): 29-41.
    202 J. F. Lin, J. Xu, H. Y. Tian, X. Gao, Q. X. Chen, Q. Gu, G. J. Xu, J. D. Song and F. K. Zhao. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int J Cancer. 2007. 121(12): 2596-605.
    203 S. Kadam, G. S. McAlpine, M. L. Phelan, R. E. Kingston, K. A. Jones and B. M. Emerson. Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev. 2000. 14(19): 2441-51.
    204 S. Kadam and B. M. Emerson. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol Cell. 2003. 11(2): 377-89.
    205 T. Suzuki, S. Muto, S. Miyamoto, K. Aizawa, M. Horikoshi and R. Nagai. Functional interaction of the DNA-binding transcription factor Spl through its DNA-binding domain with the histone chaperone TAF-I. J Biol Chem. 2003. 278(31): 28758-64.
    206 V. L. Sheen, J. W. Wheless, A. Bodell, E. Braverman, P. D. Cotter, K. A. Rauen, O. Glenn, K. Weisiger, S. Packman, C. A. Walsh and E. H. Sherr. Periventricular heterotopia associated with chromosome 5p anomalies. Neurology. 2003. 60(6): 1033-6.
    207 R. A. Weinberg. E2F and cell proliferation: a world turned upside down. Cell. 1996. 85(4): 457-9.
    208 J. DeGregori. The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta. 2002. 1602(2): 131-50.
    209 S. K. Oster, C. S. Ho, E. L. Soucie and L. Z. Penn. The myc oncogene: MarvelouslY Complex. Adv Cancer Res. 2002. 84(81-154.
    210 E. Grinstein, F. Jundt, I. Weinert, P. Wernet and H. D. Royer. Spl as Gl cell cycle phase specific transcription factor in epithelial cells. Oncogene. 2002. 21(10): 1485-92.
    211 A. R. Black, D. Jensen, S. Y. Lin and J. C. Azizkhan. Growth/cell cycle regulation of Spl phosphorylation. J Biol Chem. 1999. 274(3): 1207-15.
    212 G. Lagger, A. Doetzlhofer, B. Schuettengruber, E. Haidweger, E. Simboeck, J. Tischler, S. Chiocca, G. Suske, H. Rotheneder, E. Wintersberger and C. Seiser. The
    tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the
    cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol. 2003.
    23(8): 2669-79.
    
    213 G. Koutsodontis, I. Tentes, P. Papakosta, A. Moustakas and D. Kardassis. Sp1
    plays a critical role in the transcriptional activation of the human cyclin-dependent
    kinase inhibitor p21(WAF1/Cip1) gene by the p53 tumor suppressor protein. J
    Biol Chem. 2001. 276(31): 29116-25.
    
    214 G. Koutsodontis, E. Vasilaki, W. C. Chou, P. Papakosta and D. Kardassis. Physical and functional interactions between members of the tumour suppressor p53 and the Sp families of transcription factors: importance for the regulation of genes involved in cell-cycle arrest and apoptosis. Biochem J. 2005. 389(Pt 2): 443-55.
    215 G. Koutsodontis and D. Kardassis. Inhibition of p53-mediated transcriptional responses by mithramycin A. Oncogene. 2004. 23(57): 9190-200.
    216 X. H. Feng, X. Lin and R. Derynck. Smad2, Smad3 and Smad4 cooperate with Spl to induce p15(Ink4B) transcription in response to TGF-beta. Embo J. 2000. 19(19): 5178-93.
    217 S. Iwahori, N. Shirata, Y. Kawaguchi, S. K. Weller, Y. Sato, A. Kudoh, S. Nakayama, H. Isomura and T. Tsurumi. Enhanced phosphorylation of transcription factor spl in response to herpes simplex virus type 1 infection is dependent on the ataxia telangiectasia-mutated protein. J Virol. 2007. 81(18): 9653-64.
    218 L. Ming, T. Sakaida, W. Yue, A. Jha, L. Zhang and J. Yu. Spl and p73 activate PUMA following serum starvation. Carcinogenesis. 2008. 29(10): 1878-84.
    219 B. A. Olofsson, C. M. Kelly, J. Kim, S. M. Hornsby and J. Azizkhan-Clifford. Phosphorylation of Spl in response to DNA damage by ataxia telangiectasia-mutated kinase. Mol Cancer Res. 2007. 5(12): 1319-30.
    220 S. Iwahori, Y. Yasui, A. Kudoh, Y. Sato, S. Nakayama, T. Murata, H. Isomura and T. Tsurumi. Identification of phosphorylation sites on transcription factor Spl in response to DNA damage and its accumulation at damaged sites. Cell Signal. 2008. 20(10): 1795-803.
    221 R. L. Meighan-Mantha, A. T. Riegel, S. Suy, V. Harris, F. H. Wang, C. Lozano, T. L. Whiteside and U. Kasid. Ionizing radiation stimulates octamer factor DNA binding activity in human carcinoma cells. Mol Cell Biochem. 1999. 199(1-2): 209-15.
    222 R. Delwel, T. Funabiki, B. L. Kreider, K. Morishita and J. N. Ihle. Four of the seven zinc fingers of the Evi-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T)AAGA(T/C)AAGATAA. Mol Cell Biol. 1993. 13(7): 4291-300.
    223 A. S. Perkins, R. Fishel, N. A. Jenkins and N. G. Copeland. Evi-1, a murine zinc finger proto-oncogene, encodes a sequence-specific DNA-binding protein. Mol Cell Biol. 1991. 11(5): 2665-74.
    224 M. Kurokawa, K. Mitani, K. Irie, T. Matsuyama, T. Takahashi, S. Chiba, Y. Yazaki, K. Matsumoto and H. Hirai. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature. 1998. 394(6688): 92-6.
    225 M. Kurokawa, K. Mitani, T. Yamagata, T. Takahashi, K. Izutsu, S. Ogawa, T. Moriguchi, E. Nishida, Y. Yazaki and H. Hirai. The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. Embo J. 2000. 19(12): 2958-68.
    226 K. Morishita, E. Parganas, T. Matsugi and J. N. Ihle. Expression of the Evi-1 zinc finger gene in 32Dc13 myeloid cells blocks granulocytic differentiation in response to granulocyte colony-stimulating factor. Mol Cell Biol. 1992. 12(1): 183-9.
    227 K. Izutsu, M. Kurokawa, Y. Imai, K. Maki, K. Mitani and H. Hirai. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood. 2001. 97(9): 2815-22.
    228 D. F. Jarosz, V. G. Godoy, J. C. Delaney, J. M. Essigmann and G. C. Walker. A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Nature. 2006. 439(7073): 225-8.
    229 K. Takenaka and Y. Miki. Introduction and characterization of a polymerase-dead point mutation into the POLK gene in vertebrates. FEBS Lett. 2009. 583(4): 661-4.
    230 A. Kumatori, D. Yang, S. Suzuki and M. Nakamura. Cooperation of STAT-1 and IRF-1 in interferon-gamma-induced transcription of the gp91(phox) gene. J Biol Chem. 2002. 277(11): 9103-11.
    231 V. L. Gerlach, W. J. Feaver, P. L. Fischhaber and E. C. Friedberg. Purification and characterization of pol kappa, a DNA polymerase encoded by the human DINB1 gene. J Biol Chem. 2001. 276(1): 92-8.
    232 L. Haracska, L. Prakash and S. Prakash. Role of human DNA polymerase kappa as an extender in translesion synthesis. Proc Natl Acad Sci U S A. 2002. 99(25): 16000-5.
    233 H. Ohmori, E. Ohashi and T. Ogi. Mammalian Pol kappa: regulation of its expression and lesion substrates. Adv Protein Chem. 2004. 69(265-78.
    234 O. D. Scharer and J. Jiricny. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays. 2001. 23(3): 270-81.
    235 B. Sedgwick and T. Lindahl. Recent progress on the Ada response for inducible repair of DNA alkylation damage. Oncogene. 2002. 21(58): 8886-94.
    236 J. B. Griffin, R. Rodriguez-Melendez, L. Dode, F. Wuytack and J. Zempleni. Biotin supplementation decreases the expression of the SERCA3 gene (ATP2A3) in Jurkat cells, thus, triggering unfolded protein response. J Nutr Biochem. 2006. 17(4): 272-81.
    237 D. R. Duckett, J. T. Drummond, A. I. Murchie, J. T. Reardon, A. Sancar, D. M. Lilley and P. Modrich. Human MutSalpha recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc Natl Acad Sci U S A. 1996. 93(13): 6443-7.
    238 F. Liu, X. B. Pan, G. D. Chen, D. Jiang, X. Cong, R. Fei and L. Wei. [Granulocyte colony-stimulating factor-mobilized autologous bone marrow stem cells promote the liver regeneration of partial liver transplant: an experiment with rats]. Zhonghua Yi Xue Za Zhi. 2005. 85(47): 3342-5.
    239 J. H. Tolentino, T. J. Burke, S. Mukhopadhyay, W. G. McGregor and A. K. Basu. Inhibition of DNA replication fork progression and mutagenic potential of 1, N6-ethenoadenine and 8-oxoguanine in human cell extracts. Nucleic Acids Res. 2008. 36(4): 1300-8.
    240 D. Chiapperino, M. Cai, J. M. Sayer, H. Yagi, H. Kroth, C. Masutani, F. Hanaoka, D. M. Jerina and A. M. Cheh. Error-prone translesion synthesis by human DNA polymerase eta on DNA-containing deoxyadenosine adducts of 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene. J Biol Chem. 2005. 280(48): 39684-92.
    241 J. G. Jansen, A. Tsaalbi-Shtylik, P. Langerak, F. Calleja, C. M. Meijers, H. Jacobs and N. de Wind. The BRCT domain of mammalian Rev1 is involved in regulating DNA translesion synthesis. Nucleic Acids Res. 2005. 33(1): 356-65.
    242 R. E. Sosa, M. Volpe, D. N. Marion, N. Glorioso, J. H. Laragh, E. D. Vaughan, Jr., T. Maack and S. A. Atlas. Effect of atrial natriuretic factor on renin secretion, plasma renin and aldosterone in dogs with acute unilateral renal artery constriction. J Hypertens Suppl. 1985. 3(3): S299-302.
    243 P. S. Kedar, S. G. Widen, E. W. Englander, A. J. Fornace, Jr. and S. H. Wilson. The ATF/CREB transcription factor-binding site in the polymerase beta promoter mediates the positive effect of N-methyl-N'-nitro-N-nitrosoguanidine on transcription. Proc Natl Acad Sci U S A. 1991. 88(9): 3729-33.
    244 J. Hagman and K. Lukin. Transcription factors drive B cell development. Curr Opin Immunol. 2006. 18(2): 127-34.
    245 D. Orlic, S. Anderson, L. G. Biesecker, B. P. Sorrentino and D. M. Bodine. Pluripotent hematopoietic stem cells contain high levels of mRNA for c-kit, GATA-2, p45 NF-E2, and c-myb and low levels or no mRNA for c-fms and the receptors for granulocyte colony-stimulating factor and interleukins 5 and 7. Proc Natl Acad Sci U S A. 1995. 92(10): 4601-5.
    246 H. Y. Win and M. Acevedo-Duncan. Role of protein kinase C-iota in transformed non-malignant RWPE-1 cells and androgen-independent prostate carcinoma DU-145 cells. Cell Prolif. 2009. 42(2): 182-94.
    247 T. Mimori and J. A. Hardin. Mechanism of interaction between Ku protein and DNA. J Biol Chem. 1986. 261(22): 10375-9.
    248 P. R. Blier, A. J. Griffith, J. Craft and J. A. Hardin. Binding of Ku protein to DNA. Measurement of affinity for ends and demonstration of binding to nicks. J Biol Chem. 1993. 268(10): 7594-601.
    249 W. S. Dynan and S. Yoo. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res. 1998. 26(7): 1551-9.
    250 H. Inui, K. S. Oh, C. Nadem, T. Ueda, S. G. Khan, A. Metin, E. Gozukara, S. Emmert, H. Slor, D. B. Busch, C. C. Baker, J. J. DiGiovanna, D. Tamura, C. S. Seitz, A. Gratchev, W. H. Wu, K. Y. Chung, H. J. Chung, E. Azizi, R. Woodgate, T. D. Schneider and K. H. Kraemer. Xeroderma pigmentosum-variant patients from America, Europe, and Asia. J Invest Dermatol. 2008. 128(8): 2055-68.
    251 E. Y. Levanon, M. Hallegger, Y. Kinar, R. Shemesh, K. Djinovic-Carugo, G. Rechavi, M. F. Jantsch and E. Eisenberg. Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res. 2005. 33(4): 1162-8.
    252 K. Caldecott, G. Banks and P. Jeggo. DNA double-strand break repair pathways and cellular tolerance to inhibitors of topoisomerase II. Cancer Res. 1990. 50(18): 5778-83.
    253 R. C. Getts and T. D. Stamato. Absence of a Ku-like DNA end binding activity in the xrs double-strand DNA repair-deficient mutant. J Biol Chem. 1994. 269(23): 15981-4.
    254 K. Iwabuchi, B. P. Basu, B. Kysela, T. Kurihara, M. Shibata, D. Guan, Y Cao, T. Hamada, K. Imamura, P. A. Jeggo, T. Date and A. J. Doherty. Potential role for 53BP1 in DNA end-joining repair through direct interaction with DNA. J Biol Chem. 2003. 278(38): 36487-95.
    255 A. Munkert, U. Helmchen, M. J. Kemper, M. Bubenheim, R. A. Stahl and S. Harendza. Characterization of the transcriptional regulation of the human MT1-MMP gene and association of risk reduction for focal-segmental glomerulosclerosis with two functional promoter SNPs. Nephrol Dial Transplant. 2009. 24(3): 735-42.
    256 G. E. Taccioli, T. M. Gottlieb, T. Blunt, A. Priestley, J. Demengeot, R. Mizuta, A. R. Lehmann, F. W. Alt, S. P. Jackson and P. A. Jeggo. Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science. 1994. 265(5177): 1442-5.
    257 H. Shibayama, E. Takai, I. Matsumura, M. Kouno, E. Morii, Y Kitamura, J. Takeda and Y. Kanakura. Identification of a cytokine-induced antiapoptotic molecule anamorsin essential for definitive hematopoiesis. J Exp Med. 2004. 199(4): 581-92.
    258 S. A. Beausoleil, M. Jedrychowski, D. Schwartz, J. E. Elias, J. Villen, J. Li, M. A. Cohn, L. C. Cantley and S. P. Gygi. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A. 2004. 101(33): 12130-5.
    259 Y. Hibino. [Functional arrangement of genomic DNA and structure of nuclear matrix]. Yakugaku Zasshi. 2000. 120(6): 520-33.
    1 V. Poltoratsky, J. K. Horton, R. Prasad and S. H. Wilson. REV1 mediated mutagenesis in base excision repair deficient mouse fibroblast. DNA Repair (Amst). 2005. 4(10): 1182-8.
    2 B. Sedgwick, P. A. Bates, J. Paik, S. C. Jacobs and T. Lindahl. Repair of alkylated DNA: recent advances. DNA Repair (Amst). 2007. 6(4): 429-42.
    3 S. C. Shuck, E. A. Short and J. J. Turchi. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res. 2008. 18(1): 64-72.
    4 A. J. Rattray and J. N. Strathern. Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu Rev Genet. 2003. 37(31-66.
    5 O. Fleck and P. Schar. Translesion DNA synthesis: little fingers teach tolerance. Curr Biol. 2004. 14(10): R389-91.
    6 Z. Ronai, S. Rutberg and Y. M. Yang. UV-responsive element (TGACAACA) from rat fibroblasts to human melanomas. Environ Mol Mutagen. 1994. 23(3): 157-63.
    7 M. Wang, T. R. Devereux, H. G. Vikis, S. D. McCulloch, W. Holliday, C. Anna, Y. Wang, K. Bebenek, T. A. Kunkel, K. Guan and M. You. Pol iota is a candidate for the mouse pulmonary adenoma resistance 2 locus, a major modifier of chemically induced lung neoplasia. Cancer Res. 2004. 64(6): 1924-31.
    8 C. Masutani, R. Kusumoto, A. Yamada, N. Dohmae, M. Yokoi, M. Yuasa, M. Araki, S. Iwai, K. Takio and F. Hanaoka. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature. 1999. 399(6737): 700-4.
    9 R. E. Johnson, C. M. Kondratick, S. Prakash and L. Prakash. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science. 1999. 285(5425): 263-5.
    10 S. D. McCulloch, R. J. Kokoska, C. Masutani, S. Iwai, F. Hanaoka and T. A. Kunkel. Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature. 2004. 428(6978): 97-100.
    11 A. Vaisman, A. R. Lehmann and R. Woodgate. DNA polymerases eta and iota. Adv Protein Chem. 2004. 69(205-28.
    12 L. Haracska, S. Prakash and L. Prakash. Replication past O(6)-methylguanine by yeast and human DNA polymerase eta. Mol Cell Biol. 2000. 20(21): 8001-7.
    13 Y. Zhang, F. Yuan, X. Wu, O. Rechkoblit, J. S. Taylor, N. E. Geacintov and Z. Wang. Error-prone lesion bypass by human DNA polymerase eta. Nucleic Acids Res. 2000. 28(23): 4717-24.
    14 H. Fukuda, T. Takamura-Enya, Y. Masuda, T. Nohmi, C. Seki, K. Kamiya, T. Sugimura, C. Masutani, F. Hanaoka and H. Nakagama. Translesional DNA synthesis through a C8-guanyl adduct of 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in Vitro: REV1 inserts dC opposite the lesion, and DNA polymerase kappa potentially catalyzes extension reaction from the 3'-dC terminus. J Biol Chem. 2009. 284(38): 25585-92.
    15 K. Satou, M. Hori, K. Kawai, H. Kasai, H. Harashima and H. Kamiya. Involvement of specialized DNA polymerases in mutagenesis by 8-hydroxy-dGTP in human cells. DNA Repair (Amst). 2009. 8(5): 637-42.
    16 A. Irimia, R. L. Eoff, F. P. Guengerich and M. Egli. Structural and functional elucidation of the mechanism promoting error-prone synthesis by human DNA polymerase kappa opposite the 7,8-Dihydro-8-oxo-2'-deoxyguanosine adduct. J Biol Chem. 2009.
    17 P. A. van der Kemp, M. de Padula, G. Burguiere-Slezak, H. D. Ulrich and S. Boiteux. PCNA monoubiquitylation and DNA polymerase eta ubiquitin-binding domain are required to prevent 8-oxoguanine-induced mutagenesis in Saccharomyces cerevisiae. Nucleic Acids Res. 2009. 37(8): 2549-59.
    18 D. H. Lee and G. P. Pfeifer. Translesion synthesis of 7,8-dihydro-8-oxo-2'-deoxyguanosine by DNA polymerase eta in vivo. Mutat Res. 2008. 641(1-2): 19-26.
    19 I. Y. Yang, K. Hashimoto, N. de Wind, I. A. Blair and M. Moriya. Two Distinct Translesion Synthesis Pathways across a Lipid Peroxidation-derived DNA Adduct in Mammalian Cells. J Biol Chem. 2009. 284(1): 191-8.
    20 F. Yuan, Y. Zhang, D. K. Rajpal, X. Wu, D. Guo, M. Wang, J. S. Taylor and Z. Wang. Specificity of DNA lesion bypass by the yeast DNA polymerase eta. J Biol Chem. 2000. 275(11): 8233-9.
    21 S. de Feraudy, C. L. Limoli, E. Giedzinski, D. Karentz, T. M. Marti, L. Feeney and J. E. Cleaver. Pol eta is required for DNA replication during nucleotide deprivation by hydroxyurea. Oncogene. 2007. 26(39): 5713-21.
    22 S. Mogi, C. E. Butcher and D. H. Oh. DNA polymerase eta reduces the gamma-H2AX response to psoralen interstrand crosslinks in human cells. Exp Cell Res. 2008. 314(4): 887-95.
    23 A. Tissier, P. Kannouche, M. P. Reck, A. R. Lehmann, R. P. Fuchs and A. Cordonnier. Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REV1 protein. DNA Repair (Amst). 2004. 3(11): 1503-14.
    24 D. T. Nair, R. E. Johnson, S. Prakash, L. Prakash and A. K. Aggarwal. Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing. Nature. 2004. 430(6997): 377-80.
    25 M. G. Pence, P. Blans, C. N. Zink, T. Hollis, J. C. Fishbein and F. W. Perrino. Lesion bypass of N2-ethylguanine by human DNA polymerase iota. J Biol Chem. 2009.284(3): 1732-40.
    26 D. T. Nair, R. E. Johnson, L. Prakash, S. Prakash and A. K. Aggarwal. An incoming nucleotide imposes an anti to syn conformational change on the templating purine in the human DNA polymerase-iota active site. Structure. 2006. 14(4): 749-55.
    27 J. P. McDonald, A. Tissier, E. G. Frank, S. Iwai, F. Hanaoka and R. Woodgate. DNA polymerase iota and related rad30-like enzymes. Philos Trans R Soc Lond B Biol Sci. 2001. 356(1405): 53-60.
    28 A. Tissier, J. P. McDonald, E. G. Frank and R. Woodgate. poliota, a remarkably error-prone human DNA polymerase. Genes Dev. 2000. 14(13): 1642-50.
    29 T. A. Kunkel, Y. I. Pavlov and K. Bebenek. Functions of human DNA polymerases eta, kappa and iota suggested by their properties, including fidelity with undamaged DNA templates. DNA Repair (Amst). 2003. 2(2): 135-49.
    30 A. Tissier, E. G. Frank, J. P. McDonald, S. Iwai, F. Hanaoka and R. Woodgate. Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase iota. Embo J. 2000. 19(19): 5259-66.
    31 A. Vaisman, E. G. Frank, S. Iwai, E. Ohashi, H. Ohmori, F. Hanaoka and R. Woodgate. Sequence context-dependent replication of DNA templates containing UV-induced lesions by human DNA polymerase iota. DNA Repair (Amst). 2003. 2(9): 991-1006.
    32 C. A. Dumstorf, A. B. Clark, Q. Lin, G. E. Kissling, T. Yuan, R. Kucherlapati, W. G. McGregor and T. A. Kunkel. Participation of mouse DNA polymerase iota in strand-biased mutagenic bypass of UV photoproducts and suppression of skin cancer. Proc Natl Acad Sci U S A. 2006. 103(48): 18083-8.
    33 Q. Gueranger, A. Stary, S. Aoufouchi, A. Faili, A. Sarasin, C. A. Reynaud and J. C. Weill. Role of DNA polymerases eta, iota and zeta in UV resistance and UV-induced mutagenesis in a human cell line. DNA Repair (Amst). 2008.
    34 Y. Wang, R. Woodgate, T. P. McManus, S. Mead, J. J. McCormick and V. M. Maher. Evidence that in xeroderma pigmentosum variant cells, which lack DNA polymerase eta, DNA polymerase iota causes the very high frequency and unique spectrum of UV-induced mutations. Cancer Res. 2007. 67(7): 3018-26.
    35 T. Ohkumo, Y. Kondo, M. Yokoi, T. Tsukamoto, A. Yamada, T. Sugimoto, R. Kanao, Y. Higashi, H. Kondoh, M. Tatematsu, C. Masutani and F. Hanaoka. UV-B radiation induces epithelial tumors in mice lacking DNA polymerase eta and mesenchymal tumors in mice deficient for DNA polymerase iota. Mol Cell Biol. 2006. 26(20): 7696-706.
    36 Y. Zhang, F. Yuan, X. Wu, J. S. Taylor and Z. Wang. Response of human DNA polymerase iota to DNA lesions. Nucleic Acids Res. 2001. 29(4): 928-35.
    37 O. Ziv, N. Geacintov, S. Nakajima, A. Yasui and Z. Livneh. DNA polymerase {zeta} cooperates with polymerases {kappa} and {iota} in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients. Proc Natl Acad Sci U S A. 2009.
    38 A. Vaisman and R. Woodgate. Unique misinsertion specificity of poliota may decrease the mutagenic potential of deaminated cytosines. Embo J. 2001. 20(22): 6520-9.
    39 A. Ito, N. Koshikawa, S. Mochizuki, K. Omura and K. Takenaga. Hypoxia-inducible factor-1 mediates the expression of DNA polymerase iota in human tumor cells. Biochem Biophys Res Commun. 2006. 351(1): 306-11.
    40 T. B. Petta, S. Nakajima, A. Zlatanou, E. Despras, S. Couve-Privat, A. Ishchenko, A. Sarasin, A. Yasui and P. Kannouche. Human DNA polymerase iota protects cells against oxidative stress. Embo J. 2008. 27(21): 2883-95.
    41 M. B. Yin, B. Guo, A. Panadero, C. Frank, C. Wrzosek, H. K. Slocum and Y. M. Rustum. Cyclin E-cdk2 activation is associated with cell cycle arrest and inhibition of DNA replication induced by the thymidylate synthase inhibitor Tomudex. Exp Cell Res. 1999. 247(1): 189-99.
    42 R. E. Johnson, S. L. Yu, S. Prakash and L. Prakash. A role for yeast and human translesion synthesis DNA polymerases in promoting replication through 3-methyl adenine. Mol Cell Biol. 2007. 27(20): 7198-205.
    43 B. S. Plosky, E. G. Frank, D. A. Berry, G. P. Vennall, J. P. McDonald and R. Woodgate. Eukaryotic Y-family polymerases bypass a 3-methyl-2'-deoxyadenosine analog in vitro and methyl methanesulfonate-induced DNA damage in vivo. Nucleic Acids Res. 2008. 36(7): 2152-62.
    44 M. T. Washington, I. G. Minko, R. E. Johnson, L. Haracska, T. M. Harris, R. S. Lloyd, S. Prakash and L. Prakash. Efficient and error-free replication past a minor-groove N2-guanine adduct by the sequential action of yeast Revl and DNA polymerase zeta. Mol Cell Biol. 2004. 24(16): 6900-6.
    45 M. T. Washington, W. T. Wolfle, T. E. Spratt, L. Prakash and S. Prakash. Yeast DNA polymerase eta makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate. Proc Natl Acad Sci U S A. 2003. 100(9): 5113-8.
    46 D. T. Nair, R. E. Johnson, L. Prakash, S. Prakash and A. K. Aggarwal. Hoogsteen base pair formation promotes synthesis opposite the 1 ,N6-ethenodeoxyadenosine lesion by human DNA polymerase iota. Nat Struct Mol Biol. 2006. 13(7): 619-25.
    47 S. A. Ahrendt, J. T. Chow, S. C. Yang, L. Wu, M. J. Zhang, J. Jen and D. Sidransky. Alcohol consumption and cigarette smoking increase the frequency of p53 mutations in non-small cell lung cancer. Cancer Res. 2000. 60(12): 3155-9.
    48 F. Boudsocq, R. J. Kokoska, B. S. Plosky, A. Vaisman, H. Ling, T. A. Kunkel, W. Yang and R. Woodgate. Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication. J Biol Chem. 2004. 279(31): 32932-40.
    49 R. Hayashi, Y. Goto, R. Tanaka, K. Oonogi, M. Hisasue and K. Yoshida. Transcriptional regulation of human chromatin assembly factor ASF1. DNA Cell Biol. 2007. 26(2): 91-9.
    50 X. Shen, J. M. Sayer, H. Kroth, I. Ponten, M. O'Donnell, R. Woodgate, D. M. Jerina and M. F. Goodman. Efficiency and accuracy of SOS-induced DNA polymerases replicating benzo[a]pyrene-7,8-diol 9,10-epoxide A and G adducts. J Biol Chem. 2002. 277(7): 5265-74.
    51 S. Avkin, M. Goldsmith, S. Velasco-Miguel, N. Geacintov, E. C. Friedberg and Z. Livneh. Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymerase kappa. J Biol Chem. 2004. 279(51): 53298-305.
    52 D. F. Jarosz, V. G .Godoy, J. C. Delaney, J. M. Essigmann and G. C. Walker. A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Nature. 2006. 439(7073): 225-8.
    53 R. E. Johnson, S. Prakash and L. Prakash. The human DINB1 gene encodes the DNA polymerase Poltheta. Proc Natl Acad Sci U S A. 2000. 97(8): 3838-43.
    54 M. Montminy, S. H. Koo and X. Zhang. The CREB family: key regulators of hepatic metabolism. Ann Endocrinol (Paris). 2004. 65(1): 73-5.
    55 E. Ohashi, T. Ogi, R. Kusumoto, S. Iwai, C. Masutani, F. Hanaoka and H. Ohmori. Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa. Genes Dev. 2000. 14(13): 1589-94.
    56 D. Szuts, A. P. Marcus, M. Himoto, S. Iwai and J. E. Sale. REV1 restrains DNA polymerase zeta to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo. Nucleic Acids Res. 2008. 36(21): 6767-80.
    57 T. Ogi, P. Kannouche and A. R. Lehmann. Localisation of human Y-family DNA polymerase kappa: relationship to PCNA foci. J Cell Sci. 2005. 118(Pt 1): 129-36.
    58 L. Haracska, L. Prakash and S. Prakash. Role of human DNA polymerase kappa as an extender in translesion synthesis. Proc Natl Acad Sci U S A. 2002. 99(25): 16000-5.
    59 R. L. Levine, H. Miller, A. Grollman, E. Ohashi, H. Ohmori, C. Masutani, F. Hanaoka and M. Moriya. Translesion DNA synthesis catalyzed by human pol eta and pol kappa across 1 ,N6-ethenodeoxyadenosine. J Biol Chem. 2001. 276(22): 18717-21.
    60 C. Guo, P. L. Fischhaber, M. J. Luk-Paszyc, Y. Masuda, J. Zhou, K. Kamiya, C. Kisker and E. C. Friedberg. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. Embo J. 2003. 22(24): 6621-30.
    61 K. Tanaka, Y. Fukuuchi, S. Nogawa, D. Ito, S. Suzuki, T. Dembo and A. Kosakai. [Targets of treatment in the acute phase of cerebral infarction]. Rinsho Shinkeigaku. 2001. 41(12): 1052-4.
    62 V. L. Gerlach, L. Aravind, G. Gotway, R. A. Schultz, E. V. Koonin and E. C. Friedberg. Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proc Natl Acad Sci U SA. 1999.96(21): 11922-7.
    63 T. Okada, E. Sonoda, M. Yoshimura, Y Kawano, H. Saya, M. Kohzaki and S. Takeda. Multiple roles of vertebrate REV genes in DNA repair and recombination. Mol Cell Biol. 2005. 25(14): 6103-11.
    64 M. T. Washington, R. E. Johnson, L. Prakash and S. Prakash. Human DINB1-encoded DNA polymerase kappa is a promiscuous extender of mispaired primer termini. Proc Natl Acad Sci U S A. 2002. 99(4): 1910-4.
    65 E. Ohashi, Y. Murakumo, N. Kanjo, J. Akagi, C. Masutani, F. Hanaoka and H. Ohmori. Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells. 2004. 9(6): 523-31.
    66 J. R. Nelson, C. W. Lawrence and D. C. Hinkle. Deoxycytidyl transferase activity of yeast REV1 protein. Nature. 1996. 382(6593): 729-31.
    67 T. A. Polk, H. P. Lacey, J. K. Nelson, E. Demiralp, L. I. Newman, D. A. Krauss, A. Raheja and M. J. Farah. The development of abstract letter representations for reading: evidence for the role of context. Cogn Neuropsychol. 2009. 26(1): 70-90.
    68 W. Lin, H. Xin, Y. Zhang, X. Wu, F. Yuan and Z. Wang. The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res. 1999. 27(22): 4468-75.
    69 Y. Masuda, M. Takahashi, S. Fukuda, M. Sumii and K. Kamiya. Mechanisms of dCMP transferase reactions catalyzed by mouse Revl protein. J Biol Chem. 2002. 277(4): 3040-6.
    70 D. T. Nair, R. E. Johnson, L. Prakash, S. Prakash and A. K. Aggarwal. Revl employs a novel mechanism of DNA synthesis using a protein template. Science. 2005. 309(5744): 2219-22.
    71 K. C. Park, K. H. Song, H. K. Chung, H. Kim, D. W. Kim, J. H. Song, E. S. Hwang, H. S. Jung, S. H. Park, I. Bae, I. K. Lee, H. S. Choi and M. Shong. CR6-interacting factor 1 interacts with orphan nuclear receptor Nur77 and inhibits its transactivation. Mol Endocrinol. 2005. 19(1): 12-24.
    72 D. T. Nair, R. E. Johnson, L. Prakash, S. Prakash and A. K. Aggarwal. Protein-template-directed synthesis across an acrolein-derived DNA adduct by yeast Revl DNA polymerase. Structure. 2008. 16(2): 239-45.
    73 L. Haracska, S. Prakash and L. Prakash. Yeast Revl protein is a G template-specific DNA polymerase. J Biol Chem. 2002. 277(18): 15546-51.
    74 Y. Masuda and K. Kamiya. Biochemical properties of the human REV1 protein. FEBS Lett. 2002. 520(1-3): 88-92.
    75 C. A. Howell, S. Prakash and M. T. Washington. Pre-steady-state kinetic studies of protein-template-directed nucleotide incorporation by the yeast Revl protein. Biochemistry. 2007. 46(46): 13451-9.
    76 J. R. Nelson, P. E. Gibbs, A. M. Nowicka, D. C. Hinkle and C. W. Lawrence. Evidence for a second function for Saccharomyces cerevisiae Rev1p. Mol Microbiol. 2000. 37(3): 549-54.
    77 C. Otsuka, N. Kunitomi, S. Iwai, D. Loakes and K. Negishi. Roles of the polymerase and BRCT domains of Revl protein in translesion DNA synthesis in yeast in vivo. Mutat Res. 2005. 578(1-2): 79-87.
    78 C. Guo, E. Sonoda, T. S. Tang, J. L. Parker, A. B. Bielen, S. Takeda, H. D. Ulrich and E. C. Friedberg. REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol Cell. 2006. 23(2): 265-71.
    79 L. Haracska, N. Acharya, I. Unk, R. E. Johnson, J. Hurwitz, L. Prakash and S. Prakash. A single domain in human DNA polymerase iota mediates interaction with PCNA: implications for translesion DNA synthesis. Mol Cell Biol. 2005. 25(3): 1183-90.
    80 Y. Murakumo, S. Mizutani, M. Yamaguchi, M. Ichihara and M. Takahashi. Analyses of ultraviolet-induced focus formation of hREV1 protein. Genes Cells. 2006. 11(3): 193-205.
    81 L. B. Meira, D. L. Cheo, A. M. Reis, N. Claij, D. K. Burns, H. te Riele and E. C. Friedberg. Mice defective in the mismatch repair gene Msh2 show increased predisposition to UVB radiation-induced skin cancer. DNA Repair (Amst). 2002. 1(11): 929-34.
    82 A. R. Lehmann. Replication of damaged DNA by translesion synthesis in human cells. FEBS Lett. 2005. 579(4): 873-6.
    83 N. Acharya, R. E. Johnson, S. Prakash and L. Prakash. Complex formation with Revl enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol. 2006. 26(24): 9555-63.
    84 W. K. Kaufmann, T. P. Heffernan, L. M. Beaulieu, S. Doherty, A. R. Frank, Y. Zhou, M. F. Bryant, T. Zhou, D. D. Luche, N. Nikolaishvili-Feinberg, D. A. Simpson and M. Cordeiro-Stone. Caffeine and human DNA metabolism: the magic and the mystery. Mutat Res. 2003. 532(1-2): 85-102.
    85 J. G. Jansen, A. Tsaalbi-Shtylik, P. Langerak, F. Calleja, C. M. Meijers, H. Jacobs and N. de Wind. The BRCT domain of mammalian Revl is involved in regulating DNA translesion synthesis. Nucleic Acids Res. 2005. 33(1): 356-65.
    86 H. Zhang, P. E. Gibbs and C. W. Lawrence. The Saccharomyces cerevisiae rev6-l mutation, which inhibits both the lesion bypass and the recombination mode of DNA damage tolerance, is an allele of POL30, encoding proliferating cell nuclear antigen. Genetics. 2006. 173(4): 1983-9.
    87 C. W. Lawrence. Cellular functions of DNA polymerase zeta and Revl protein. Adv Protein Chem. 2004. 69(167-203.
    1 K. Bebenek and T. A. Kunkel. Family growth: the eukaryotic DNA polymerase revolution. Cell Mol Life Sci. 2002. 59(1): 54-7.
    2 C. Masutani, R. Kusumoto, A. Yamada, N. Dohmae, M. Yokoi, M. Yuasa, M. Araki, S. Iwai, K. Takio and F. Hanaoka. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature. 1999. 399(6737): 700-4.
    3 R. E. Johnson, C. M. Kondratick, S. Prakash and L. Prakash. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science. 1999. 285(5425): 263-5.
    4 M. Cordeiro-Stone, L. S. Zaritskaya, L. K. Price and W. K. Kaufmann. Replication fork bypass of a pyrimidine dimer blocking leading strand DNA synthesis. J Biol Chem. 1997. 272(21): 13945-54.
    
    5 I. Ensch-Simon, P. M. Burgers and J. S. Taylor. Bypass of a site-specific cis-Syn thymine dimer in an SV40 vector during in vitro replication by HeLa and XPV cell-free extracts. Biochemistry. 1998. 37(22): 8218-26.
    6 D. L. Svoboda, L. P. Briley and J. M. Vos. Defective bypass replication of a leading strand cyclobutane thymine dimer in xeroderma pigmentosum variant cell extracts. Cancer Res. 1998. 58(11): 2445-8.
    7 A. M. Cordonnier, A. R. Lehmann and R. P. Fuchs. Impaired translesion synthesis in xeroderma pigmentosum variant extracts. Mol Cell Biol. 1999. 19(3): 2206-11.
    
    8 C. Masutani, M. Araki, A. Yamada, R. Kusumoto, T. Nogimori, T. Maekawa, S. Iwai and F. Hanaoka. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. Embo J. 1999. 18(12): 3491-501.
    9 H. Ohmori, E. C. Friedberg, R. P. Fuchs, M. F. Goodman, F. Hanaoka, D. Hinkle, T. A. Kunkel, C. W. Lawrence, Z. Livneh, T. Nohmi, L. Prakash, S. Prakash, T. Todo, G. C. Walker, Z. Wang and R. Woodgate. The Y-family of DNA polymerases. Mol Cell. 2001. 8(1): 7-8.
    10 M. Yuasa, C. Masutani, T. Eki and F. Hanaoka. Genomic structure, chromosomal localization and identification of mutations in the xeroderma pigmentosum variant (XPV) gene. Oncogene. 2000. 19(41): 4721-8.
    11 M. Thakur, M. Wernick, C. Collins, C. L. Limoli, E. Crowley and J. E. Cleaver. DNA polymerase eta undergoes alternative splicing, protects against UV sensitivity and apoptosis, and suppresses Mre11-dependent recombination. Genes Chromosomes Cancer. 2001. 32(3): 222-35.
    12 P. Kannouche, B. C. Broughton, M. Volker, F. Hanaoka, L. H. Mullenders and A. R. Lehmann. Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes Dev. 2001. 15(2): 158-72.
    13 A. Wang, A. Pierce, K. Judson-Kremer, S. Gaddis, C. M. Aldaz, D. G. Johnson and M. C. MacLeod. Rapid analysis of gene expression (RAGE) facilitates universal expression profiling. Nucleic Acids Res. 1999. 27(23): 4609-18.
    14 T. Matsuda, K. Bebenek, C. Masutani, F. Hanaoka and T. A. Kunkel. Low fidelity DNA synthesis by human DNA polymerase-eta. Nature. 2000. 404(6781): 1011-3.
    15 R. E. Johnson, M. T. Washington, S. Prakash and L. Prakash. Fidelity of human DNA polymerase eta. J Biol Chem. 2000. 275(11): 7447-50.
    16 K. Bebenek, T. Matsuda, C. Masutani, F. Hanaoka and T. A. Kunkel. Proofreading of DNA polymerase eta-dependent replication errors. J Biol Chem. 2001. 276(4): 2317-20.
    17 C. Masutani, R. Kusumoto, S. Iwai and F. Hanaoka. Mechanisms of accurate translesion synthesis by human DNA polymerase eta. Embo J. 2000. 19(12): 3100-9.
    18 L. Haracska, L. Prakash and S. Prakash. Role of human DNA polymerase kappa as an extender in translesion synthesis. Proc Natl Acad Sci U S A. 2002. 99(25): 16000-5.
    19 H. Ohmori, E. Ohashi and T. Ogi. Mammalian Pol kappa: regulation of its expression and lesion substrates. Adv Protein Chem. 2004. 69(265-78.
    20 M. T. Washington, W. T. Wolfle, T. E. Spratt, L. Prakash and S. Prakash. Yeast DNA polymerase eta makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate. Proc Natl Acad Sci U S A. 2003. 100(9): 5113-8.
    21 R. E. Johnson, S. Prakash and L. Prakash. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science. 1999. 283(5404): 1001-4.
    22 S. D. McCulloch, R. J. Kokoska, C. Masutani, S. Iwai, F. Hanaoka and T. A. Kunkel. Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature. 2004. 428(6978): 97-100.
    23 A. R. Lehmann. Replication of damaged DNA by translesion synthesis in human cells. FEBS Lett. 2005. 579(4): 873-6.
    24 C. L. Limoli, E. Giedzinski, W. F. Morgan and J. E. Cleaver. Inaugural article: polymerase eta deficiency in the xeroderma pigmentosum variant uncovers an overlap between the S phase checkpoint and double-strand break repair. Proc Natl Acad Sci U S A. 2000. 97(14): 7939-46.
    25 G. A. Garinis, J. R. Mitchell, M. J. Moorhouse, K. Hanada, H. de Waard, D. Vandeputte, J. Jans, K. Brand, M. Smid, P. J. van der Spek, J. H. Hoeijmakers, R. Kanaar and G. T. van der Horst. Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks. Embo J. 2005. 24(22): 3952-62.
    26 C. W. Lawrence and D. C. Hinkle. DNA polymerase zeta and the control of DNA damage induced mutagenesis in eukaryotes. Cancer Surv. 1996. 28(21-31.
    27 Y. Wang, R. Woodgate, T. P. McManus, S. Mead, J. J. McCormick and V. M. Maher. Evidence that in xeroderma pigmentosum variant cells, which lack DNA polymerase eta, DNA polymerase iota causes the very high frequency and unique spectrum of UV-induced mutations. Cancer Res. 2007. 67(7): 3018-26.
    28 D. H. Lee and G. P. Pfeifer. Translesion synthesis of 7,8-dihydro-8-oxo-2'-deoxyguanosine by DNA polymerase eta in vivo. Mutat Res. 2008.641(1-2): 19-26.
    29 S. D. McCulloch, R. J. Kokoska, P. Garg, P. M. Burgers and T. A. Kunkel. The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta. Nucleic Acids Res. 2009. 37(9): 2830-40.
    30 A. Irimia, R. L. Eoff, F. P. Guengerich and M. Egli. Structural and functional elucidation of the mechanism promoting error-prone synthesis by human DNA polymerase kappa opposite the 7,8-Dihydro-8-oxo-2'-deoxyguanosine adduct. J Biol Chem. 2009.
    31 L. Haracska, S. Prakash and L. Prakash. Replication past O(6)-methylguanine by yeast and human DNA polymerase eta. Mol Cell Biol. 2000. 20(21): 8001-7.
    32 Y. Zhang, F. Yuan, X. Wu, O. Rechkoblit, J. S. Taylor, N. E. Geacintov and Z. Wang. Error-prone lesion bypass by human DNA polymerase eta. Nucleic Acids Res. 2000. 28(23): 4717-24.
    33 H. Fukuda, T. Takamura-Enya, Y Masuda, T. Nohmi, C. Seki, K. Kamiya, T. Sugimura, C. Masutani, F. Hanaoka and H. Nakagama. Translesional DNA synthesis through a C8-guanyl adduct of 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in Vitro: REV1 inserts dC opposite the lesion, and DNA polymerase kappa potentially catalyzes extension reaction from the 3'-dC terminus. J Biol Chem. 2009. 284(38): 25585-92.
    34 M. Yasui, E. Suenaga, N. Koyama, C. Masutani, F. Hanaoka, P. Gruz, S. Shibutani, T. Nohmi, M. Hayashi and M. Honma. Miscoding properties of 2'-deoxyinosine, a nitric oxide-derived DNA Adduct, during translesion synthesis catalyzed by human DNA polymerases. J Mol Biol. 2008. 377(4): 1015-23.
    35 K. Satou, M. Hori, K. Kawai, H. Kasai, H. Harashima and H. Kamiya. Involvement of specialized DNA polymerases in mutagenesis by 8-hydroxy-dGTP in human cells. DNA Repair (Amst). 2009. 8(5): 637-42.
    36 I. Y. Yang, H. Miller, Z. Wang, E. G. Frank, H. Ohmori, F. Hanaoka and M. Moriya. Mammalian translesion DNA synthesis across an acrolein-derived deoxyguanosine adduct. Participation of DNA polymerase eta in error-prone synthesis in human cells. J Biol Chem. 2003. 278(16): 13989-94.
    37 A. Faili, S. Aoufouchi, S. Weller, F. Vuillier, A. Stary, A. Sarasin, C. A. Reynaud and J. C. Weill. DNA polymerase eta is involved in hypermutation occurring during immunoglobulin class switch recombination. J Exp Med. 2004. 199(2): 265-70.
    38 X. Zeng, G. A. Negrete, C. Kasmer, W. W. Yang and P. J. Gearhart. Absence of DNA polymerase eta reveals targeting of C mutations on the nontranscribed strand in immunoglobulin switch regions. J Exp Med. 2004. 199(7): 917-24.
    39 V. I. Mayorov, I. B. Rogozin, L. R. Adkison and P. J. Gearhart. DNA polymerase eta contributes to strand bias of mutations of A versus T in immunoglobulin genes. J Immunol. 2005. 174(12): 7781-6.
    40 I. B. P. Y. Rogozin, Bebenek K, Matsuda T, Kunkel TA. Somatic mutation hotspots correlate with DNA polymerase η error spectrum. Nature Immunol. 2001. 2(530-536.
    41 T. M. Wilson, A. Vaisman, S. A. Martomo, P. Sullivan, L. Lan, F. Hanaoka, A. Yasui, R. Woodgate and P. J. Gearhart. MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes. J Exp Med. 2005. 201(4): 637-45.
    42 F. Delbos, A. De Smet, A. Faili, S. Aoufouchi, J. C. Weill and C. A. Reynaud. Contribution of DNA polymerase eta to immunoglobulin gene hypermutation in the mouse. J Exp Med. 2005. 201(8): 1191-6.
    43 S. A. Martomo, W. W. Yang, R. P. Wersto, T. Ohkumo, Y. Kondo, M. Yokoi, C. Masutani, F. Hanaoka and P. J. Gearhart. Different mutation signatures in DNA polymerase eta- and MSH6-deficient mice suggest separate roles in antibody diversification. Proc Natl Acad Sci U S A. 2005. 102(24): 8656-61.
    44 A. Franklin, P. J. Milburn, R. V. Blanden and E. J. Steele. Human DNA polymerase-eta, an A-T mutator in somatic hypermutation of rearranged immunoglobulin genes, is a reverse transcriptase. Immunol Cell Biol. 2004. 82(2): 219-25.
    45 T. Kawamoto, K. Araki, E. Sonoda, Y. M. Yamashita, K. Harada, K. Kikuchi, C. Masutani, F. Hanaoka, K. Nozaki, N. Hashimoto and S. Takeda. Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol Cell. 2005. 20(5): 793-9.
    46 M. J. McIlwraith, A. Vaisman, Y. Liu, E. Fanning, R. Woodgate and S. C. West. Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell. 2005. 20(5): 783-92.
    47 J. H. Choi and G. P. Pfeifer. The role of DNA polymerase eta in UV mutational spectra. DNA Repair (Amst). 2005. 4(2): 211-20.
    48 T. T. Huang, S. M. Nijman, K. D. Mirchandani, P. J. Galardy, M. A. Cohn, W. Haas, S. P. Gygi, H. L. Ploegh, R. Bernards and A. D. D'Andrea. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol. 2006. 8(4): 339-47.
    49 L. Rey, J. M. Sidorova, N. Puget, F. Boudsocq, D. S. Biard, R. J. Monnat, Jr., C. Cazaux and J. S. Hoffmann. Human DNA polymerase eta is required for common fragile site stability during unperturbed DNA replication. Mol Cell Biol. 2009.
    50 R. A. Busuttil, Q. Lin, P. J. Stambrook, R. Kucherlapati and J. Vijg. Mutation frequencies and spectra in DNA polymerase eta-deficient mice. Cancer Res. 2008. 68(7): 2081-4.
    51 S. de Feraudy, C. L. Limoli, E. Giedzinski, D. Karentz, T. M. Marti, L. Feeney and J. E. Cleaver. Pol eta is required for DNA replication during nucleotide deprivation by hydroxyurea. Oncogene. 2007. 26(39): 5713-21.
    52 R. Kanao, F. Hanaoka and C. Masutani. A novel interaction between human DNA polymerase eta and MutLalpha. Biochem Biophys Res Commun. 2009. 389(1): 40-5.
    53 C. W. Yung, Y. Okugawa, C. Otsuka, K. Okamoto, S. Arimoto, D. Loakes, K. Negishi and T. Negishi. Influence of neighbouring base sequences on the mutagenesis induced by 7,8-dihydro-8-oxoguanine in yeast. Mutagenesis. 2008. 23(6): 509-13.
    54 L. Haracska, R. E. Johnson, I. Unk, B. Phillips, J. Hurwitz, L. Prakash and S. Prakash. Physical and functional interactions of human DNA polymerase eta with PCNA. Mol Cell Biol. 2001. 21(21): 7199-206.
    55 L. Haracska, C. M. Kondratick, I. Unk, S. Prakash and L. Prakash. Interaction with PCNA is essential for yeast DNA polymerase eta function. Mol Cell. 2001. 8(2): 407-15.
    56 S. Sabbioneda, C. M. Green, M. Bienko, P. Kannouche, I. Dikic and A. R. Lehmann. Ubiquitin-binding motif of human DNA polymerase eta is required for correct localization. Proc Natl Acad Sci U S A. 2009. 106(8): E20; author reply E21.
    57 J. L. Parker, A. B. Bielen, I. Dikic and H. D. Ulrich. Contributions of ubiquitin-and PCNA-binding domains to the activity of Polymerase eta in Saccharomyces cerevisiae. Nucleic Acids Res. 2007. 35(3): 881-9.
    58 N. Acharya, J. H. Yoon, H. Gali, I. Unk, L. Haracska, R. E. Johnson, J. Hurwitz, L. Prakash and S. Prakash. Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis. Proc Natl Acad Sci U S A. 2008. 105(46): 17724-9.
    59 M. R. Albertella, C. M. Green, A. R. Lehmann and M. J. O'Connor. A role for polymerase eta in the cellular tolerance to cisplatin-induced damage. Cancer Res. 2005. 65(21): 9799-806.
    60 B. S. Plosky, A. E. Vidal, A. R. Fernandez de Henestrosa, M. P. McLenigan, J. P. McDonald, S. Mead and R. Woodgate. Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin. Embo J. 2006. 25(12): 2847-55.
    61 P. L. Kannouche, J. Wing and A. R. Lehmann. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell. 2004. 14(4): 491-500.
    62 P. Garg and P. M. Burgers. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. Proc Natl Acad Sci U S A. 2005. 102(51): 18361-6.
    63 K. Watanabe, S. Tateishi, M. Kawasuji, T. Tsurimoto, H. Inoue and M. Yamaizumi. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. Embo J. 2004. 23(19): 3886-96.
    64 P. Langerak, P. H. Krijger, M. R. Heideman, P. C. van den Berk and H. Jacobs. Somatic hypermutation of immunoglobulin genes: lessons from proliferating cell nuclear antigenK164R mutant mice. Philos Trans R Soc Lond B Biol Sci. 2009. 364(1517): 621-9.
    65 C. Hoege, B. Pfander, G. L. Moldovan, G. Pyrowolakis and S. Jentsch. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 2002. 419(6903): 135-41.
    66 M. Yasui, N. Suzuki, H. Miller, T. Matsuda, S. Matsui and S. Shibutani. Translesion synthesis past 2'-deoxyxanthosine, a nitric oxide-derived DNA adduct, by mammalian DNA polymerases. J Mol Biol. 2004. 344(3): 665-74.
    67 Y. Huang, T. Ishiko, S. Nakada, T. Utsugisawa, T. Kato and Z. M. Yuan. Role for E2F in DNA damage-induced entry of cells into S phase. Cancer Res. 1997. 57(17): 3640-3.
    68 S. Avkin, Z. Sevilya, L. Toube, N. Geacintov, S. G. Chaney, M. Oren and Z. Livneh. p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. Mol Cell. 2006. 22(3): 407-13.
    69 S. W. Hiebert, G. Packham, D. K. Strom, R. Haffner, M. Oren, G. Zambetti and J. L. Cleveland. E2F-1:DP-1 induces p53 and overrides survival factors to trigger apoptosis. Mol Cell Biol. 1995. 15(12): 6864-74.
    70 M. Gu, R. P. Singh, S. Dhanalakshmi, S. Mohan and R. Agarwal. Differential effect of silibinin on E2F transcription factors and associated biological events in chronically UVB-exposed skin versus tumors in SKH-1 hairless mice. Mol Cancer Ther. 2006. 5(8): 2121-9.
    71 G Soria, J. Speroni, O. L. Podhajcer, C. Prives and V. Gottifredi. p21 differentially regulates DNA replication and DNA-repair-associated processes after UV irradiation. J Cell Sci. 2008. 121(Pt 19): 3271-82.
    72 Y. W. Chen, J. E. Cleaver, Z. Hatahet, R. E. Honkanen, J. Y. Chang, Y. Yen and K. M. Chou. Human DNA polymerase eta activity and translocation is regulated by phosphorylation. Proc Natl Acad Sci U S A. 2008. 105(43): 16578-83.
    73 G. Liu and X. Chen. DNA polymerase eta, the product of the xeroderma pigmentosum variant gene and a target of p53, modulates the DNA damage checkpoint and p53 activation. Mol Cell Biol. 2006. 26(4): 1398-413.
    74 F. Yuan, Y. Zhang, D. K. Rajpal, X. Wu, D. Guo, M. Wang, J. S. Taylor and Z. Wang. Specificity of DNA lesion bypass by the yeast DNA polymerase eta. J Biol Chem. 2000. 275(11): 8233-9.
    75 S. Mogi, C. E. Butcher and D. H. Oh. DNA polymerase eta reduces the gamma-H2AX response to psoralen interstrand crosslinks in human cells. Exp Cell Res. 2008. 314(4): 887-95.
    76 P. Ceppi, S. Novello, A. Cambieri, M. Longo, V. Monica, M. Lo Iacono, M. Giaj-Levra, S. Saviozzi, M. Volante, M. Papotti and G. Scagliotti. Polymerase eta mRNA expression predicts survival of non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res. 2009. 15(3): 1039-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700